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Abstract 
In this paper we introduce coverage maps as a new 
way of representing the environment of a mobile 
robot. Coverage maps store for each cell of a given 
grid a posterior about the amount the corresponding 
cell is covered by an obstacle. Using this represen­
tation a mobile robot can more accurately reason 
about its uncertainty in the map of the environment 
than with standard occupancy grids. We present 
a model for proximity sensors designed to update 
coverage maps upon sensory input. We also de­
scribe how coverage maps can be used to formulate 
a decision-theoretic approach for mobile robot ex­
ploration. We present experiments carried out with 
real robots in which accurate maps are build from 
noisy ultrasound data. Finally, we present a com­
parison of different view-point selection strategies 
for mobile robot exploration. 

1 Introduction 
Generating maps is one of the fundamental tasks of mobile 
robots and many researchers have focused on the problem of 
how to represent the environment as well as how to acquire 
models using this representation [5, 9, 10, 14, 17]. The map­
ping problem itself has several aspects that have been studied 
intensively in the past. Some of the most important aspects 
are the localization of the vehicle during mapping, appropri­
ate models of the environment and the sensors, as well as 
strategies for guiding the vehicle. In literature, the localiza­
tion problem plays an important role, since the quality of the 
resulting map depends strongly on the accuracy of the pose 
estimates during the mapping process. However, the accu­
racy of the map also depends on the choice of view-points 
during exploration. Especially if noisy sensors are used, the 
map wil l be quite inaccurate in areas which have been sensed 
a few times only or maybe even from disadvantageous view­
points. 

Exploration is the task of guiding a vehicle in such a way 
that it covers the environment with its sensors. Efficient ex­
ploration strategies are also relevant for surface inspection, 
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mine sweeping, or surveillance 13, 12]. In the past, several 
strategies for exploration have been developed. One group 
of approaches deals with the problem of simultaneous local­
ization and mapping [1 , 4], an aspect that we do not address 
in this paper. A common technique for exploration strategies 
is to extract frontiers between known and unknown areas [2, 
7, 20] and to visit the nearest unexplored place. These ap­
proaches only distinguish between scanned and un-scanned 
areas and do not take into account the actual information gath­
ered at each view-point. To overcome this limitation, Gonza­
les et al. [8] determine the amount of unseen area that might 
be visible to the robot from possible view-points. To incorpo­
rate the uncertainty of the robot about the state of the environ­
ment Moorehead et al. [13] as well as Bourgault et al. [ 1] use 
occupancy grids [14] and compute the entropy of each cell in 
the grid to determine the utility of scanning from a certain lo­
cation. Whaite and Ferrie [19] present an approach that also 
uses the entropy to measure the uncertainty in the geometric 
structure of objects that are scanned with a laser range sensor. 
In contrast to the work described here they use a paramet­
ric representation of the objects to be scanned. Edlinger and 
Puttkamer [7] developed a hierarchical exploration strategy 
for office environments. Their approach first explores rooms 
and then traverses through doorways to explore other parts 
of the environment. Tailor and Kriegman [16] describe a sys­
tem for visiting all landmarks in the environment of the robot. 
Their robot maintains a list of unvisited landmarks that are ap­
proached and mapped by the robot. Dudek et al. 16] propose 
a strategy for exploring an unknown graph-like environment. 
Their algorithm does not consider distance metrics and is de­
signed for robots with very limited perceptual capabilities. 
Recently Koenig has shown, that a strategy, which guides 
the vehicle to the closest point that has not been covered yet, 
keeps the traveled distance reasonably small [11]. However, 
as experiments reported in this paper illustrate, such tech­
niques can lead to a serious increase of measurements nec­
essary to build an accurate map if the robot is not able to 
incorporate measurements on-the-fly while it is moving. This 
might be the case, for example, for robots extracting distance 
information from camera images. 

In this paper we introduce coverage maps as a new proba­
bilistic way to represent the belief of the robot about the state 
of the environment. In contrast to occupancy grids [14], in 
which each cell is considered as either occupied or free, cov-
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Figure 1: Typical occupancy map obtained in situations in which 
cells are only partly occupied (left image) and a coverage map con­
taining the corresponding coverage values (right image). 

erage maps represent in each cell of a given discretization a 
posterior about the amount this cell is covered by an object. 
As an example consider the situation depicted in Figure 1 in 
which a cell is partly covered by an obstacle. With the stan­
dard occupancy algorithm the probability that this cell is oc­
cupied will converge to 1 if the sensors of the robot repeatedly 
detect the obstacle. The left picture of this figure shows the 
resulting occupancy probabilities (black represents high like­
lihood). Since the object does only cover 20% of this cell, a 
coverage value of .2 (as shown in the right image of Figure 1) 
would be a better approximation of the true situation. In ad­
dition to the representation aspect, we also present a sensor 
model that allows the robot to appropriately update a cover­
age map upon sensory input and describe how coverage maps 
can be used to realize a decision-theoretic approach to explo­
ration of unknown environments. 

This paper is organized as follows. In the next section we 
introduce coverage maps. In Section 3 we present a proba­
bilistic technique to update a given coverage map upon sen­
sory input. In Section 4 we describe a decision-theoretic ap­
proach to exploration based on coverage maps. In Section 5 
we present experiments illustrating that our approach allows 
a mobile robot can learn accurate maps from noisy range sen­
sors. Additionally, we present experiments comparing differ­
ent view-point selection strategies for exploration. 

2 Coverage Maps 
As already mentioned above, occupancy grids rest on the as­
sumption that the environment has binary structure, i.e. that 
each grid cell is either occupied or free. This assumption, 
however, is not always justified. For example, if the envi­
ronment contains a wall that is not parallel to the x- or y-
axis of the grid there must be grid cells which are only partly 
covered. In occupancy grids the probability that such cells 
are occupied will inevitably converge to one (see Figure 1). 
Coverage maps overcome this limitation by storing a poste­
rior about its coverage for each cell. Coverage values range 
from 0 to 1. Whereas a coverage of 1 means that the cell is 
fully occupied, an empty cell has a coverage of 0. Since the 
robot usually does not know the true coverage of a grid cell, 
it maintains a probabilistic belief p(cl) about the coverage of 
the cell c/. In principle, there are different ways of represent­
ing p(cl). They range from parametric distributions such as 
(mixtures of) Gaussians or non-parametric variants such as 
histograms. Throughout this paper we assume that each 
is given by a histogram over possible coverage values. More 
precisely, we store a histogram for each grid cell, in which 
each bin contains the probability that the corresponding grid 
cell has the particular coverage. A typical example is depicted 
in Figure 2. It shows the posterior for the cell containing the 
obstacle in the situation illustrated in Figure 1 obtained after 
30 measurements. 

coverage 

Figure 2: Coverage posterior for the cell containing the obstacle in 
the situation depicted in Figure 1. 

3 Updating Coverage Maps 
To update a coverage map based on sensory input, we ap­
ply a Bayesian update scheme similar to that of occupancy 
grids. Throughout this paper we assume that our sensor pro­
vides distance information. Accordingly, we have to convert 
the distance information to coverage values. What we need 
to know is the coverage map c that has the highest likelihood 
under all distance measurements If we use Bayes 
rule and assume that consecutive measurements are indepen­
dent given that we know the map c, we obtain: 

Equation (5) is obtained from Equation (4) by assuming that 
p(c) is constant and that is constant for every t. The 
variables and represent normalization constants ensuring 
that the left-hand side sums up to one over all c. Under the 
strong assumption that the individual cells of a coverage map 
are independent1 we finally obtain: 

1This independence is frequently assumed in the context of occu­
pancy maps. We would like to refer to a recent work by Thrun [ 18] 
on how to better deal with the dependency between cells. 
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Next we need to know how to determine the likelihood 
of measuring dt given the map Again we apply Bayes 

rule and obtain: 



Thus, to update a map given a measurement we simply 
have to multiply the current belief about the coverage of each 
cell . by the belief about the coverage of this cell resulting 
from . Additionally the maximum likelihood coverage map 
is obtained by choosing the mode of the coverage histogram 
for each cell 

It remains to describe how we actually compute 
i.e. how we determine the distribution about the potential cov­
erage values of a cell with distance to the sensor given a 
measurement In our current system, we use a mixture of 
a Gaussian and a uniform distribution to compute 
the probability that the coverage of 

(9) 

The value of the uniform distribution is computed using the 
function which increases monotonously in dl and d. 
It reflects a typical behavior of proximity sensors like sonars, 
because the accuracy of a measurement decreases with the 
distance to the obstacle. 

The mean of the Gaussian is computed in the 
following way: 

(10) 

where is the grid resolution of the map. Note that we dis­
tinguish three situations, depending on whether the measure­
ment ends in or not. Suppose that the measurement does 
not end in and the distance is shorter than In this case 
we have In such a situation, the mean of the 
Gaussian is zero, since it is more likely that a cell covered 
by a range measurement that does not end in it is completely 
empty. The second line of Equation (10) represents the situa­
tion in which ends within In this case the mean is inverse 
proportional to the amount the cell is covered by d. Finally, 
cells lying up to behind a cell, in which the measure­
ment ends, are most likely completely occupied so that the 
mean is 1. 

The value of the standard deviation of the Gaus­
sian also is a function that is monotonously increasing in 
and d except when In this range has a 
constant value that exceeds all values outside of this interval. 

To obtain the optimal parameters for the functions in 
our sensor model we apply the maximum likelihood princi­
ple. We first apply a highly accurate scan-alignment proce­
dure [10] on laser range information. Next we manually ex­
tract geometric objects from the corresponding range data. 
Given these geometric primitives we use straightforward ge­
ometric projections to compute the ground truth information, 
i.e., the exact coverage of each cell of a given discretiza­
tion. We evaluate a particular setting for the parameters of our 
model by determining the likelihood of the ground truth given 
a coverage map obtained using this setting. To maximize the 
likelihood we apply local search techniques in the parameter 
space. Figure for a measured distance of 

obtained for ultrasound data recorded with our B21r 
robot Albert, which is depicted in picture (a) of Figure 4. As 
the plot illustrates, for a measured distance of cells close 

Figure 3: Sensor model for a measured distance 

to the robot are unoccupied with high likelihood. However, 
cells close to the measured distance are covered with high 
probability. Figure 4 shows two coverage maps build from 
real sonar data obtained by a real robot. Image (b) depicts a 
map of the Sieg Hall at the University of Washington and (c) 
a map of the office environment of our laboratory. 

4 Strategies for Choosing the Next View-Point 
One of the key problems during exploration is to choose ap­
propriate vantage points. At the selected location the robot 
wil l perform the next measurement to retrieve new informa­
tion about its environment. In this section we will present 
four methods to choose an appropriate position. In general 
there are two different aspects that are relevant for the view­
point selection. On the one hand, the uncertainty of the robot 
in the map should be as small as possible, and on the other 
hand, the number of measurements to be incorporated as well 
as the distance traveled should be minimized. 

To determine the uncertainty in the state of a particular 
cell we consider the entropy of the posterior for that cell. 
Entropy is a general measure for the uncertainty of a be­
lief. The entropy of a histogram consisting of bins 

is defined as: 

(11) 

H is maximal in case of a uniform distribution. The mini­
mal value zero is obtained if the system is absolutely certain 
about the state of the corresponding cell. Thus, if we want to 
minimize the uncertainty in the current map, all we need to 
do is to reduce the entropy of the histograms in the coverage 
map. Furthermore, we can specify, at which moment the ex­
ploration task has been completed. Suppose the size of the 
environment is limited. Then the goal of the exploration pro­
cess for a coverage map c has been achieved if 
for all cells that can be reached by the robot, 
corresponds to the histogram representing the coverage of 
Additionally, the system has to detect a situation in which the 
robot is unable to reduce the entropy of a cell below to en­
sure the termination of the exploration task. In our system 
this is achieved by monitoring the change of entropy. If this 
change is below .001 for five consecutive measurements, the 
cell is regarded as explored enough. 
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Figure 4: Picture (a) shows our B21r robot Albert equipped with a ring of 24 sonar sensors. Image (b) depicts a coverage map generated for 
data collected in the Sieg Hall building of the University of Washington. Picture (c) displays the coverage map of our laboratory environment. 

4.1 Closest Locat ion (CL) 
A simple and frequently used strategy is to drive to the closest 
location at which the robot can gather information about a cell 
that has not been explored well enough. This way the ques­
tion whether a cell has been explored well enough depends 
on the actual measure used to quantify the uncertainty about 
individual grid cells. In our approach this measure is the en­
tropy. A cell is regarded as been sensed accurately enough if 
the entropy of the coverage belief does not exceed e or if it 
does not change any longer. This strategy CL does not take 
into account how much information will be obtained at a par­
ticular view-point. Rather it seeks to minimize the distance to 
that location: 

(12) 

where L(c) is the set of cells which have a grid cell with high 
entropy in its visible range and is the distance be­
tween the locations and given the current map of the 
environment. 

4.2 M a x i m u m In fo rmat ion Gain ( IG) and 
( I G - W I N ) 

The second strategy is solely governed by the information 
gain that can be obtained about the environment at a specific 
view-point. The information gain is defined as the change 
of entropy introduced by incorporating the measurement ob­
tained at that location into the map. If we integrate a single 
measurement d into a cell the information gain is defined 
as: 

(13) 

where is the histogram of cell after integrating mea­
surement d according to our sensor model. The information 
gain of a measurement is then computed as the sum of the 
information gains for all cells covered by that measurement. 
Since we do not know which measurement we will receive 
if the robot measures at a certain position we have to inte­
grate over all possible measurements to compute the expected 
information gain for that view-point: 

(14) 

Here is the set of cells covered by measurement d. To 
efficiently compute the likelihood of an observation 
we apply a ray-tracing technique similar to Moravec and Elfes 

using the current maximum likelihood coverage map. 

Since the complexity of Equation (14) depends exponen­
tially on the number of dimensions of the measurement, we 
consider all measurements independently. For example, for 
our robot equipped with 24 ultrasound sensors we compute 
the average information gain over all 24 sensors. 

The next view-point is then defined as: 

(15) 

One of the disadvantages of this strategy is that it does not 
take into account the distance to be traveled by the robot. To 
deal with this problem we also consider the strategy IG-WIN 
which restricts the search for potential vantage points to a 
local window until this has been explored. Once this has been 
done, there is no need for the robot to return to this area again. 

4.3 Combination of IG and CL (IG-CL) 
The final strategy discussed in this paper tries to combine 
the properties of the strategies CL and IG. The goal is to 
find an optimal tradeoff between the evaluation functions (12) 
and (15): 

By adapting the weight a the user can easily influence the be­
havior of a robot and optimize its performance for a special 
task. A value close to zero results in a behavior similar to the 
strategy CL. For high values of a the strategy converges to the 
strategy IG. Please note that functions of this type have suc­
cessfully been applied in the past for coordinating multiple 
robots during exploration [2, 15]. 

5 Experiments 
We implemented the models and exploration strategies de­
scribed above and performed a series of exploration runs in 
different environments. The goal of the experiments pre­
sented in this section is to illustrate that a robot can build 
accurate maps using our models. Additionally we describe 
experiments in which we analyze the properties of the four 
view-point selection techniques described above. 

5.1 Advantage over Scan Count ing 
The first experiment is designed to illustrate that an approach 
which considers the uncertainty in the belief about the cover­
age of a cell to select view-points yields more accurate maps 
than techniques relying on scan counting approaches. Scan 
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Figure 5: These images depict maps and trajectories of the robot obtained in the corridor of our office environment. The left map (a) is 
a typical occupancy grid map obtained when every cell needs to be covered just once. Image (b) shows a coverage map obtained with the 
strategy CL. The rightmost image (c) shows an occupancy map obtained using scan counting with a threshold of n = 50. 

Table 1: Data from the experiments shown in Figure 5. To com­
pute the entropy for the scan counting results we generated coverage 
maps from the recorded sonar data. 

counting techniques count the number of times a cell is inter­
cepted by a measurement. Several exploration techniques [2, 
7, 20] assume that a place is explored if it has been scanned 
once. This is problematic especially when the underlying sen­
sors are noisy. Figure 5 (a) shows a typical occupancy grid 
map of our laboratory environment obtained from real sonar 
data when using the scan counting technique. Since the ex­
ploration process is stopped as soon as all reachable locations 
were covered by a measurement, many cells of the resulting 
occupancy map have a high uncertainty (see Table 1). This 
is due to the high amount of sensor noise, which sonars of­
ten produce. On the other hand, if we use our approach and 
consider the uncertainty in the coverage of individual cells to 
select view-points, the resulting maps are more accurate (see 
Figure 5(b)). 

Obviously, a straightforward extension of the scan count­
ing would be to assume that each cell has to be covered n 
times and not only once. An occupancy grid obtained by 
this extension can be seen in Figure 5 (c). In this experiment 
we additionally discounted longer beams in order to account 
for the fact that range sensors provide fewer information for 
distant places. Whereas this map looks similar as the cor­
responding coverage map, the robot's uncertainty about the 
state of the environment is higher. This is illustrated by the 
values given in Table 1. The right column of this table con­
tains the percentage of cells in c for which the entropy ex­
ceeds the given threshold. Thus, even extended scan counting 
does not guarantee that in the end every cell is explored well 
enough. Typically, some cells w i l l be measured too often, 
others not often enough. 

Figure 6 shows the result of a series of 50 simulation ex­
periments. In these experiments we forced the robot to reach 
a scan count of n where n varied between 1 and 130.2 We 
counted the number of cells m that would be explored wel l 
enough given the entropy criterion for coverage maps and 
plotted the length of the overall path against m. The resulting 
graph is shown in Figure 6. The cross on the right side indi-

2In practice, a good candidate value of n would be the maximum 
number of measurements necessary to obtain a coverage map that 
fulfills the entropy threshold criterion 
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5.2 A C o m p a r i s o n o f t h e V i e w - P o i n t Se lect ion 
S t ra teg ies 

Robots performing 2-d exploration tasks with sonars oder 
laser scanners normally integrate every sensor measurement 
because the amount of data is reasonably small and easy to 
integrate. In this section we consider the situation that an­
alyzing a measurement produces high costs. This might by 
the case if e.g. the distance information needs to be extracted 
f rom stereo images. In such a situation the number of mea­
surements needed for the exploration task is a value of in­
terest. As mentioned above, one of the major advantages of 
our coverage maps is that they allow the integration of the 
uncertainty into the selection process of the next view-point. 
The experiments in this section are designed to compare the 
performance of the different strategies. To carry out the ex­
periments, we varied the size of the local window when using 

and the weight in the evaluation function of 
(see Equation (16)). In Figure 7 (a) and (b) the numbers be­
hind show the value of the weight and the numbers 
behind indicate the radius of a circle which defines 
the local window. The results have been obtained using 20 
runs per strategy in the environment shown in Figure 7 (d). 
Please note that further experiments carried out in alternative 
environments showed similar results and are omitted for the 
sake of brevity. The maximum allowed entropy during all 
experiments described in this section was set to .6. 

Figure 7 (a) shows the average number of measurements 
necessary to complete the exploration task for each strategy. 
As can be seen f rom the figure, the strategy needs the min­
imum amount of measurements. The strategy wi th 

needs approximately the same number of measure-

cates the path length obtained when using the strategy for 
coverage maps. As can be seen, if more than 85% of the map 
should be explored wel l enough, a decision-theoretic explo­
ration strategy yields shorter trajectories than extended scan 
counting. 

Figure 6: Average path length of the robot depending on the num­
ber of sufficiently explored cells (left image) and the simulation en­
vironment used during this experiment (right image). 



Figure 7: Figure (a) shows the average number of measurements needed by different strategics, whereas in (b) depicts the average path 
length of the exploration for each strategy. The value behind shows the size of the local window and b e h i n d t h e value of 
the parameter a. The error-bars show the .05 significance interval. The images (c) and (d) show the paths driven during the exploration 
experiment. Figure (c) shows a sample path of method and the (d) a path generated by 

ments as The strategy requires the maximum number 
of measurements compared to all other strategies considered 
here. The reason is that it only seeks to minimize the path 
length without considering the information gained at particu­
lar locations. The error-bars correspond to the 5% confidence 
interval. 

In our experiments we found that a nearest neighbor view­
point selection strategy like outperforms an approach con­
sidering information gain if the robot is allowed to integrate 
measurements while it is moving (assuming that the acquisi­
tion and integration of measurements can be done fast). This 
can be seen in Figure 7 (b), which plots the average path 
length driven by the robot during the exploration task for 
all different strategies. With respect to the path length the 
strategy shows the best behavior as the resulting trajec­
tories are shorter than those of all other techniques. Thus, 
the strategy efficiently covers the terrain. In contrast to 
that, the strategy ignores the distance to be driven and 
therefore produces an extremely long path which results in 
the worst behavior of all strategies (see also Figure 7 & 

strategy with " appears to yield a good 
trade-off between number of measurements and overall path 
length. According to the experiments it slightly outperforms 
the strategy. 

6 Conclusions 
In this paper we have introduced a new representation scheme 
for maps build with mobile robots from sensor data. In con­
trast to standard occupancy maps our coverage maps store 
a posterior for each cell about its coverage. This offers the 
opportunity to more accurately compute the uncertainty of 
the robot about the corresponding area in the environment. 
Additionally, we have presented a sensor model designed to 
update these maps upon sensory input. Finally, we have com­
pared decision-theoretic approaches to guide a vehicle during 
exploration. 

The technique has been implemented and evaluated in ex­
tensive simulation runs and real world applications. The ex­
periments illustrate that by using coverage maps it is possible 
to build accurate maps even if noisy sensors are used. Exper­
iments analyzing different exploration strategies indicate that 
a technique combining the maximum uncertainty reduction 
and the distance to be traveled yields the best trade-off be­
tween the number of necessary measurements and the length 
of the resulting paths. 
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