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Abstract 
This paper presents an approach to the approxi­
mate description of univariate real-valued func­
tions in terms of precise or imprecise reference 
points and interpolation between these points. It 
is achieved by means of gradual rules which ex­
press that the closer the variable to the abscissa of 
a reference point, the closer the value of the func­
tion to the ordinate of this reference point. Grad­
ual rules enable us to specify sophisticated 
gauges, under the form of connected areas, inside 
of which the function belonging to the class under 
consideration should remain. This provides a 
simple and efficient tool for categorizing signals. 
This tool can be further improved by making the 
gauge flexible by means of fuzzy gradual rules. 
This is illustrated on a benchmark example. 

1 Introduction 
Signal functions, such as time series, medical ECG's, arc usu­
ally viewed as analytical mappings. Then, a precise represen­
tation is often used. Even when uncertainty is dealt with, it is 
supposed to pervade parameters of the analytical models, 
leading to probabilistic or interval-based processing. The 
main objective of this paper is to propose an alternative to this 
classical type of approaches by investigating the interest of a 
special kind of fuzzy « i f . , then » rules, named gradual rules 
[Dubois and Prade, 1992; 1994], for developing imprecise 
representations. Actually, the proposed strategy relies on in-
terpolative reasoning. By specifying the interpolate repre­
sentation with gradual rules, there is no need to choose an 
analytic form for the interpolator and an imprecise model is 
directly obtained from the constraints expressed by the rules. 
The proposed rule-based approach is an alternative to works 
based on fuzzy polynomials [Lowen, 1990] or fuzzy spline 
interpolation, e.g. [Kawaguchi and Miyakoshi, 1998], which 
rely on fuzzy-valued functions and still depend on the analyt­
ical form of the interpolant. 

What is supposed to be known, in a precise or in an imprecise 
way, is the behaviour of the function at some reference 
points, the problem being to interpolate between these points. 
Figure 1 illustrates our purpose of building an imprecise mod­
el in a case where the points on which interpolation is based 
are imprecise and modelled by rectangular areas. 

figure 1: Imprecise interpolation 

So, we are no longer looking for a function, but for a relation 
linking the variable to the possible value of the function. 
Then, this relation is represented by its graphT defined on the 
Cartesian product X X Z (where X is the input domain, and Z 
the function range). A similar approach used in automated 
control, recently proposed in [Sala and Albertos, 2001], also 
considers the building of uncertain fuzzy models in the set­
ting of the approximation of multi-valued functions called 
"ambiguous functions". 

The paper, after some brief background on gradual rules, dis­
cusses the design of the imprecise interpolate representa­
tion in terms of gradual rules, constrained by precise or 
imprecise reference points. The proposed approach is then 
applied to the classification of time series. Moreover, a more 
powerful representation framework, based on fuzzy sets of 
gradual rules (called fuzzy gradual rules for short) is pro­
posed. It enables us to describe areas through which it is not 
completely possible that the function may go. 
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2 Interpolation and gradual rules 
The idea of imprecise interpolation suggested above is based 
on constraints to be satisfied. Namely the results of the inter­
polation should agree with the reference points. These con­
straints define the graph of a relation on 

We first consider the case of precise interpolation points 
with coordinates Then the relationT should 
satisfy: 

for Without any further constraint on the nature of 
the interpolation, we only have: 

Thus each interpolation point induces the constraint " I f 
then represented b y the r u l e w h e r e 

is material implication. The relation is thus obtained as 
the conjunction: 

(1) 
This relation is extremely imprecise since there is no con­
straint at all outside the reference points. Instead of using a 
precise type of interpolation function, one may use fuzzy 
rules in order to express constraints in the vicinity of the in­
terpolation points. The idea is to use rules of the form "the 
closer* is to , the closer:: is to " The extension of equation 
(1) to gradual rules provides the following expression for the 
graph 

(2) 

where represents Reschcr-Gaincs implication 1 
if a n d c I o s c t0 is the degree 
of truth of the proposition is close to "\ 

We have just to define what is meant by "close to". Let de­
note the fuzzy set of values close to It is natural to set 

and to assume that the membership degree 
to decreases on each side of with the distance to How­
ever will not be necessarily symmetrical. The simplest so­
lution consists in choosing triangular fuzzy sets with a 
support denoted by In a similar way, the closeness 
to will be modelled by a triangular fuzzy set B, with modal 
value Zi and support Then the interpolation relation 
only depends on 4n parameters for interpola­
tion points. In order to simplify their tuning, we further as­
sume that at most two rules are simultaneously fired at each 
point of the input domain, 

For increasing reference points and 
it has been established in [Galichet et 

al., 2002] that the interpolation graph is made of connected 4-
sided areas (as pictured in figure 2) when the following con­
straints hold between the parameters: 

(3) 

(4) 

Similar relationships can be obtained when considering de­
creasing reference points. These constraints can be related to 
consistency requirements between gradual rules [Dubois ct 
al., 1997], ensuring the non emptiness of the image of each in­
put point via the relation 

Figure 2 pictures the interpolation graph which is obtained 
with three interpolation points, and thus three gradual rules 
whose A f s and Bi's also appear in figure 2. The partitioning 
of X is obtained by cutting the intervals into three 

ed by the parameters which define the fuzzy sets The ex­
treme values and are also predefined. Lastly, the other 
parameters can be obtained by solving the system of equa­
tions derived from (3) and (4). 

figure 2: Piecewise quadrangle-shaped graph 

This approach straightforwardly extends to imprecise refer­
ence points provided that trapezoidal membership functions 
are used in place of triangular ones (see figure 3). 

figure 3: Imprecise reference points 
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3 Classification of time series 
Our purpose is now to illustrate how the imprecise intcrpola-
tive representation framework can be used to classify time se­
ries, see, e.g. [Kadous, 2002]. Supervised classification is 
assumed, contrary to clustering techniques whose recent de­
velopments are often based on hidden Markov models [Bis­
was et al., 1998; L i , 2000]. The proposed experiment deals 
wi th the database, freely available from the 
UCI Data Archive [UCI K D D Archive]. It is a 6-class prob­
lem, wi th 100 examples of each class, a prototype of each 
class being presented in figure 4. A categorization of process 
trends, based on types of variation, is also adopted in qualita­
tive reasoning and model-based diagnosis [Colomcr et al., 
2002]. 

Normal (class 0) 

Cyclic (class 1) 

Increasing trend 
(class 2) 

Decreasing trend 
(class 3) 

Upward shift 
(class 4) 

Downward shift 
(class 5) 

60 

figure 4: One example of each class 

Given an unlabeled time series, the aim of the classification 
is to decide to which class it belongs. The idea behind the pro­
posed methodology consists in developing an imprecise mod­
el of each class. Then, the time scries to classify w i l l be 
assigned to the class whose model presents the maximal ade­
quacy wi th the temporal data under consideration. The impre­
cise models are specified using gradual rules as advocated in 
the previous section. 

In figure 5, ten examples of class 5 are plotted simultaneous­
ly. It clearly shows that the reference points arc no longer pre­
cise. In this context, triangular membership functions are 
replaced by trapezoidal membership functions whose cores 
delimit the rectangular areas associated wi th the imprecise 
reference points. According to this slight modif ication, the 
graph plotted in figure 5 is obtained from two gradual rules, 
i.e. It can be shown that the constraints 
on the graph shape expressed by equations (3) and (4) are stil l 
valid. 

Imprecise 
reference 

points 

figure 5: Imprecise model of class 5 

The model so built can be further improved by truncating the 
upper and lower parts of the quadrangle-shaped graph. An 
easy strategy to implement the graph cutting consists in add­
ing a new rule that directly translates the interval-based con­
straint where and b2 

arc defined in figure 5. Such an approach results in the final 
graph given in figure 6. 

figure 6: Model of class 5 (truncated graph) 

Figure 7 and 8 present the implemented models for two others 
classes. The first one associated wi th class 3 is based on ref­
erence points whose imprecision is only relative to the output. 
Using strong partitions wi th triangular input membership 
functions and trapezoidal output ones, imprecise linear inter­
polation is obtained by means of the two rules and 
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Concerning cyclic time scries (figure 8), the non-monotonic 
underlying behavior induces some difficulties in the model­
ling process. Actually, closeness on the right and on the left 
of the reference points must be handled in different ways. It 
means that two distinct fuzzy subsets are required for correct­
ly dealing with each reference point. In this framework, the 
imprecise models of figure 8 is composed of 9 gradual rules. 

Imprecise models are built for the six classes so that the 
graphs include all the points that compose the training time 
series (10 for each class). The classification of a time-series, 
given as a collection of points is then 
carried out according to its adequacy with the class models. 
The latter is determined from the number of points of the time 
series under consideration that belong to the graph of each 
model, that is: 

where denotes the model graph of the class. The final 
decision is then to assign the time series, supposed unlabeled, 
to the class that maximizes ..., 6. Applying this stra­

tegy to classify the 600 available examples, perfect classifica­
tion is obtained, i.e. the error rate is null for the training 
examples but also for the test time scries. This result is better 
than the one obtained with other approaches of the same pro­
blem [Kcogh and Kasetty, 2002; Nanopoulos et al., 2001]. It 
is however important to be cautious about this good perfor­
mance. Indeed, the discrimation between some classes is not 
robust. This point is illustrated by figure 9 in the case of clas­
ses 3 and 5 which are difficult to differentiate. The adequacy 
between the 100 time series of class 3 and models of classes 
3 and 5 is plotted. It can be stated that, for many time series, 
the difference between both obtained scores is small, which 
means that a slight modification of the models would proba­
bly result in different final decisions. Actually, an important 
intersection between both models induces a loss of the discri­
mination power of the adequacy index. In this framework, 
one may think of improving the robustness of the classifica­
tion by refining the imprecise models. One possible strategy 
is then to introduce some membership degrees in the four si­
ded areas while keeping their support unchanged. This can be 
made by using fuzzy sets of gradual rules as shown now. 

Number of points that belong to the models 

0 Time series number 100 

figure 9: Adequacy of class 3 examples with models 
of classes 3 and 5 

4 In te rpo la te fuzzy graph 
According to the previous sections, it is clear that given a set 
of rules, i.e. a set of reference points, a collection of crisp 
graphs can be obtained by varying the support parameters of 
the and/or t h e M o r e o v e r , inclusion properties be­
tween the built graphs can be exhibited for controlled varia­
tions of the supports as expressed by the following 
statements. 
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figure 7: Model for class 3 (decreasing trend) 

(c) Cyclic 

figure 8: Model for class l (cyclic) 



a construction of nested graphs simply expresses that impli­
cative graphs increase in the sense of inclusion when under­
lying constraints become more permissive. More permissive 
rules are obtained cither by restricting input conditions fur­
ther, or by enlarging output fuzzy sets. 
Using a convex linear combination enables the automatic 
construction of such a collection of nested fuzzy subsets rang­
ing from the lower bound of the family to the upper one. Ap­
plying such a technique results in the following proposal: 

(6) 

where and. such that are the lower and upper 
bounds of the family and denotes the extended sum of 
fuzzy numbers. In the same way, nested output fuzzy subsets 
can be built according to: 

(7) 

where and such that are the upper and low­
er bounds of the family. It should be noted that the inclusion 
ordering of the using is the converse of the one of the 

due to opposite behaviors with respect to graph inclusion. 

Using the so-built fuzzy subset families (see figure 10) results 
in the following graph inclusions: 

(8) 

figure 10: Nested fuzzy subsets 

One interesting point is that the 4-sided shape introduced in 
section 2 is shared by all nested graphs provided that the low­
er and upper graphs are themselves 4-sided areas. In other 
words, equalities (3) and (4) hold for any when they hold 

as expressed by property P4. 

when and are built according to (6) 
and (7). 

An interpretation consists in viewing as a fuzzy set of crisp 
graphs, that is as a level 2 fuzzy set, i.e. a fuzzy set of fuzzy 
sets. In this case, F is represented as: 

(9) 

according to Zadch's notation where the integral sign stands 
for the union of the fuzzy singletons A single fuzzy 
gradual rule is pictured in figure 11. 

Figure 12 plots the fuzzy graph obtained when the lower 
graph r1 is precise and piecewise linear and the upper graph 
f° has the quadrangle-based shape of figure 2. 

0.75 0 0.5 
figure 12: A graph based on 3 fuzzy gradual rules 

Using fuzzy gradual rules for dealing with the example of 
section 3 still results in perfect classification. Moreover, the 
robustness of the classification is improved as illustrated by 
figure 13, where histograms of the difference N3 - N5 are 
plotted for class 3 time series (see figure 9). It is clear that the 
number of examples for which the final decision is brittle, i.e. 
for the small values of N3 - N5 which are accounted for in the 
two first bars, decreases when fuzzy gradual rules are used. 
These results have been obtained by using the same form of 
indices Nj given by equation (5) for crisp and fuzzy graphs 
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except that in the fuzzy case. Further im­
provements could probably be obtained by defining more so­
phisticated indices in the fuzzy case. 

figure 13: Effect of fuzzy gradual rules on the discrimination 

5 Conclusion 
This paper has proposed a modelling framework which is 
faithful to the imprecision of available data. In the intervals 
between interpolation points where it is difficult to specify an 
analytical model, imprecision is captured by means of 4-sided 
areas. The application of the modelling methodology for clas­
sifying time series has exhibited interesting performance. 
Moreover, the discrimination power of the approach is im­
proved by using fuzzy gradual rules as introduced in the pre­
vious section. Indeed, they enable us to distinguish between 
typical members of a class which remain in subareas with 
high membership degrees from borderline members which go 
through subareas with smaller membership degrees. Besides, 
one may probably take further advanvage of the easy inter­
face with the user, provided by the use of gradual rule, for 
specifying queries in data mining applications (see [Keogh et 
al., 2002] for an example of such possible use). Lastly, further 
research should deal with multidimensional spaces where the 
language of gradual rules may prove useful in the description 
of imprecise graphs. 
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