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Abstract 
An agent with limited consumable execution re­
sources needs policies that attempt to achieve good 
performance while respecting these limitations. 
Otherwise, an agent (such as a plane) might fail 
catastrophically (crash) when it runs out of re­
sources (fuel) at the wrong time (in midair). We 
present a new approach to constructing policies for 
agents with limited execution resources that builds 
on principles of real-time A l , as well as research 
in constrained Markov decision processes. Specif­
ically, we formulate, solve, and analyze the pol­
icy optimization problem where constraints are im­
posed on the probability of exceeding the resource 
limits. We describe and empirically evaluate our 
solution technique to show that it is computation­
ally reasonable, and that it generates policies that 
sacrifice some potential reward in order to make the 
kinds of precise guarantees about the probability of 
resource overutilization that are crucial for mission-
critical applications. 

1 Introduction 
Optimality is the gold standard in rational decision making 
(e.g., [Russell and Subramanian, 1995]), and, consequently, 
the problem of constructing optimal policies for autonomous 
agents has received considerable attention over the years. 
Traditionally, this problem has been viewed separately from 
the problem of actually carrying out the policies. However, 
real agents have limitations as to what they can execute, and, 
clearly, a policy is less useful if an agent might run out of 
resources while carrying out the policy. 

In this paper, we present a new approach for construct­
ing policies for agents that have limited consumable re­
sources where running out of the resources can have neg­
ative consequences. Whereas AI research has mostly fo­
cused on (PO)MDP [Boutilier et ai, 1999; Dean et ai,1993; 
Howard, 1960; Puterman, 1995] methods for formulating 
policies for agents without emphasizing constraints on their 
execution resources, the Operations Research literature has 
developed constrained MDP (CMDP) [Altaian, 1999; Put­
erman, 1995] techniques that can account for resource con­
straints. CMDP methods are particularly useful for domains 

where the current resource amounts are unobservable and 
cannot be easily estimated by the agent, or where modeling 
resource amounts in the state description is computationally 
infeasible. In an aircraft scenario, some resources and situa­
tions where such methods arc beneficial could include an air­
plane with a broken fuel gauge (fuel amount is unobservable), 
pilot fatigue (attention is a resource that cannot be easily es­
timated), or a combination of non-critical resources (ex. var­
ious refreshments) that should nevertheless not be exhausted, 
but explicit modeling of which unnecessarily complicates the 
optimization problem and increases policy size. In the rest of 
the paper, we wil l use the fuel example, simply because it is 
a very intuitive instance of a consumable resource. 

However, as we wil l explain later, standard risk-neutral 
CMDP optimization techniques are not applicable to prob­
lems where violating the constraints can have negative or, in 
the limit, catastrophic1 consequences. The main contribution 
of this work is that it extends the standard CMDP techniques 
to handle the types of hard constraints that naturally arise in 
problems involving critical resources. In particular, we for­
mulate an optimization problem where constraints are im­
posed on improbability of resource overutilization, and show 
how the problem can be solved using standard linear pro­
gramming algorithms. Our formulation yields sub-optimal 
solutions to the constrained problem because it sacrifices po­
tential reward to make guarantees about the probability of 
violating the resource constraints. As we later show, when 
violating constraints incurs dire costs, these guarantees are 
worthwhile ([Musliner et al, 1995] and references therein). 

We introduce our model in section 2, where we review 
Markov models, introduce notation, and specify our assump­
tions about the problem domain. Section 3 describes and 
compares several candidate solutions for addressing aspects 
of our problem. We then present in section 4 our new method, 
and empirically evaluate it in section 5. We conclude with a 
discussion about the strengths and limitations of our results, 
and about our future directions. 

2 The Model 
The stochastic properties of the environments in the prob­
lems that we are addressing lead us to formulate our op-

!The term catastrophic is, of course, relative. We assume that the 
system designer is willing to accept certain risks to receive payoff. 
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timization problem as a stationary, discrete-time, Markov 
decision process. In this section, we review some well-
known facts from the theory of standard [Puterman, 1995; 
Boutilier et a/., 1999] and constrained [Altman, 1999] fully-
observable Markov decision processes and also discuss the 
assumptions that are particular to the class of problems that 
we address in this work. This section provides the neces­
sary background for the subsequent sections, where we dis­
cuss resource-constrained optimization problems. 

2.1 Markov Decision Processes 
A standard Markov decision process can be defined as a tuple 

where S is a finite set of states that the agent 
can be in, is a finite set of actions that the agent can execute, 

R defines the transition function 
is the probability that the agent will go to state if it executes 
action a in state i), and is the reward 
function (agent receives a reward of ria for executing action 

in state 
Clearly, the total probability of transitioning out of a 

state, given a particular action, cannot be greater than 1, i.e. 
As we discuss below, we are actually interested 

in domains where there exist states for which 
A policy is defined as a procedure for selecting an ac­

tion in each state. A policy that makes its choices accord­
ing to a probability distribution over the set of actions is 
called randomized and can be described as a mapping of 
states to probability distributions over actions: 

A deterministic policy that always chooses 
the same action for a state is, of course, a special case 
of a randomized policy. It can be seen (similarly to the 
case of standard CMDPs, as described in [Kallenberg, 1983; 
Puterman, 1995]) that under our optimization criterion and 
constraints (section 4), deterministic policies can be subop-
timal. Therefore, in this work, we focus on approximating 
optimal policies in the class of randomized ones. 

If, at time 0, the agent has an initial probability distribution 
over the state space, a Markov system follows the 

following trajectory: 

(1) 

where is the probability distribution at time 

2.2 Assumptions 
Typically, Markov decision processes are divided into two 
categories: finite-horizon problems, where the total number 
of steps that the agent spends in the system is finite and 
is known a priori, and infinite-horizon problems, where the 
agent is assumed to stay in the system forever (see [Puterman, 
1995] for a detailed discussion of both types of models). 

In this work we concentrate on dynamic real-time domains, 
where agents have tasks to accomplish. For example, con­
sider an agent flying a plane, whose goal is to safely get to its 
destination and land there. This example does not naturally 
correspond to a finite-horizon problem, because the duration 
of executing various policies is not predetermined (unless we 
artificially impose such a finite duration, which is not easily 

justifiable). On the other hand, the problem does not natu­
rally fit the definition of the infinite-horizon model, because 
the plane obviously cannot keep on flying forever. 

This leads us to make a slightly different and less common 
(although, certainly, not novel) assumption about how much 
time the agent spends executing its policy. We assume that 
there is no predefined number of steps that the agent spends 
in the system, but that optimal policies always yield transient 
Markov processes (decision problems of this type were exten­
sively studied by Kallenberg f 1983]). A policy is said to yield 
a transient Markov process if the agent executing that policy 
will eventually leave the corresponding Markov chain, after 
spending a finite number of time steps in it. Given a finite 
state space, this assumption implies that there has to be some 
"leakage" of probability out of the system, i.e. there have 
to exist some state-action pairs for which 
One particular case where the above assumption holds is in 
a system in which all trajectories lead to absorbing states. 
Once an agent enters an absorbing state, it has finished (or 
failed to finish) some task and has nowhere else to go, i.e. the 
probability of transitioning out of an absorbing state i is zero: 

In the plane-flying example, all trajectories 
lead to either a safe landing or a crash, and once the agent 
enters one of these states, the probability of transitioning to 
other states is zero. 

The transient nature of our problems leads us to adopt the 
expected total reward as the policy evaluation criterion. Given 
that an agent receives a reward whenever it executes an action, 
the total expected utility of a policy can be expressed as: 

(2) 

where T is the number of steps during which the agent accu­
mulates utility. For a transient system with bounded rewards, 
the above sum converges for any T. 

3 Related Work 
In this section, we briefly survey several approaches (based 
on well-known techniques) to solving the problem of finding 
optimal policies for agents with limited resources, and point 
out the assumptions, strengths, and limitations of these meth­
ods. This establishes a landscape of solution algorithms, to 
which we can compare our method (presented in the next sec­
tion) in terms of complexity, efficiency, and solution quality. 

3.1 Ful ly Observable MDPs 

The most straightforward way of handling resource con­
straints in a MDP framework is to explicitly model the re­
sources by making their current amounts a part of the state 
description. This yields a standard FOMDP, which can be 
solved by a wide variety of efficient methods. The benefit 

An alternative way of handling these states is to treat them as 
infinitely-recurrent, i.e. once the agent gets there, it infinitely tran­
sitions back to itself. We do not adopt this model, because it is less 
natural for our domains and also leads to unnecessary complications 
in the optimization problems. 
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of this approach is that it allows one to make use of all rele­
vant information to construct the best possible policy, as the 
agent is able to base its action choice on the current state and 
resource amounts. The downside of this approach is that it 
requires an a priori discretization of resource amounts to be 
made when the world model is constructed. Also, there is an 
additional burden of specifying the rewards and state transi­
tions as functions of current resource amounts. Furthermore, 
in this model, the size of the state space and, consequently, 
the policy size, explodes exponentially in the number of re­
sources, as compared to the state space where the resource 
amounts are not folded into the state description. 

The FOMDP approach relies on the fact that the agent can 
observe the exact amounts of all resources at runtime. How­
ever, this may not hold, especially in multiagent domains with 
shared resources, when an agent does not know what other 
agents have been doing and how much of the shared resources 
they have been consuming. 

3.2 Constrained MDPs 
An alternative to the FOMDP approach described above is to 
treat the problem as a constrained Markov decision process 
[Altman, 1999], where the resources are not explicitly mod­
eled, but rather are treated as constraints that are imposed on 
the space of feasible solutions (policies). 

A constrained MDP for a resource-limited agent differs 
from a standard MDP in that the agent, besides getting re­
wards for executing actions, also incurs resource costs. Con­
sequently, a constrained MDP (CMDP) can be described as a 
tuple (S, A, P, R, C, Q) , where C = _ 
defines a vector of actions' costs units of resource 

are used when action is executed in state i), 
and Q is the vector of amounts of available 
resources (there is units of resource initially available). 

The benefit of the CMDP is that it does not require one 
to explicitly model how the resources affect the world. In­
deed, if all policies satisfy the resource constraints, one does 
not have to worry about what happens when the resources 
are overutilized. Consequently, the state space and the re­
sulting policies are exponentially smaller than the ones in the 
FOMDP model. The standard CMDP formulation constrains 
the expected usage of all resources to be below a certain limit 
and can be formulated as the following linear program: 

(3) 

where the variables have the interpretation of the expected 
number of times action a is executed in state i. 

A weakness of this approach is that it yields policies that 
can be suboptimal, as compared to the ones constructed by 
the FOMDP method, because the agent does not base its de­
cision on the current resource amounts, but rather completely 
ignores that aspect of the state. However, as mentioned in the 
previous section, in domains where the resources are not ob­
servable, or if the policy size is of vital importance (for exam­
ple if the agent's architecture imposes constraints on policies 
that it can store), this approach could prove fruitful. 

However, the biggest problem with this approach (as 
pointed out, for example, by Ross and Chen in the telecom-
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munication domain [1988]) is that a standard CMDP imposes 
constraints on the expected amounts. Clearly, this method 
does not work for critical resources, whose overutilization has 
negative consequences. Indeed, an agent that pilots aircraft 
would not be satisfied with a policy that on average uses an 
amount of fuel that does not exceed the tank capacity. 

3.3 Sample Path MDPs 
As just mentioned, Ross and Chen pointed out the weak­
ness of the CMDP approach with constraints on the expected 
amounts. As a possible solution, Ross and Varadarajan [1989; 
1991] propose an approach where constraints are placed on 
the actual sample-path costs. In their work, the space of feasi­
ble solutions is constrained to the set of policies whose proba­
bility of violating the constraints (overutilizing the resources) 
in the long run is zero. However, their work concentrates on 
the average per-step costs and rewards, whereas we are inter­
ested in the total amounts, whose distributions are not easily 
calculable. The approach of Ross and Varadarajan has the 
same benefits as the standard CMDP method, i.e. no explicit 
modeling of resources is required, and the state space and 
policies are small. In addition, unlike the standard CMDP, 
this method is suitable for problems with critical resources. 
However, a weakness of this approach is that for some prob­
lems it might be too restrictive, in that it allows no possibility 
of overutilizing the resources. Indeed, policies produced by 
the sample path method might have significantly lower pay­
off, as compared to policies that have some probability of 
resource overutilization. Furthermore, for some domains it 
might be desirable for the system designer to be able to con­
trol the probability of resource overutilization, as a means of 
balancing optimality and risk. 

3.4 MDPs With Constraints on Variance 
Another approach to handling deviations from the expecta­
tion in Markov models is to impose additional constraints on 
(or to assign additional cost to) the variance. Sobel [1985] 
proposed to constrain the expected cost and to maximize the 
mean-variance ratio of the reward. Huang and Kallenberg 
[1994] proposed a unified approach to handling variance via 
an algorithm based on parametric linear programming. These 
approaches have the same benefits as the standard CMDP and 
the sample-path methods (compared to the FOMDP formula­
tion) in terms of state space and policy size, as well as the 
complexity of constructing the initial world model. Addi­
tionally, they allow one to somewhat balance payoff and the 
deviation from the expected. However, these methods do not 
allow one to make hard guarantees about the probability of 
overutilizing the resources. 

4 Linear Approximation 
As hinted at in the previous sections, we would like to be able 
to constrain the feasible solution space to the set of policies 
whose probability of overutilizing the resources is below a 
user-specified threshold In other words, we 
would like to be able to solve the following math program: 

(4) 
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where is the total amount of resource that is used by the 
policy, and is the upper bound on that resource (as before). 

The trouble is that the optimization is in the space of 
which can be interpreted as the expected number of times for 
executing the actions in the corresponding states. However, 
it is difficult to express as a simple function of 
the optimization variables because the latter contain no 
information about the probability distribution of the random 
variable of the number of times the action is actually executed 
in the corresponding state - only the expected values.3 In 
this section, we present a linear approximation to the above 
program, based on the Markov inequality:4 

(5) 
Using this inequality and the fact that the expected resource 
usage can be expressed as the opti­
mization problem can be formulated as a linear program: 

A potential weakness of this approach is that the Markov 
inequality gives a very rough upper bound, and the policies 
that correspond to solutions to this LP can be too conserva­
tive, in that their real probability of overutilizing the resources 
can be significantly lower than However, if making hard 
guarantees about the probability of overutilizing the resources 
is of vital importance, this method might prove valuable, as it 
yields policies that, in general, would have higher payoff than 
the ones obtained by the sample-path method (as the latter is 
often too restrictive). On the other hand, unlike the standard 
CMDPs that impose constraints on the expected resource us­
age, and the MDPs that constrain the variance, this method 
allows one to explicitly bound the allowable probability of re­
source overutilization, and to make precise guarantees about 
the behavior of the system in that respect. 

It is also worth noting that, unlike the sample-path method 
or the methods that constrain on variance, this method re­
lies on solving a standard linear program, whereas the for­
mer require solving quadratic or parametric linear programs. 
Therefore, the above formulation appears to be a reasonable 
approximation, because it should be no harder to solve than 
the standard CMDP (see section 5 for experimental results), 
while providing a means of balancing solution quality with 
the precisely quantifiable risk of resource overutilization. 

5 Evaluation 
To verify our hypotheses about the properties of the approxi­
mation described in the previous section, we have performed 
a set of numerical experiments that compare its behavior to 
a standard CMDP with constraints on the expected resource 
amounts (section 3), and to an unconstrained MDP. 

3Generally speaking, the total cost is a sum of a random num­
ber of differently-distributed random variables, and calculating its 
probability distribution is a nontrivial task. 

4This inequality only holds for nonnegative random variables. 
However, for a transient system, we can make the assumption that 
all costs are nonnegative, without any loss of generality. 

To reduce the bias that might arise from using a small num­
ber of hand-crafted test cases, we have instead used a large 
number of randomly-generated constrained MDPs. All of the 
generated problems shared some common properties, among 
which the most interesting ones are the following (the values 
for our main experiments are given in parentheses): 

The total number of states, actions, and re­
sources, respectively. (20, 20, 2) 

Maximum reward. Rewards are assigned 
from a uniform distribution on (10) 

Mc = max(C) Maximum action cost. Resource costs are 
assigned to state-action pairs from based on a 
distribution of R and (C, R) (described below). (10) 

Correlation between rewards and resource 
costs; better actions are typically more costly. 

Upper bounds on resource 
amounts are assigned according to a uniform distribu­
tion from this range. ([200, 300]) 
Dissipation of probability - the probability that the agent 
exits the system at each time step. ([0.95,0.99]) 

The last parameter was used to ensure a transient chain. In­
stead of providing a small number of sink states, we have 
chosen to use a uniform dissipation of probability, in order 
to avoid additional randomization in our experiments, as the 
latter choice provides a more stable domain. 

Our main concern was the behavior of our approxima­
tion, as a function of the probability threshold Therefore, 
we have run a number of experiments for various values of 

To be more precise, we have gradually increased 
from 0 to 1 in increments of 0.05, and for each value, gen­

erated 50 random models and solved them using the three 
methods: 1) an unconstrained MDP without any regard for 
resource limitations, 2) a standard CMDP with constraints on 
the expected usage of resources, and 3) our CMDP with con­
straints on the probability of overutilizing the resources (eq. 
6). We then evaluated (using a Monte-Carlo simulation) each 
of the three solutions (policies) in terms of expected reward 
and probability of overutilizing the resources. 

Figure 1 shows a plot of the actual probability of overuti­
lizing the resources for the policies obtained via the three 
methods as a function of the probability threshold . The 
data points are averaged over the runs for a particular value 
of po. The curve that corresponds to the method that bounds 
the overutilization probability also shows the standard devia­
tion for the runs. The other data have very similar variance, 
so we wil l use the plots of means (averaged over the runs for 
a given po) for our analyses. 

Obviously, po has no effect on the unconstrained and the 
standard CMDP (which maintain more or less a constant 
probability of overutilization), but it does affect to a large ex­
tent the solutions to the problem with constraints on overuti­
lization probability. One can see that the overutilization prob­
ability for the solutions produced by our approach is always 
below (as it should be). Also, it is worth noting that when 

approaches 1, our approximation yields the same results as 
the other methods, which is good, since setting should 
not constrain the space of feasible solutions. 
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Figure 1: Probability of resource overutil ization. 

Figure 2: Average rewards for solutions to the three problems. 

The rewards obtained by these policies are shown in Fig­
ure 2. These actual rewards do not necessarily equal the ex­
pected rewards (which are used during the optimization pro­
cess). This is because only the runs that did not overutilize 
the resources were included in the average, and policies were 
not penalized for violating the resource constraints. This also 
explains why the total rewards received by solutions to the 
standard CMDPs were sometimes greater than the ones ob­
tained by solutions to the unconstrained problems. 

However, realistically, an agent always incurs a penalty for 
overuti l izing a critical resource, where the penalty amount is 
based on the consequences of overutil ization. For example, 
if the agent is flying a plane, and the resource in question is 
fuel, the consequences of trying to use too much of that re­
source are catastrophic, so the penalty is very high. If we 
take this into account by assigning a fixed penalty to pol i ­
cies that overutilize the resources, we can update the graph in 
Figure 2 to get a more realistic picture. Figure 3 shows the 
average rewards for solutions obtained via the three meth­
ods, recalculated to reflect the penalties: new rewards are 

where is the overutil ization 
probability, R is the average reward for successful runs of the 
given policy (as in Figure 2), and W is the penalty for overuti­
l ization. We see that, if we take the penalty into account, there 
is an interval of po where the conservative policy produced 
by our linear approximation outperforms the other policies. 

Figure 3: Average rewards with penalties for overutilization. 

Moreover, for large penalties ( IV = - 2 2 0 ) , the conservative 
policy outperforms the others for all values o f ; . Note that 
here, the policy is re-evaluated post-factum. Section 6 briefly 
discusses an approach that explicit ly models the penalties in 
the optimization program. 

As we mentioned in section 4, the linear approximation 
should be no harder to solve than the standard constrained 
MDP, because both are formulated as linear programs with 
the same number of constraints. To experimentally verify 
this, we have timed the runs of all our experiments. Figure 
4 contains a plot of the times that it took to solve the prob­
lems in all our experiments. One can see that the running 
times for all three methods are not appreciably different.5 In 
particular, the average ratio of the running time for the stan­
dard CMDP to the running time of the unconstrained method 
is 1.25; the ratio of the running time of our linear approxi­
mation wi th constraints on overutil ization probability to the 
running time of the unconstrained method is 1.06. The slight 
downward curvature of the plot of the running time of our 
approximation method appears to be a consequence of the 
specific implementation of the linear programming algorithm 
that we used in our experiments. 

6 Discussion and Future Work 
Our experiments substantiate the claims that our approxima­
tion provides an effective and efficient method that agents 
can use to formulate policies that not only consider l imita­
tions on execution resources, but that also explicit ly bound 
the probabil ity of resource overutil ization. Our new approxi­
mation achieves the constraints on overutilization, and is es­
sentially no more expensive to use than more standard CMDP 
and unconstrained M D P methods. Because our method con­
structs policies that are more careful about avoiding resource 
overutil ization, the rewards associated wi th its policies when 
resources are not overutilized tend to be less than the re­
wards for the other methods' policies when resources are not 
overutilized. However, as we illustrated in Figure 3, when 
overutil ization incurs penalties our new method can outper-

5Here we have to note that we used the linear programming ap­
proach to solving the unconstrained problem. A different algorithm 
such as value or policy iteration might be more efficient. 

RESOURCE-BOUNDED REASONING 1111 



Figure 4: Running time for the three methods 

form previous techniques. Thus, our new method is particu­
larly suited to agents engaged in mission-critical domains. 

Furthermore, if penalties for resource overutilization are 
known at design-time and can be expressed in the same units 
as the rewards, an interesting modification of our LP formu­
lation is to include the penalties in the policy evaluation cri­
terion, as opposed to modeling the constraints on the overuti­
lization probability. This would yield an LP with the follow­
ing objective function: 

(7) 

where Wk is the penalty (in units of ria) incurred for overuti-
lizing resource k. The maximization is subject to just the 
standard "conservation of probability" constraints as in (eq. 
3). A benefit of this formulation is that, for certain initial 
probability distributions, deterministic policies are optimal. 
A downside is that the formulation does not allow one to ex­
plicitly control the acceptable overutilization probabilities. 

As can be seen in Figure 1, our linear approximation is in 
general overly conservative. For example, given permission 
to overutilize the resource 20% of the time (p0 = 0.2), the 
method generates a policy that overutilizes the resource only 
about 1% of the time. Since rewards and resource usage are 
typically correlated, we would expect that a policy that under­
shoots the permitted resource overutilization probability by a 
lower amount would also yield a higher expected reward. To­
ward this end, we have formulated a quadratic programming 
approximation, based on the Chebyshev inequality, which al­
lows us to put a better upper bound on the probability of re­
source overutilization: 

(8) 

where is the variance in the 
amount of used resource and specify the widths of the 
allowable regions for the amounts of used resources. 

We are also investigating another formulation of the opti­
mization program that should give a more accurate estimate 
of the resource overutilization probability. The method is 
based on a polynomial approximation of the pdf of the to­
tal resource-usage cost and uses the moments of the cost as 

the optimization variables. This approximation and the one 
based on the Chebyshev inequality are more costly to com­
pute than the linear one. Our current efforts are to encode the 
approximations and evaluate their strengths and weaknesses. 
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