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Abstract 
Simultaneous Localization and Mapping ( S L A M ) is 
a fundamental problem in mobile robotics: while 
a robot navigates in an unknown environment, it 
must incrementally build a map of its surround­
ings and, at the same time, localize itself within 
that map. One popular solution is to treat SLAM 
as an estimation problem and apply the Kalman fil­
ter; this approach is elegant, but it does not scale 
well: the size of the belief state and the time com­
plexity of the filter update both grow quadratically 
in the number of landmarks in the map. This pa­
per presents a filtering technique that maintains a 
tractable approximation of the belief state as a thin 
junction tree. The junction tree grows under filter 
updates and is periodically "thinned" via efficient 
maximum likelihood projections so inference re­
mains tractable. When applied to the SLAM prob­
lem, these thin junction tree filters have a linear-
space belief state and a linear-time filtering opera­
tion. Further approximation yields a filtering oper­
ation that is often constant-time. Experiments on a 
suite of SLAM problems validate the approach. 

1 Introduction 
Simultaneous Localization and Mapping (SLAM)—where a 
robot navigating in an unknown environment must incre­
mentally build a map of its surroundings and localize itself 
within that map—has attracted significant attention because 
it is required by many applications in mobile robotics [Thrun, 
2002]. Typically the environment is idealized so that it con­
sists of an unknown number of stationary "landmarks"; for 
example, in a given SLAM application these landmarks may 
be low-level visual features or structural features such as 
walls and corners, S L A M can then be viewed as the prob­
lem of incrementally estimating the locations of the robot and 
landmarks from noisy and incomplete observations. 

One popular approach treats SLAM as a filtering problem 
[Smith et al., 1990]. The hidden state of the system at time 

is represented by a random variable which includes Xt 
the state of the robot at time and , the locations 
of the landmarks observed up to time Thus, the size of 
the state vector is linear in the number of observed landmarks 

and grows over time. The Kalman filter is used to compute 
the filtered belief state observations to t i m e w h i c h 
in this case takes the form of a multivariate Gaussian distribu­
tion We regard the m e a n a s the estimate of the 
map and the covariance matrix a measure of confidence. 

The Kalman filter solution is elegant, but it does not scale 
well to large SLAM problems. Because explicitly repre­
sents correlations between all pairs of variables, the size of 
the belief state grows as and because each of these 
correlations must be updated whenever a landmark is re-
obscrved, the time complexity of its filter operation is also 

This quadratic complexity renders the Kalman fil­
ter inapplicable to large SLAM problems and gives rise to the 
need for principled, efficient approximations. 

Unfortunately, the simplest approach—discarding correla­
tions so each variable is estimated independently—presents 
problems. Ignoring correlations between the robot state and 
the landmarks' states leads to overconfidence and divergence 
because correlated observations are treated as if they con­
veyed independent information [Hebert et al., 1996]. Fur­
thermore, correlations between pairs of landmark states are 
required for quick convergence when the robot closes a loop, 
i.e., it reobserves known landmarks after an extended pe­
riod of mapping unknown territory (see Figure 1). When 
the robot closes a loop, it reobserves landmarks whose po­
sitions are known with relative certainty; this helps the robot 
localize. The robot-landmark correlations translate this im­
proved localization estimate into improved position estimates 
for recently-observed landmarks. The inter-landmark corre­
lations translate these improved position estimates into im­
provements for the remaining landmarks on the tour.1 Thus, 
the correlations give the Kalman filter a valuable property 
normally associated with smoothing algorithms: it can use 
current observations to improve estimates "from the past". 

Because quadratically many correlations are necessary to 
close loops, we view the challenge of scalable SLAM filtering 
as that of estimating and reasoning with quadratically many 
correlations without quadratic time or space complexity. In 
this paper, we present a novel and general approximate filter­
ing method satisfying this criterion. Our point of departure 

1 Robot-landmark correlations, which decay over time due to mo­
tion noise, cannot translate an improved localization estimate into 
improvements for landmarks observed in the distant past; in con­
trast, inter-landmark correlations do not decay over time. 
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Figure 1: The robot is travelling counter-clockwise on a 
square path. Dots represent landmarks; the true position of 
the robot is shown by a square; the filter belief state is vi­
sualized using the 95% confidence ellipses of the variable 
marginals (bold for the robot). Left: accumulated noise and 
error has led to uncertain and drifted estimates for the robot 
and landmark positions. Right: after closing the loop, all of 
the position estimates improve and their confidences increase. 

(in Section 2) is to view the filtered belief state of the Kalman 
filter as a Gaussian graphical model [Cowell et al, 1999] that 
evolves over time; this allows us to express correlations in 
terms of direct dependencies (edges) and indirect dependen­
cies (paths). Analyzing the evolution of this graphical model 
reveals that filter updates add edges to the graphical model, 
making inference more expensive. This motivates an approx­
imation scheme in which weak or redundant edges are period­
ically removed to improve the complexity of inference. Note 
that edge removal is very different than simply discarding cor­
relations; because other edges are left intact, paths—and thus 
correlations—persist between each pair of variables. 

Graphical models give us valuable insight into how good 
approximate filters can be designed, but using them to rep­
resent the belief state presents problems. First, variable 
marginals like the robot's current position would not be im­
mediately available as they are in the Kalman filter repre­
sentation; we would require inference to obtain them. Sec­
ond, while it is possible to remove edges from a Gaussian 
graphical model using the Iterative Proportional Fitting algo­
rithm [Speed and Kiiveri, 1986], its application in this context 
would be prohibitively slow. Finally, choosing edges whose 
removal leaves a distribution for which inference is tractable 
is itself a complicated process [Kjaerulff, 1993]. 

Our solution to these problems is to use a different rep­
resentation of the belief state. Exact inference in graphical 
models is often implemented by message passing on a junc­
tion tree [Cowell et ah, 1999]. Rather than view the junction 
tree algorithm as an "inference engine", we use the junction 
tree itself as our representation of the belief state. This repre­
sentation has many advantages: the belief state has a "built-
in" inference algorithm (namely, message passing); it gives 
immediate access to the marginal distribution over any vari­
able; and as we demonstrate, it gives us efficient methods of 
selecting edges to prune and pruning them. 

To implement such a junction tree filter, we develop meth­
ods for updating the junction tree to reflect filtering updates in 
Section 3. These updates can cause the width of the junction 

tree to grow, making inference more expensive; in Section 4 
we present a novel "thinning" operation over junction trees 
called variable contraction. We prove that each variable con­
traction is a maximum likelihood projection that removes a 
set of edges from the corresponding graphical model. The ap­
proximation error introduced by a variable contraction can be 
computed efficiently, which allows us to choose which edges 
to remove at each time step so as to minimize the error. 

In Section 5 we apply these techniques to the SLAM prob­
lem and obtain a thin junction tree filter (TJTF) with a O 
space belief state representation and a O time filter op­
eration. By delaying the incorporation of recent evidence 
into the majority of the map, we can improve the filter's time 
complexity; we present a method of evaluating the signifi­
cance evidence has on different portions of the map, which 
can be used to adaptively interpolate between constant and 
linear-time filter operations. Empirically, we find that these 
adaptive filters choose constant-time updates when mapping 
new territory, and when closing a loop, they use time lin­
ear in the length of the loop. This is perhaps the best time 
complexity one would hope for in the SLAM problem, since 
linearly-many estimates cannot be improved in constant time. 
Section 6 presents the results of simulation experiments that 
compare TJTF to other SLAM filters and Section 7 concludes. 
A companion technical report contains proofs of all proposi­
tions as well as additional background, analysis, and experi­
ments [Paskin, 2002]. 

1.1 Related wo rk 
Significant interest in the SLAM complexity problem has led 
to a number of approaches [Thrun, 2002]. For example, there 
are several submap approaches that decompose the prob­
lem into a set of small mapping problems yielding a block-
diagonal landmark covariance matrix. These techniques can 
achieve constant time complexity, but converge slowly be­
cause information cannot pass between the submaps. 

Recently, the FastSLAM algorithm [Montemcrlo et al., 
2002]—a Rao-Blackwellized particle filter—has attracted at­
tention because of its logarithmic time complexity. However, 
our experiments show FastSLAM is susceptible to divergence 
in large, noisy SLAM problems. We believe this is because the 
number of particles required for a satisfactory solution can 
grow exponentially over time; see [Paskin, 2002] for details. 

Sparse extended information filters (SEIF) [Thrun et al, 
2002] can be viewed in terms of the graphical model rep­
resentation described above; at each time-step, edges are re­
moved so that a constant-time filter operation can be guaran­
teed. To avoid the additional complexity of inference, SEIF 
employs approximate inference over this approximate model. 
Thus, the SEIF paper provided the valuable insight that sparse 
graphical models can constitute an efficient solution to SLAM. 
Implementing this insight while avoiding additional approxi­
mation was one of the primary motivations of this work. 

Each of these approaches described above uses a sublinear-
time filter update, and therefore, none can improve all of the 
landmark estimates in a single update (like the Kalman fil­
ter). TJTF has the best of both worlds: its update step takes 
constant time unless the observation is significant enough to 
warrant a linear-time update. 
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Outside of the SLAM literature, there are two works that 
are especially relevant. Kjairulff [1993] investigated edge re­
moval as a means of reducing the complexity of inference 
in graphical models. Our approach is somewhat simpler, as 
it operates directly on the junction tree without referring to 
the underlying graphical model. Kjaerulff's analysis of the 
approximation error inspired ours, and several of his results 
apply directly to our case. 

Thin junction tree filtering is an assumed density filtering 
(ADF) algorithm because it periodically "projects" the filter's 
belief state to some tractable family of distributions—in this 
case, the family of Gaussian distributions characterized by 
thin junction trees. This makes other work on ADF relevant, 
especially that of Boyen and Koller [1998], in which the be­
lief state of a dynamic Bayesian network is periodically pro­
jected to a product-of-marginals approximation. In fact, the 
connection to this work is stronger: Boyen and Koller [1999] 
extended their earlier analysis to filters where the belief state 
is represented by a junction tree whose structure evolves over 
time; however, no algorithms were presented. To our knowl­
edge, TJTF is the first algorithm to which this analysis applies. 
Here we apply TJTF to a Gaussian graphical model, but noth­
ing prevents its application to the discrete variable networks 
considered by Boyen and Koller. 

2 A graphical model perspective on S L A M 
We begin by presenting the SLAM model and then formulat­
ing SLAM filtering in terms of graphical models. 

2.1 The SLAM model 
We assume a general SLAM model where in each time step 
the robot moves, obtains an odometry measurement of its 
motion, and makes several observations of landmarks. As 
in the Kalman filter context, we assume that the motion and 
measurement models are known and that they are linear-
Gaussian.2 The robot motion at time / is governed by 

(1) 
and the odometry measurement yt at time t is governed by 

(2) 

yt is typically a noisy measurement of the robot's velocities. 
Landmark measurements are typically assumed to depend 

only upon the state of the robot and the state of the observed 
landmark; for example the observation may consist of the 
range and bearing to the landmark in the robot's coordinate 
frame. If the zth landmark measurement at time issued from 
landmark it is governed by 

(3) 
For simplicity, we assume the correspondence between each 
measurement and the landmark from which it issued is 
known. This question of data association, while critically 
important in SLAM, is largely orthogonal to the issues we 
address here; in particular, the standard technique of choos­
ing the maximum likelihood data association applies without 

2When these models are not linear-Gaussian, they can be approx­
imated as such as in the Extended or Unscented Kalman Filter. 

change in our treatment. When a landmark is first observed, 
its state variable is added to the belief state with a uninfor-
mative (infinite variance, zero covariance) prior; the measure­
ment update yields an informed posterior estimate of its state. 

2.2 Gaussian graphical models 
Under the assumptions outlined above, the filtered belief state 

is a multivariate Gaussian distribution. The 
Kalman filter represents this distribution using the moment 
parameters—the mean vector and covariance matrix 
If then its probability distribution is 

(4) 

where d is the length of u. In contrast, Gaussian graphical 
models are usually based upon the canonical parameters— 
the information vector r/ and matrix 

(5) 

where is the (log) nor­
malization constant. The canonical and moment parameters 
are related by An advantage of the 
canonical parameterization is that multiplication/division of 
Gaussians reduces to addition/subtraction of the parameters. 

Let be a set of random variables indexed 
by elements of the finite set V. We will call a subset of V a 
family. For a family be the 
associated set of random variables. A potential over a family 

is a non-negative function of Let F be a set of 
families and let be a set of potential 
functions over these families. (F, \P) defines a distribution 

(6) 

when the normalizer is finite. 
The Markov graph associated with has vertex set 

V and a clique of edges over each there is an 
edge between are bound by a potential. 
The primary value of the Markov graph representation comes 
from the Hammersley-Clifford theorem, which states that s 
separates from in the Markov graph 
iff (provided In other words, graph 
separation in the Markov graph encodes the conditional inde­
pendence properties of Because conditional independence 
properties often translate into efficient inference algorithms 
(e.g., junction tree), the Markov graph gives good intuitions 
into the design of efficient approximations. 

We can represent the Gaussian (5) by a Markov graph, 
since if we partition the vector 
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The final step of filtering is roll-up, or marginalizing out 
the past state. The standard rule for marginalization in the 
canonical parameterization is given by [Cowell et al., 1999] 

Fact 1. If a = V\i and 

(10) 

( I D 
(12) 

Figure 2: Example evolution of a SLAM graphical model, (a) 
In the initial belief state, the robot's state and the land­
marks' states and are marginally independent, (b) 
Observing each landmark induces a correlation between 
and resulting in a new edge, (c) The prediction update 
adds the new robot state to the model and joins it to the 
current robot state . (d) The roll-up phase marginalizes 

out of the model, adding a clique edges over all of 's 
neighbors. 

2.4 F i l ter ing the S L A M graphical model 

Using these results we can characterize how the structure of 
the SLAM belief state evolves over time (see Figure 2). For 
each observed landmark we multiply a measurement poten­
tial into the graphical model; this adds an edge be­
tween xt and Thus, after the estimation phase, the robot's 
state will be connected to the states of all landmarks it has 
observed. The prediction phase then connects and 
Finally, the roll-up phase marginalizes out this places a 
potential over the Markov blanket of which now includes 
all observed landmarks and Now the SLAM graphical 
model takes the form of a complete graph—i.e., the belief 
state has no conditional independencies. By induction, this 
will be true after every time step. 

An intuition for why the graphical model becomes dense 
over time is valuable. When the robot measures a landmark, 
the landmark's state becomes directly correlated with that of 
the robot, and thus indirectly correlated with all covariates of 
the robot state, e.g., other landmark states. When the robot's 
state is eliminated from the model during roll-up, these indi­
rect correlations must be expressed directly via new edges. 

Importantly, these indirect correlations are often much 
weaker than the direct ones. Thus, even though the SLAM 
belief state has no true conditional independencies, there are 
many "approximate" conditional independencies; e.g., the 
landmarks observed at the beginning and end of a tour are 
almost independent given those observed in the middle. By 
removing "weak" edges from the graphical model we can en­
force these approximate conditional independencies so they 
can be used to speed inference. 

3 Junction tree filtering 
As discussed in the introduction, the graphical model repre­
sentation is valuable for motivating our approximate filter, but 
it is not an appropriate representation for its implementation. 
Instead, we represent the belief state of the filter using a junc­
tion tree. We begin by briefly summarizing the relevant con­
cepts; see [Cowell et al, 1999] for details. 
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and is the normalization constant. Thus, all the po­
tentials of a Gaussian graphical model are either unary (node 
potentials) or binary (edge potentials). We also have the im­
portant interpretation that if then is 
unity (and therefore superfluous), meaning there is no edge 
between i and j in the corresponding Markov graph. 

2.3 F i l ter ing in Gaussian graphical models 

Filtering can be viewed as a three-step procedure: estima­
tion, in which we incorporate the current time step's mea­
surements; prediction, in which we augment the model with 
the state variables of the next time step; and roll-up, in which 
we marginalize out the state variables from the past time 
step. When the measurement and motion models are linear-
Gaussian, the prediction and estimation steps reduce to mul­
tiplying small Gaussian potentials into the model; these up­
dates are summarized by 

Proposition 1 . 3 Ignoring irrelevant normalization constants, 
the motion update of equation (1) can be implemented by mul­
tiplying the potential 

and the landmark measurement update of equation (3) can be 
implemented by multiplying in the potential 

into the model; the odometry measurement update of equation 
(2) can be implemented by multiplying in the potential 

The time complexity of computing (11) and (12) is quadratic 
in the dimension of and cubic in the dimension of 

The additive updates above can also be viewed as multiply­
ing in a new potential into 
the model. The Markov blanket is the set of z's 
neighbors in the Markov graph. Because missing edges in the 
Markov graph correspond to zeros in A, we can infer that this 
is really a potential over and therefore that marginal­
izing Ui out of the model places a clique of edges over the 
Markov blanket of i. 

3Model parameter indices are omitted for notational simplicity. 



3.1 Junct ion trees 
Let p be a distribution of the form (6) with families F and po­
tentials (C, E) be an undirected 
graph where each vertex (or cluster) C is a subset of V\ T 
is ^junction tree for p if the following three properties hold: 

1. Singly connected property: T is a tree. 
2. Potential property: For every family F there is 

some cluster such that 
3. Running intersection property: is present in two 

clusters and of T, it is also present in all clusters on 
the (unique) path between and 

With each edge E we associate a separator s = 
let S be the set of T\s separators. 

Given a junction tree 7\ we can perform inference in the 
model by passing messages between the clusters of T. We 
begin by associating with T a set of potential functions 

one for each cluster and 
separator. The charge on T is defined to be 

We initialize by setting all cluster and separator potentials 
to unity, multiplying each potential into for some 

C (which is possible by the potential property), and mul­
tiplying into an arbitrary then 

Let c and be adjacent clusters with separator d. 
Passing a message from c to d updates the separator potential 

and the cluster potential as follows: 

(14) 

(15) 

Importantly, these updates leave the charge (13) invariant, so 
Thus, we can view them as reparameterizing the 

distribution p. When messages are passed along every edge 
in both directions (in an appropriate schedule), the cluster and 
separator potentials are updated so that they are marginals of 

over their respective variables. A junction tree in this state 
is called consistent and it can be used to obtain marginals over 
any set of variables that reside together in some cluster. 

When T has no nonmaximal clusters, so the 
number of messages required for inference is bounded by 2 • 

In the case of a Gaussian graphical model, the cluster and 
separator potentials are Gaussians; if they are represented by 
their canonical parameters, the time complexity of passing a 
message is dominated by the cost of the marginalization in 
(14) which is implemented via (11) and (12); thus, it is at 
worst cubic in the size of the cluster. In sum, inference is 
linear in and cubic in the width of T, traditionally defined 
as the size of the largest cluster minus one. 

3.2 Incremental junc t ion tree maintenance 
We adopt consistent junction trees as the belief state represen­
tation of our filter; i.e., the belief state wil l be represented by 
the charge (13) of a consistent junction tree. Recall from Sec­
tion 2.3 that the prediction and estimation phases of the filter 

update can be implemented by multiplying in small, simple 
potentials to the probability distribution, and that the roll-
up phase is implemented by marginalizing variables out of 
the model. In this section we describe how to incrementally 
maintain a consistent junction tree under these updates. 

In what follows we will make use of three nonstandard op­
erations to restructure a consistent junction tree. 

• Cloning: To clone a cluster we create a copy d, attach 
d to c with separator and set 

• Merging: Let c and d be neighboring clusters with sep­
arator s. To merge d into c, we: (1) update d; 
(2) update (3) swing all edges incident 
to d over to c; and (4) remove d from C and s from 5. 

• Pushing: Let c and d be neighboring clusters with sep­
arator s such that but To push i from c 
to we update and and 
pass a message from to d to update and By 
extension we can push from c to a nonadjacent clus­
ter by successive pushes along the unique path from r 
to (Any nonmaximal clusters created by pushing are 
subsequently merged into their subsuming neighbors.) 

It is easy to check that all of these operations preserve the 
three structural constraints as well as the charge and consis­
tency of a junction tree. 

Mult iplying in potentials 
Assume our belief state is represented by a consistent junc­
tion tree T. In order to update the charge of T to reflect the 
multiplication of a potential into we must find a 
cluster and m u l t i p l y i n t o To restore consistency, 
we could pass messages throughout 7\ but this is twice the 
work needed: a simple consequence of the message-passing 
updates (14) and (15) is that we need only distribute evidence 
from i.e, we must pass messages along edges in a preorder 
traversal from c. 

If there is no cluster that covers the family a of the new po­
tential, then we must first modify the junction tree T to create 
one. Draper [1995] presents several techniques to do this; in 
the Gaussian case the problem is somewhat simpler, since the 
potentials bind at most two variables. When multiplying in an 
edge potential requires us to create a cluster cover­
ing , we find the closest pair of clusters and such 
that and d and push / from c to d. We then multiply 

into and distribute evidence from d. 
It is worth noting that in several cases, conditional inde­

pendencies obviate the evidence distribution step. This is a 
significant optimization, since message passing is by far the 
most expensive operation. This occurs, for example, when 
performing the prediction step (because is an unob­
served directed leaf of the graphical model and therefore does 
not impact the distributions of the other nodes), when ob­
serving a landmark for the first time (due to its uninformative 
prior), and in certain types of odometry updates. 

Marginalizing out variables 
Assume again that we have a consistent junction tree T rep­
resenting As described in Section 2.3, marginalizing 
out of p places a potential over the Markov blanket of . Be­
cause the junction tree must have a cluster that covers this new 
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Figure 3: Illustration of variable contraction. Clusters are 
circles and separators are rectangles; is shaded, (a) i can 
be contracted from or c because they are leaves of 
cannot be contracted from because the running intersection 
property would be violated, (b) Contracting i from c removes 
it from c and s and marginalizes out of and 

potential, marginalizing out is not as simple as marginal­
izing it out of all the cluster potentials that bind it. 

Let be the Markov blanket of Because T has the 
potential property, we are guaranteed that 
i.e., that 's Markov blanket is covered by the clusters con­
taining (In fact, in the sequel this containment wil l often be 
strict equality.) Moreover, because T has the running inter­
section property, all clusters containing i constitute a subtree 
of T, which we denote By successively merging the clus­
ters of into each other, we can obtain a new junction tree 
where i resides in a single cluster Marginalizing 
Ui out of this junction tree is simple: we remove i from c* 
and marginalize out of . I t is simple to check that this 
operation results in a consistent junction tree for 

4 Thinning the junction tree 
The updates described in the previous section can cause the 
clusters of the junction tree to grow; in particular, the merging 
of clusters required by marginalizations can cause the width 
of the junction tree to increase quickly. The complexity of 
message passing scales with the width of the junction tree, 
and therefore our goal is to define a "thinning" operation that 
reduces the width (see Figure 3): 
Definition 1. Let i V appear in more than one cluster of 
the consistent junction tree T, let c be a leaf of Ti (the subtree 
of T induced by i), and let s be the separator joining c to 
A variable contraction of i from c removes from c and s 
and marginalizes ux out of and . (c is merged into its 
subsuming neighbor if it becomes nonmaximal.) 

We now consider some properties of variable contraction. 
Proposition 2. Variable contractions preserve consistency 
and the singly connected and running intersection properties. 
Thus, the new junction tree is valid for some distribution, 
although perhaps not p: the potential property may be vio­
lated. Variable contraction is local and efficient: it requires 
marginalizing a variable out of one cluster potential and one 
separator potential, which in the Gaussian case can be accom­
plished in time using (11) and (12). Also, variable 
contraction is a general method of "thinning" a junction tree: 
Proposition 3. In combination with cloning, variable con­
traction can reduce the width of any junction tree. 

The following proposition relates the original distribution and 
the distribution resulting from a variable contraction: 

Proposition 4. Let be the junction tree obtained from the 
variable contraction of Definition 1. Then minimizes the 
Kullback-Liebler divergence over all distributions 
in which 

Alternatively, the probability distribution represented by 
has maximum likelihood (under the original junction tree's 
distribution) over all distributions in which is conditionally 
independent of g i v e n T h u s , we can consider each 
variable contraction to be a maximum likelihood projection 
that cuts edges between and c - s. 

To reduce the width of a given junction tree, we should 
choose the variable contraction that minimizes the approxi­
mation error, which we take to be the Kullback-Liebler di­
vergence from the original to the approximate distribution, 

This approximation error can be computed effi­
ciently, as shown by the following result (cf. [Kjaerulff, 1993, 
Theorem 11]): 

Proposition 5. Let T be the junction tree obtained from the 
variable contraction of Definition I. Then 

(16) 

To compute the conditional mutual information (16) we need 
only the marginal . In a consistent junction tree, this 
marginal is simply , and therefore the approximation er­
ror of a variable contraction can be computed locally. When 

is a Gaussian distribution, the computation is espe­
cially efficient: its cost depends only the dimension of ui. 

Proposition 6. Let c index a set of Gaussian random vari-

(17) 

and are parameters of the potentials and so we 
can simply extract from each the sub-blocks corresponding to 
ui and compute the difference of their log determinants. 

5 Thin junction tree filters for S L A M 

We have now assembled most of the machinery required to 
design a thin junction tree filter for the SLAM problem. Al l 
that remains is the logic to decide into which clusters new po­
tentials are multiplied and also how variable contractions are 
employed to thin the junction tree. There are many possibil­
ities; the method below presents a nice compromise between 
simplicity and performance. We then describe a refinement 
that can reduce the time complexity from linear to constant. 

5.1 L inear- t ime approximate f i l tering 
Recall from Section 3.1 that if the width of our junction tree 
is k, then it wil l require space and message pass­
ing will take time. I n S L A M s o w e 
can obtain a space f i l ter with a t i m e f i l ter opera­
tion by periodically thinning the junction tree so that its width 
remains bounded by a constant 
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We start with roll-up. When the robot state is marginal­
ized out, we must merge all of the clusters in which it resides. 
In the worst case can reside in all of the clusters, in which 
case our belief state wil l collapse to one large cluster. To pre­
vent this, we iteratively contract (choosing the contraction 
that minimizes the error (17) each time) until it resides in only 
one cluster c. Then, we perform the time update, which con­
sists of multiplying the motion potential 
marginalizing out of multiplying the odometry potential 

into and distributing evidence from 
When multiplying in a landmark measurement potential 

for a landmark that is currently in the model, we 
use the method of Section 3.2, i.e., we push until it resides 
in a cluster with (This may increase the sizes of some 
clusters, but the subsequent contraction of in the next roll-
up ensures this increase in cluster size is temporary.) We then 
multiply i n t o a n d distribute evidence from c. 

If instead the landmark j has not previously been observed, 
we must add the new variable to the model. If the smallest 
cluster that contains (call it c) can admit another variable 
without violating the width limit we add to c and multi­
ply into If not, then we clone c to obtain d, con­
tract xt until it resides only in d, and thin d via a sequence 
of greedy optimal variable contractions. A cluster overlap 
parameter governs the size to which d is thinned, and there­
fore how many variables reside in the separator s that joins 
it to c (since in this case If is small, d wil l 
admit more new landmark variables before another cloning 
is required; the trade-off is that its separator s wil l shrink, 
reducing the amount of information it can transmit. 

5.2 Constant- t ime approximate f i l ter ing 
The linear time complexity of the filter above arises mainly 
because we pass messages to every cluster each time we dis­
tribute evidence from some cluster c. We can get a constant-
time filter operation by employing a lazy message passing 
scheme, where we distribute evidence only to constantly 
many nearby clusters; the approximation is that the marginals 
of the remaining clusters wil l not be conditioned on the obser­
vation. This introduces minimal error when the observation is 
uninformative about distant variables; this occurs, e.g., when 
the robot is mapping new territory. Moreover, because we 
are still updating the charge correctly, this approximation is 
temporary: at any later time a full round of message passing 
(taking linear time) wil l yield the same estimate we would 
have obtained by passing all messages at every time step. 

Alternatively, we can interpolate between the linear-time 
update and this constant-time update by employing an adap­
tive message passing scheme in which messages are propa­
gated only as long as they induce significant changes in the 
belief state. If we define "significant" sensibly, this scheme 
wil l take constant time when mapping new territory; when 
closing loops, it wil l take time linear in the length of the loop. 

We measure the significance of a message over 
the separator s by . the Kullback-Liebler diver­
gence from the new separator marginal to the original separa­
tor marginal. In the Gaussian case this is 

where Importantly, 
the significance of evidence propagated from a cluster c, to 
another cluster c* (measured in this way) decreases with the 
distance between them in the junction tree [Kjaerulff, 1993, 
Theorem 13]. Thus, if a message was not significant for a 
cluster, it need not continue the evidence distribution. 

6 Experiments 
Here we present a summary of our findings; the technical re­
port contains more detail and further experiments. 

We compared TJTF, the Kalman filter, and FastSLAM on 
large-scale SLAM simulations in which a robot moves around 
in a square world that is populated with uniformly distributed 
point-landmarks. Its motion and measurement models are all 
subject to significant noise and are linearized using the un-
scented transformation. We used two types of trajectories: a 
square loop (similar to that a robot mapping an indoor en­
vironment might travel) and a switchback trajectory (which 
could be used to map a large open area). Noise and controls 
were determined in advance so the robot followed the desired 
path and each filter received identical observations. 

Figure 4 shows two examples of our simulations. The 
filters are evaluated by their computational cost (millions 
of floating point operations), localization error (the distance 
from the robot's position to the filter's estimate) and map er­
ror (the average distance from each landmark to the filter's 
estimate). TJTF was run with the width limit k — 16, the 
cluster overlap h — 4, and adaptive message passing with the 
significance threshold set at 0.1 nats; FastSLAM was run with 
100 particles, as recommended in [Montemerlo et a/., 2002]. 

We found that the estimation error of TJTF with maxi­
mum cluster sizes as small as 16 can be comparable with the 
Kalman filter, and that it gets smaller as k increases. This 
indicates that the edges removed by TJTF indeed carry little 
information; it also suggests that the estimation error of TJTF 
wil l be at least competitive with that of SEIF (an approximate 
form of the Kalman filter) and less than that of the submap 
approaches (which neglect long-distance correlations). 

We also found that TJTF is good at closing loops; in Figure 
4(b) we can see the localization and mapping error of TJTF 
suddenly drop at t — 780, when the robot first reobserves its 
starting point; also evident is a sudden increase in the compu­
tational cost: the filter is choosing to update the entire map in 
linear time rather than using cheaper constant-time updates. 
We found that FastSLAM had difficulty closing large loops 
(notice its divergence in Figure 4(b)) and that its estimation 
error in general was larger than that of TJTF. 

Finally, using accurate counts of floating point operations, 
we found that TJTF can be as fast as FastSLAM, and that it 
becomes more efficient than the Kalman filter when the map 
contains a few hundred or more landmarks. 

7 Conclusion 
We believe thin junction tree filters are a promising ap­
proximation technique for dynamic probabilistic inference. 
First, they are flexible, in that they allow the practitioner to 
trade computational complexity for approximation accuracy 
by varying the width of the junction tree and the depth of 
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Figure 4: In (a) and (c): the solid l ine is the actual robot path; the dashed line is the integrated odometry; the dash-dotted line is 
the integrated control signal; circles are landmarks; dots are landmark observations (relative to the unknown actual viewpoint); 
for clarity, only some of the 1000 landmarks are plotted. In (b) and (d) the floating point counts arc time-averaged for clarity. 

evidence propagation. Second, the error of each local ap­
proximation can be computed exactly, g iv ing an important 
indication of how trustworthy the approximate estimates aic. 
Finally, the TJTF approximation is context sensitive in that it 
is not chosen in advance; rather, the approximation is chosen 
adaptively to minimize the approximation error. 

When applied to the SLAM problem, TJTF performs com­
petitively wi th the exact filter, but wi th superior asymptotic-
space and time complexity. Interestingly, the approach pre­
sented here has significant connections to both the submap 
approach and SEIF. First, l ike SK1F, TJTF cuts "weak" edges 
from the graphical model to speed inference; however, in 
TJTF we can use exact inference over this approximate model, 
whereas SEIF must use approximate inference. Second, the 
bel ief state of a TJTF has a natural interpretation as a coupled 
set of local maps, just as in the submap approaches. In par­
ticular, each cluster of the junct ion tree can be viewed as a 
submap. The TJTF formulation gives concrete semantics to 
the relationships between the maps, including how they must 
be updated, how consistency is maintained, and how the set 
of local maps can be determined online to minimize the ap­
proximation error subject to a complexity constraint. 
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