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Abstract 

This paper presents a new efficient algorithm for si­
multaneous localization and mapping (SLAM), us­
ing multiple overlapping submaps, each built with 
respect to a local frame of reference defined by one 
of the features in the submap. The global posi­
tion of each submap is estimated using informa­
tion from other submaps in an efficient, provably 
consistent manner. For situations where the mobile 
robot is able to make repeated visits to all regions of 
the environment, the method achieves convergence 
to a near-optimal result with time complexity 
while maintaining consistent error bounds. Simula­
tion results demonstrate the ability of the technique 
to converge to errors that are only slightly greater 
than the full solution, while maintaining consis­
tency. 

1 Introduction 
The capability of simultaneous localization and mapping 
(SLAM) is considered vital for the creation of long-lived 
autonomous mobile agents. Because of the difficulties en­
countered by SLAM algorithms when applied to larger envi­
ronments, the "map scaling" problem has been identified as 
one of the key issues for research in this area. In this pa­
per, we adopt the feature-based, state-space formulation of 
SLAM [Smith et al, 19871. Recent related work in SLAM in­
cludes submap decomposition methods [Leonard and Feder, 
2000; Guivant and Nebot, 2001; Julier and Uhlmann, 2001; 
Williams et al, 2002; Tard6s et al, 2002], FastSLAM iMon-
temerlo et al, 2002], sparse extended information filters 
(SElF's) [Thrun et al, 2002], scan-matching [Gutmann and 
Konolige, 1999; Thrun, 2001; Hahnel et al 2002] and topo­
logical approaches [Kuipers and Beeson, 2002; Choset and 
Nagatani,2001]. 
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This paper examines the SLAM problem using submaps. 
While there has been a considerable amount of work in 
SLAM along these lines, no previous method satisfies each 
of the three criteria of (1) provable consistency, (2) spatial 
convergence, and (3) constant-time updates. For example, 
Julier and Uhlmann [20011 provide a consistent, constant-
time algorithm for large-scale SLAM, based on split covari-
ance intersection, but this method does not achieve "tight" 
convergence to the error bounds that would be obtained 
with a full covariance solution. Methods such as the com­
pressed filter [Guivant and Nebot, 2001 J, the constrained lo­
cal submap filter [Williams et al, 2002], and sequential map 
joining [Tardos et al, 20021 are provably consistent and con­
vergent, but are where is the number of the fea­
tures in the environment. Other techniques such as decoupled 
stochastic mapping (DSM) (Leonard and Feder, 20001 and 
SEIF's [Thrun et al, 2002] achieve 0(1) performance, but 
make approximations that require empirical testing to verify 
state estimation consistency. The Atlas framework for large-
scale SLAM [Bosse et al, 2003] achieves constant-time per­
formance during the motion of the robot, enabling closing of 
large loops, but does not compute state estimates with respect 
to a single global reference frame. 

The FastSLAM technique stands out in the literature as 
perhaps the only published technique which has been suc­
cessfully posed for the general nonlinear SLAM problem 
with computational effort The performance of 
FastSLAM, however, depends linearly on a "parameter (the 
number of particles), whose scaling with environmental size 
is still poorly understood [Thrun et al, 2002]". 

This paper considers SLAM with known data association. 
This is a major assumption, but it enables us to focus on the 
underlying structure of SLAM state estimation with submaps 
for the linear Gaussian case. Other research has shown the 
ability to perform feature detection and measurement associ­
ation using techniques such as random sample consensus and 
Joint Compatibility Testing [Neira and Tardos, 2001 ]. 

In this paper, we demonstrate how the three criteria of 
consistency, convergence, and constant-time updates can be 
achieved with multiple, locally referenced submaps. The key 
idea is to decouple the estimate of a map's global location 
from any of the state estimates within the map. This ''inside-
out" decomposition strategy succeeds because state estimates 
from one map are never mixed with state estimates from other 
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maps. This enables us to guarantee the consistency of the 
state estimates for the linear Gaussian case. 

The structure of this paper is as follows. After reviewing 
the full (single map) SLAM problem in Section 2, we define 
our terminology in Section 3. Section 4 summarizes the new 
SLAM algorithm and Section 5 discusses its consistency and 
convergence properties. Section 6 describes the performance 
of the algorithm using simulations and Section 7 provides a 
concluding discussion. 

2 SLAM within a single map 
Let us assume that there are features in the environment, 
and that they are static. The global frame, designated by G, 
is a unique, immutable coordinate-frame that is defined at the 
beginning of a mission. The true state at time is designated 
by , where rep­
resent the location of the vehicle, and 
represents the locations of the environmental features. We 
assume that the vehicle moves from time to time in 
response to a known control input, u(k), that is corrupted by 
noise. designate the set of all control inputs from 
time 0 through time designate the set of sensor mea­
surements obtained at time designate the set of all 
measurements obtained from time 0 through time For each 
measurement there is a corresponding assign­
ment index The value of if measurement 
originates from feature designate the set of all as­
signment indices from time 0 through time Assuming that 
the associations are known, the objective is to compute recur­
sively the probability distribution for the location of the robot 
and the features, with reference to the global reference frame 
G, given the measurements, control inputs, and assignments: 

(1) 
For the Linear-Gaussian (LG) SLAM problem, the Kalman 
filter provides the optimal estimate of this pdf, which is de­
scribed by its mean and co-
variance The properties of single-map LG SLAM so­
lution are well-known LDissanayake et al, 2001 ]. 

3 Machinery for SLAM using multiple maps 
We now proceed to define several terms and basic operations 
that will facilitate description of the new method. A location 
vector is a parameterization of both position and orientation 
of one coordinate-frame, with respect to another, In 712 

this is represented as a translation by followed by a ro­
tation These three parameters are encapsulated in the 3 
vector 

An entity is a parameterization of a vehicle or landmark. 
Each entity is labelled with a unique positive integer — this 
is referred to as the entity's ID. We can attach a coordinate 
frame to any entity i and describe it using a location vector 
in another coordinate frame. The vector should be under­
stood to be a parameterization of a transformation from to 

The uncertainty in this transformation is represented by 

A map is a collection of entities all described with respect 
to a local coordinate frame. Each map has a unique integer 

id. Each map has associated with it a Map Root entity i 
and a Map Location vector The Map Location vec­
tor describes the pose of a map's local coordinate frame in 
the global frame G. The local coordinate frame of a map is 
coincident with one of the entities in the local map; this en­
tity is referred to as the Map Root. In other words, the Map 
Root lies at the origin of the local map, and it is the entity to 
which all other entities in a map are referenced. If an entity 
is the Map Root, then by definition its location vector will be 

and its global location vector given by — the 
location of the map in global coordinates.l We use the pre-
superscript notation to denote that all entities in map 
are referenced to where is the root entity of the map. 

The notation is summarized as: 

Using this notation we can write the transformation from 
to in map m with root entity . We simplify 
notation by dropping the right superscript when describing a 
transformation with respect to the map root: 

The term is the pose of an entity in the local frame 
of the map (which has its Map Root as entity 

We can manipulate location vectors using the binary trans­
formation operator and the unary operator where 

Using the notation described above, we can describe the rela­
tionship between entities in any given map. Consider the case 
of map referenced to feature denoted Taking two 
entities and from ve can express the transformation 
from to k as 

(2) 

where the last step uses the simplification in notation de­
scribed above. 

We define root-shifting to be the operation, S, that 
changes the root of a map from After this operation 
all location vectors in a map wil l be referenced to rather 
than This operation is is simply an extension of 
Equation 2 to act on all entities in the map: 

(3) 

(4) 

In the SLAM literature, the term "base reference" [Tardos et a/., 
2002] is a synonym for our term Map Root. Note that in the general 
case with orientation, a single point feature will be insufficient to 
define a reference frame. In 2-D, two points will be required and in 
3-D three points will be required. 
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Figure 1: Flow chart for each cycle of the algorithm. 

The global location of a feature j in a local map is 
computed by simple composition of the local location vector 
and the already globally referenced Map Location vector: 

(5) 

4 The constant-time SLAM algorithm 
Figure 1 illustrates the processing steps that are performed 
by the algorithm. The four key elements are (1) SLAM pro­
cessing within local maps, (2) Map management (performing 
transitions between maps and creating new maps), (3) Map 
Location estimation (determining the best global location es­
timate for a submap), and (4) Computation of global state 
estimates for all features in a map. Each of these processes 
are described in detail below. 

4.1 S L A M w i th in local maps 
At any one time, there is a single active map. For each map 

we compute a partial solution, 
where designates the local map state, and 
and represent subsets of the measurements, associ­
ations, and control inputs, respectively. Each measure­
ment is used in only a single map. (This is vital for 
ensuring consistency of the global Map Location estima­
tion process.) Each map m contains an estimated mean 

and covariance cor­
responding to selected vehicle locations (for time steps when 
map m is the active map), and only a subset of the features. 
These estimates are the same as the location vectors 
and associated uncertainty for the features in the local 
map. 

4.2 M a p management 
In our scheme, each map has a center, which is defined as the 
vehicle location at the time of the creation of a map. About 
this center is defined a region of radius This defines a 

bound of vehicle location and not feature locations — any 
feature that is observed from a position inside the map region 
will be added to the local map. The estimated location of the 
vehicle is used to deduce which map(s) the vehicle is in, and 
when to make transitions. When the vehicle travels more than 

from the center, the vehicle is considered to have left the 
current map. The parameter is a hysteresis term, to prevent 
excessive map switching. In the simulation results below, we 
use (An alternative to circular map re­
gions is the use of convex hulls, but this makes no difference 
to the fundamental performance of the algorithm.) 

We assume that the density of discernible features in a local 
area is bounded. This provides a bound on the number of 
features that can belong to a map. 

When a vehicle leaves a map, we must determine which 
map (if any) the vehicle has transitioned to. A list of possible 
candidates is drawn up from a look up table indexed by quan­
tized vehicle locations. If more than one candidate exists, we 
choose the map with the lowest ID, i.e., the oldest map. If no 
candidates are found, then a new map is created at the cur­
rent location (a distance from the center of the previous 
map). Al l of these operations can be performed in constant 
time. 

4.3 M a p Locat ion estimation 
Map Location estimation is the procedure by which global es­
timates for feature locations in each local map are improved, 
resulting in global convergence. This procedure is described 
as follows: 

1. Select a map p, to improve which is currently referenced 
to the root entity i. 

2. Create a set, containing the ID's of all nearby maps 
including p — the map to be improved. 

3. For each create a s e t o f ID's of 
features that are present in both maps. 

4. For the frame ; attached to feature calculate 
its globally referenced location and uncertainty 

using the location estimate of feature within 
map q and its current location estimate. 

5. Pick the map and entity ID such that: 

6. then stop. The map p cannot be 
improved 

7. Root Shift map p to reference all entities in 
map p to a coordinate frame attached to entity 

For constant-time operation. Map Location estimation is 
performed only when the vehicle transitions from one map to 
another. Alternatively, the procedure can be performed peri­
odically (or at the end of the mission) to all maps. Multiple 
iterations result in global convergence to a near-optimal solu­
tion, but the computation complexity is no longer O ( l ) . 

The work presented in this paper differs from that proposed 
in [Leonard and Feder, 2000] on the following counts: 
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• No vehicle information is carried between maps upon 
map transitions 

• The SLAM scheme adopted within each map need not 
be based on a Kalman filter. 

• Mapped entities are represented in local coordinate 
frames — one frame per map. In contrast, the DSM 
approach used multiple maps but all registered in one 
global coordinate frame. 

4.4 Obta in ing global location estimates for map 
features 

Given an independent, consistent estimate of the location of 
a submap p (with root i) with respect to the global frame, G, 
we can produce a consistent global estimate of the location 
of any feature j in map p by composition of map and feature 
locations: 

(6) 

This estimate is consistent because and are inde­
pendent, is "internal" to the map a n d " e x t e r n a l " 
to the map. 

The existence of a "shared" feature. s, between two maps 
p and q allows the location estimate , of map p, (with root 
feature s), to be replaced with where 

(7) 
and the root of map q is any feature id in map q. Equation 
7 should be interpreted as finding an alternative expression 
for the global location of a shared feature s using quantities 
associated with map q instead of p. As map p has a root at the 
shared feature s this expression is by definition an alternative 
expression for the map location. The minimization step of the 
algorithm is concerned with finding the best choice of shared 
feature s. 

In the limit each map becomes internally fully correlated 
and the "min" operation wil l have no further effect so that for 
any feature j 

(8) 

where • is any choice of root. In other words no root-shifting 
and replace operation can be found that improves the global 
uncertainty of feature j. For the linear case 

(9) 

The maps are rooted on features and so as then 

(10) 

and so 

(11) 

which is true for all choices of p and q. Therefore the glob­
ally referenced feature location uncertainty is the same 
independent of choice of map (•). The value of this limiting 
value is clearly given by the smallest possible uncertainty in 
Map Location which is the uncertainty of the first feature ini­
tialized in the first map iDissanayake et ai, 2001 ]. This point 
is considered further in section 5. 

5 Consistency and convergence 
We begin by defining the term consistency with regard to an 
estimate of an r . v a t time k given all information 
up until time Defining the estimated error vector 

and the estimate covariance as we write 
the condition of consistency as: 

(12) 

(13) 

To show that the global location estimates produced by Equa­
tion 6 are consistent, we rely on the following three proper­
ties: (1) local map state estimates (obtained from the 
local SLAM solution are 
consistent, (2) global state estimates tor Map Locations 
are consistent, and (3) the composition of these two pieces of 
information — local state estimates within a map and global 
information concerning the location of the map — is consis­
tent. 

The consistency of local maps follows directly from the 
properties of the Kalman filter which in the linear gaussian 
case is the optimal Bayesian estimator. Clearly, choosing to 
use a possibly inconsistent estimator such as the EKF in a 
nonlinear scenario wil l invalidate these claims. However, the 
LG case allows statements to be made regarding the underly­
ing properties of the CTS algorithm. In a non-linear imple­
mentation, the consistency of the LG case can be matched to 
an arbitrary degree by using Monte-Carlo estimators in each 
sub-map. Regardless of local estimation techniques, the CTS 
algorithm preserves its constant time property. 

Local maps have three differences from the full solution 
(a) their base reference (root) is defined by one of the fea­
tures in the map, (b) relocation is periodically performed to 
re-initialize the local map when the vehicle transitions back 
into it, and (c) the base reference of the local map is peri­
odically shifted from one feature in the local map to another 
(Root Shifting). None of these three differences result in a 
loss of consistency for the local SLAM solution. 

The global Map Location estimate for a given map, 
m, is consistent because it is created via the composition of 
transformations derived from other local maps, and each local 
map is independent of other local maps. The composition 
of transformations from different local maps is a consistent 
operation (for the linear case). 

Finally, the composition of the local map state estimates 
performed in Equation 6 is a consistent operation, because 

and are independent of one another. 
While the location estimates for different maps are corre­

lated with one another, and this correlation is not computed 
by the algorithm, the method in none-the-less consistent be­
cause this correlation is never needed. We never fuse Map 
Location estimates estimates, but rather, perform wholesale 
replacement. The algorithm keeps track of the best estimate 
for the global location of the root entity of a given map. A 
guiding principle of this algorithm is that estimated quantities 
that are "external" to a map never effect an internal quantity. 

Due to the relocation step for map transitions, the infor­
mation from dead-reckoning measurements for the time step 
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proceeding the map transition is effectively "lost". This in­
formation, however, does not affect absolute convergence but 
only the rate of convergence. Because relocation is a con­
sistent operation [Knight, 20021, each partial solution retains 
all the properties of a Kalman filter SLAM solution fDis-
sanayake et al, 2001], and hence is provably consistent and 
convergent. Because each map is local with its base refer­
ence as one of the features in the map, in the limit the uncer­
tainty for each local map converges to zero [Dissanayake et 
al, 2001 ]. This implies that, in the limit, in any local map uti­
lizing only a subset of the relationship between features 
becomes perfectly known as A consequence of this 
is that the covariance of the transformation between any two 
features, i and j, in any given map tends to zero as 
Hence, for local maps in which the base reference (root) is a 
feature in the local map, the covariance of any feature tends 
to zero. The key driver for convergence is the behavior in the 
first submap — submap 1. To illustrate this, consider a robot 
which moves swiftly outside submap 1 and spends the rest of 
its mission driving just outside submap 1 's borders. Eventu­
ally the maps bordering submap 1 become completely known, 
including most of the features which appear in submap 1. The 
global uncertainty of any feature in the bordering submaps 
can never be less than the global uncertainty in the location 
of submap 1. Hence, in this scenario, the root shifting mech­
anism can never decrease the global uncertainty of features in 
submap 1 (nothing has lower global uncertainty). However 
as soon as submap 1 is re-entered and begins to be refined, 
the global uncertainties of maps sharing features with map 
1 can be reduced by root-shifting. Hence it is the precision 
of the first submap built (submap 1) that drives the ultimate 
performance of the entire system. In addition it is the preci­
sion of the first feature mapped within it that drives ultimate 
performance of submap 1. 

Thus in the limit, the lower bound achieved in submap 1 is 
"inherited" by all other submaps. There are two differences 
between what occurs in submap 1 in comparison to a full co-
variance solution that couples estimates for all features in a 
single map: (a) submap 1 has fewer features in it, and (b) 
not all of the observations of features that are contained in 
submap 1 are processed in the submap 1 solution. We be­
lieve that consideration (a), the fact that submap 1 has fewer 
features in it, is what is sacrificed in this approach. Even if 
some measurements are ignored in submap 1 (vs. the full 
solution), in the limit as both maps wil l converge 
to a well-defined lower bound. With enough additional time 
the submap 1 solution can "catch up" to the full solution. 
However, the fact that the full solution has more features 
enables in it cannot be compensated for, and hence the full 
solution achieves a slightly tighter bound. This in effect is 
the "cost" of computing multiple partial solutions and subse­
quently combining them, rather than computing one full solu­
tion. Our simulations have shown that this result is extremely 
small (as shown below in Figure 3). 

6 Results 
This section analyzes the behavior of the technique presented 
using simulations analysis. The simulations consider an 

"point" vehicle that moves in the plane with process 
noise Q of 0.05 or 0.01 (Monte-Carlo) m/sec standard devia­
tion in both and and measurement noise R of 0.2 m/scc 
standard deviation in both and Features are visible if 
they are within 23 meters of the vehicle location. One visible 
feature is selected at random each time step to generate the 
observations. Results are presented for three different scenar­
ios: 

1. a simulation involving six cycles through an environ­
ment in which eight maps are created (to illustrate basic 
error convergence behavior), 

2. Monte-Carlo analysis of 200 independent trials of a mis­
sion involving ten cycles through an environment in 
which twelve submaps are created (for empirical con­
sistency verification), and 

3. results off-line map adjustment for a mission involving 
a single cycle through an environment in which eighteen 
maps are created, 

6.1 Comparison w i th the fu l l covariance solution 

Figure 2 show the vehicle path for a mission in which eight 
maps are created. Figure 3 shows the vehicle error as a func­
tion of time as a function of time and active map ID. Spikes in 
the vehicle error estimate occur at each map transition when 
relocation (consistent re-initialization of the vehicle pose) is 
performed. This is particularly obvious towards the end of 
the experiment when the features are well known and subse­
quent observations swiftly bring the vehicle covariance down 
following relocation. Figure 4 shows the difference between 
the new method and the full solution in the determinant of er­
ror covariance for the feature marginals in each map, demon­
strating the tight convergence of the method to near-optimal 
estimates, while never going below the minimum permissible 
error bounds. 

6.2 Monte-Car lo consistency testing 

For the purposes of consistency testing, two relative states 
were logged in the active submap: (1) the difference between 
the first feature in the state vector and the vehicle, and (2) 
the difference between the first and second features in the 
state vector. These two states are stored in a single vector 

with covariance formed from the active map (with id 
This relative vector can be compared to the 'true' relative 

relationships declared by the simulator producing the noise 
corrupted measurements. The difference between these vec­
tors is the error vector . The vector calculated for each 
map m wil l in general involve different features (by definition 
as each map contains a subset of the set of all features with 
only some features in common). However each estimated 
component of should be consistent, hence any sequence 

where M is the 
total number of maps built, should also be consistent. Figure 
6.2 illustrates the results obtained from Monte-Carlo exper­
iments of the CTS algorithm. The parameters used in the 
simulation of sensor data and its subsequent processing are 
given in Table 6,2. Al l the plots are concerned with the statis­
tical properties of . The first plot of Figure 6.2 shows the 
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Figure 2: Vehicle path for a mission with eight maps. The eight shaded circles indicate the extent of the submaps in terms of 
vehicle location alone. Hence features can belong to maps even though they lie outside the submap boundaries. The map ID's 
are in bold. The right hand plot shows the distribution and sharing of features between maps. Some features are common to 
several submaps - for example feature 25 is found in submaps 3,4,5,6 and 7 whereas others are found in one alone — feature 
37 is only mapped in submap 6. The lower plot shows the map transitions occurring as the vehicle moves. The basic trajectory 
is one of two overlapping rectangles aligned in North-East direction. The vehicle then returns to the origin (0,0) and repeats 
the pattern another six times. The feature estimate error ellipses are those resulting at the end of the simulations (in global 
coordinates) and are threc-sigma bounds. The full covariance solution is also plotted on the central figure with its estimated 
feature locations are plotted with squares. The covariance bounds on features are at this resolution indistinguishable from those 
of the produced by the CTS algorithm. 

mean values of — the difference for each time step be­
tween the "true" relative vector and the the estimate The 
upper two plots correspond to the vehicle to feature relative 
states. Note how the error does not converge to a zero value 
owing to the continual injection of process noise (odometry 
errors etc) into the vehicle as it moves. The lower two plots 
however correspond to the error in the relative location of the 
first two features in what ever the active map is. No pro­
cess noise is added to the feature estimate covariances during 
the prediction stage of the estimation process. The result is 
the expected convergence to zero error. The second plot of 
Figure 6.2 shows the plots the characteristics of the N-run av­
erage of the NEES (Normalized Estimated Error Squared) of 

. The 95% confidence region bounds for estimation con­
sistency are plotted on the same axes, the final plot of Figure 
6.2 shows the normalized mean estimated error (NMEE) and 
the associated 95% confidence bounds of the hypothesis that 
the NMEE sequences are from a consistent estimator. 

6.3 Off- l ine Adjustment 
The root shifting operation which searches for a better repre­
sentation (in terms of uncertainty) of map location and fea­
tures need not be done as the vehicle transitions between 
maps. Table 6.3 shows the improvement in successively ap-

Table 1: Monte-Carlo simulation parameters. 
| Parameter 
1 Monte-Carlo Runs 

Vehicle Process Noise (std) 
Sensor Noise (std) 
Cycle Length 
Cycles per run 
Total Distance Driven per run 
Loops per Cycle 
Initial Vehicle uncertainty 
Sensor Range 
Sensor Field of View 
Feature Density 
Map Radius 
Vehicle Velocity 

Value 
200 
0.01 ir is"1 

0.05 m 
360 m 
10 
3600 m 
2 
0 m 
25 m 
100deg 
Every 18m in x 
15m 
0.3 ms- 1 

and y 
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Figure 3: Convergence of vehicle state estimates for the eight 
map example. The left hand plots show the time steps at the 
opening stages of the mission while the right hand plots show 
the closing stages. The straight line is the lowest possible 
bound on vehicle uncertainty possible for either algorithm in 
the zero plant noise case. The full vehicle uncertainty given 
by the full covariance solution is the lighter of the two plots 
and is always less than or equal to the the CTS solution — 
the CTS solution is always consistent. 

Figure 4: The log of the full-covariance / CTS difference be­
tween the determinants of the covariances in the first feature 
mapped in three randomly chosen submaps. Before the first 
submap transition occurs, submap 1 computes an answer that 
is identical to the full solution. Subsequently, submap one 
performs slightly worse due to the inclusion of less features. 
Note also that the convergence of submap 1 appears to be 
slower than the other maps and indeed at times the difference 
between full and CTS solutions seems to increase. This is be­
cause features in submap 1 can only be improved when this 
submap is active, whereas the full covariance solution updates 
all features with each new observation. 

Figure 5: Monte-Carlo Consistency testing. The left hand 
plot shows the four components of the vector which en­
codes the errors in relative positions of vehicle and the first 
two features in the state vector of the active map 
(the map in which the vehicle is currently moving). The first 
upper two sequences are the x and y components of the error 
in the relative position between vehicle and The second 
two are the and components of the error in the relative po­
sitions of and . The central plot is the NEES of y. The 
bounds are the 95% confidence intervals on the NEES vari­
able. The right hand plot shows the Normalized Mean Error 
(NMEE) for the components of For consistency the mean 
estimated error should be zero. The limits plotted are the 95% 
confidence interval bounds for the consistency hypothesis. 
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Table 2: Percentage decrease in disparity between full covari-
ance and CTS calculated feature uncertainties during sequen­
tial off-line adjustments using the CTS root shifting proce­
dure. After three iterations all eighteen maps in this example 
showed no further improvement. 

| Mup 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16. 
17 
18 

iteration 1 

0.0 
13 6 
10.0 
10.6 
6.3 
7.1 
20 7 
1 8 
6 6 
3 5 
1.6 
15 0 
3.7 
4 1 
4 5 
7.5 
144 
12.9 

iteration 2 

_ 
13 6 
168 
189 
13.0 
12.6 
25 4 
7.1 
8.3 
5 0 
6.3 
178 
5 4 
5.5 
6 0 
9 0 
22.1 
129 

itcrution 3 

0.0 
13.6 
168 
18.9 
179 
12.6 
26.6 
8.5 
13.5 
9 5 
7.6 
19.0 
10 1 
9 6 
10.2 
13 4 
22 1 
129 

plying the CTS algorithm to maps at the termination of the 
mission for a scenario with 18 maps. The simple approach 
adopted here begins with submap 2 and seeks to improve the 
map location estimate, it then progresses to submap 3 and so 
on until the highest index map has been adjusted. This then 
repeats until no maps show any further improvement. It is a 
topic of future research to determine, as a function of shared 
feature topography, the optimal adjustment sequence rather 
than the linear one used here. The adjustment was applied to 
a mission with a vehicle trajectory defined by six overlapping 
rectangles (similar to Figure 2 but the course was not repeated 
leading to a more uncertain collection of submaps at the end 
of the mission). The entries in the table are the percentage 
decrease in median disparity between the full covariance and 
CTS calculated feature uncertainties. As expected, the table 
shows no improvement for submap 1. 

7 Conclusion 
In this paper, we have presented a new technique for SLAM 
with multiple maps that achieves consistency of global state 
estimates with with 0( 1) time complexity. If the mobile robot 
is able to make repeated visits to all parts of the environ­
ment, by performing map improvement operations only when 
a map is exited, near-optimal convergence is demonstrated in 
constant-time. 

In this approach, all SLAM filtering is performed in lo­
cal submaps. Each submap has an associated reference 
frame, whose global position is estimated using information 
from other submaps. The transition of the vehicle between 
submaps is consistently performed using relocation fNeira 
et at., 2002; Knight, 2002]. By never mixing information 
between maps, the method yields provably consistent global 
state estimates, while still achieving global convergence. 

The method successfully exploits the fact that overlapping 
features are estimated in different maps. By changing the 
base reference of a map to be the feature within the map 
that has the "best" globally referenced position estimate, the 
global location estimates for all the features in a local region 

get improved via operations in other maps. 
Ongoing research includes testing of the method with real 

data, the incorporation of probabilistic data association tech­
niques, and extension of the approach to the nonlinear case. 
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