
Thin Junction Tree Filters for Simultaneous Localization and Mapping

Mark A. Paskin
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

paskin@cs.berkeley.edu

Abstract
Simultaneous Localization and Mapping (S L A M) is
a fundamental problem in mobile robotics: while
a robot navigates in an unknown environment, it
must incrementally build a map of its surround­
ings and, at the same time, localize itself within
that map. One popular solution is to treat SLAM
as an estimation problem and apply the Kalman fil­
ter; this approach is elegant, but it does not scale
well: the size of the belief state and the time com­
plexity of the filter update both grow quadratically
in the number of landmarks in the map. This pa­
per presents a filtering technique that maintains a
tractable approximation of the belief state as a thin
junction tree. The junction tree grows under filter
updates and is periodically "thinned" via efficient
maximum likelihood projections so inference re­
mains tractable. When applied to the SLAM prob­
lem, these thin junction tree filters have a linear-
space belief state and a linear-time filtering opera­
tion. Further approximation yields a filtering oper­
ation that is often constant-time. Experiments on a
suite of SLAM problems validate the approach.

1 Introduction
Simultaneous Localization and Mapping (SLAM)—where a
robot navigating in an unknown environment must incre­
mentally build a map of its surroundings and localize itself
within that map—has attracted significant attention because
it is required by many applications in mobile robotics [Thrun,
2002]. Typically the environment is idealized so that it con­
sists of an unknown number of stationary "landmarks"; for
example, in a given SLAM application these landmarks may
be low-level visual features or structural features such as
walls and corners, S L A M can then be viewed as the prob­
lem of incrementally estimating the locations of the robot and
landmarks from noisy and incomplete observations.

One popular approach treats SLAM as a filtering problem
[Smith et al., 1990]. The hidden state of the system at time

is represented by a random variable which includes Xt
the state of the robot at time and , the locations
of the landmarks observed up to time Thus, the size of
the state vector is linear in the number of observed landmarks

and grows over time. The Kalman filter is used to compute
the filtered belief state observations to t i m e w h i c h
in this case takes the form of a multivariate Gaussian distribu­
tion We regard the m e a n a s the estimate of the
map and the covariance matrix a measure of confidence.

The Kalman filter solution is elegant, but it does not scale
well to large SLAM problems. Because explicitly repre­
sents correlations between all pairs of variables, the size of
the belief state grows as and because each of these
correlations must be updated whenever a landmark is re-
obscrved, the time complexity of its filter operation is also

This quadratic complexity renders the Kalman fil­
ter inapplicable to large SLAM problems and gives rise to the
need for principled, efficient approximations.

Unfortunately, the simplest approach—discarding correla­
tions so each variable is estimated independently—presents
problems. Ignoring correlations between the robot state and
the landmarks' states leads to overconfidence and divergence
because correlated observations are treated as if they con­
veyed independent information [Hebert et al., 1996]. Fur­
thermore, correlations between pairs of landmark states are
required for quick convergence when the robot closes a loop,
i.e., it reobserves known landmarks after an extended pe­
riod of mapping unknown territory (see Figure 1). When
the robot closes a loop, it reobserves landmarks whose po­
sitions are known with relative certainty; this helps the robot
localize. The robot-landmark correlations translate this im­
proved localization estimate into improved position estimates
for recently-observed landmarks. The inter-landmark corre­
lations translate these improved position estimates into im­
provements for the remaining landmarks on the tour.1 Thus,
the correlations give the Kalman filter a valuable property
normally associated with smoothing algorithms: it can use
current observations to improve estimates "from the past".

Because quadratically many correlations are necessary to
close loops, we view the challenge of scalable SLAM filtering
as that of estimating and reasoning with quadratically many
correlations without quadratic time or space complexity. In
this paper, we present a novel and general approximate filter­
ing method satisfying this criterion. Our point of departure

1 Robot-landmark correlations, which decay over time due to mo­
tion noise, cannot translate an improved localization estimate into
improvements for landmarks observed in the distant past; in con­
trast, inter-landmark correlations do not decay over time.

ROBOTICS 1157

Figure 1: The robot is travelling counter-clockwise on a
square path. Dots represent landmarks; the true position of
the robot is shown by a square; the filter belief state is vi­
sualized using the 95% confidence ellipses of the variable
marginals (bold for the robot). Left: accumulated noise and
error has led to uncertain and drifted estimates for the robot
and landmark positions. Right: after closing the loop, all of
the position estimates improve and their confidences increase.

(in Section 2) is to view the filtered belief state of the Kalman
filter as a Gaussian graphical model [Cowell et al, 1999] that
evolves over time; this allows us to express correlations in
terms of direct dependencies (edges) and indirect dependen­
cies (paths). Analyzing the evolution of this graphical model
reveals that filter updates add edges to the graphical model,
making inference more expensive. This motivates an approx­
imation scheme in which weak or redundant edges are period­
ically removed to improve the complexity of inference. Note
that edge removal is very different than simply discarding cor­
relations; because other edges are left intact, paths—and thus
correlations—persist between each pair of variables.

Graphical models give us valuable insight into how good
approximate filters can be designed, but using them to rep­
resent the belief state presents problems. First, variable
marginals like the robot's current position would not be im­
mediately available as they are in the Kalman filter repre­
sentation; we would require inference to obtain them. Sec­
ond, while it is possible to remove edges from a Gaussian
graphical model using the Iterative Proportional Fitting algo­
rithm [Speed and Kiiveri, 1986], its application in this context
would be prohibitively slow. Finally, choosing edges whose
removal leaves a distribution for which inference is tractable
is itself a complicated process [Kjaerulff, 1993].

Our solution to these problems is to use a different rep­
resentation of the belief state. Exact inference in graphical
models is often implemented by message passing on a junc­
tion tree [Cowell et ah, 1999]. Rather than view the junction
tree algorithm as an "inference engine", we use the junction
tree itself as our representation of the belief state. This repre­
sentation has many advantages: the belief state has a "built-
in" inference algorithm (namely, message passing); it gives
immediate access to the marginal distribution over any vari­
able; and as we demonstrate, it gives us efficient methods of
selecting edges to prune and pruning them.

To implement such a junction tree filter, we develop meth­
ods for updating the junction tree to reflect filtering updates in
Section 3. These updates can cause the width of the junction

tree to grow, making inference more expensive; in Section 4
we present a novel "thinning" operation over junction trees
called variable contraction. We prove that each variable con­
traction is a maximum likelihood projection that removes a
set of edges from the corresponding graphical model. The ap­
proximation error introduced by a variable contraction can be
computed efficiently, which allows us to choose which edges
to remove at each time step so as to minimize the error.

In Section 5 we apply these techniques to the SLAM prob­
lem and obtain a thin junction tree filter (TJTF) with a O
space belief state representation and a O time filter op­
eration. By delaying the incorporation of recent evidence
into the majority of the map, we can improve the filter's time
complexity; we present a method of evaluating the signifi­
cance evidence has on different portions of the map, which
can be used to adaptively interpolate between constant and
linear-time filter operations. Empirically, we find that these
adaptive filters choose constant-time updates when mapping
new territory, and when closing a loop, they use time lin­
ear in the length of the loop. This is perhaps the best time
complexity one would hope for in the SLAM problem, since
linearly-many estimates cannot be improved in constant time.
Section 6 presents the results of simulation experiments that
compare TJTF to other SLAM filters and Section 7 concludes.
A companion technical report contains proofs of all proposi­
tions as well as additional background, analysis, and experi­
ments [Paskin, 2002].

1.1 Related wo rk
Significant interest in the SLAM complexity problem has led
to a number of approaches [Thrun, 2002]. For example, there
are several submap approaches that decompose the prob­
lem into a set of small mapping problems yielding a block-
diagonal landmark covariance matrix. These techniques can
achieve constant time complexity, but converge slowly be­
cause information cannot pass between the submaps.

Recently, the FastSLAM algorithm [Montemcrlo et al.,
2002]—a Rao-Blackwellized particle filter—has attracted at­
tention because of its logarithmic time complexity. However,
our experiments show FastSLAM is susceptible to divergence
in large, noisy SLAM problems. We believe this is because the
number of particles required for a satisfactory solution can
grow exponentially over time; see [Paskin, 2002] for details.

Sparse extended information filters (SEIF) [Thrun et al,
2002] can be viewed in terms of the graphical model rep­
resentation described above; at each time-step, edges are re­
moved so that a constant-time filter operation can be guaran­
teed. To avoid the additional complexity of inference, SEIF
employs approximate inference over this approximate model.
Thus, the SEIF paper provided the valuable insight that sparse
graphical models can constitute an efficient solution to SLAM.
Implementing this insight while avoiding additional approxi­
mation was one of the primary motivations of this work.

Each of these approaches described above uses a sublinear-
time filter update, and therefore, none can improve all of the
landmark estimates in a single update (like the Kalman fil­
ter). TJTF has the best of both worlds: its update step takes
constant time unless the observation is significant enough to
warrant a linear-time update.

1158 ROBOTICS

Outside of the SLAM literature, there are two works that
are especially relevant. Kjairulff [1993] investigated edge re­
moval as a means of reducing the complexity of inference
in graphical models. Our approach is somewhat simpler, as
it operates directly on the junction tree without referring to
the underlying graphical model. Kjaerulff's analysis of the
approximation error inspired ours, and several of his results
apply directly to our case.

Thin junction tree filtering is an assumed density filtering
(ADF) algorithm because it periodically "projects" the filter's
belief state to some tractable family of distributions—in this
case, the family of Gaussian distributions characterized by
thin junction trees. This makes other work on ADF relevant,
especially that of Boyen and Koller [1998], in which the be­
lief state of a dynamic Bayesian network is periodically pro­
jected to a product-of-marginals approximation. In fact, the
connection to this work is stronger: Boyen and Koller [1999]
extended their earlier analysis to filters where the belief state
is represented by a junction tree whose structure evolves over
time; however, no algorithms were presented. To our knowl­
edge, TJTF is the first algorithm to which this analysis applies.
Here we apply TJTF to a Gaussian graphical model, but noth­
ing prevents its application to the discrete variable networks
considered by Boyen and Koller.

2 A graphical model perspective on S L A M
We begin by presenting the SLAM model and then formulat­
ing SLAM filtering in terms of graphical models.

2.1 The SLAM model
We assume a general SLAM model where in each time step
the robot moves, obtains an odometry measurement of its
motion, and makes several observations of landmarks. As
in the Kalman filter context, we assume that the motion and
measurement models are known and that they are linear-
Gaussian.2 The robot motion at time / is governed by

(1)
and the odometry measurement yt at time t is governed by

(2)

yt is typically a noisy measurement of the robot's velocities.
Landmark measurements are typically assumed to depend

only upon the state of the robot and the state of the observed
landmark; for example the observation may consist of the
range and bearing to the landmark in the robot's coordinate
frame. If the zth landmark measurement at time issued from
landmark it is governed by

(3)
For simplicity, we assume the correspondence between each
measurement and the landmark from which it issued is
known. This question of data association, while critically
important in SLAM, is largely orthogonal to the issues we
address here; in particular, the standard technique of choos­
ing the maximum likelihood data association applies without

2When these models are not linear-Gaussian, they can be approx­
imated as such as in the Extended or Unscented Kalman Filter.

change in our treatment. When a landmark is first observed,
its state variable is added to the belief state with a uninfor-
mative (infinite variance, zero covariance) prior; the measure­
ment update yields an informed posterior estimate of its state.

2.2 Gaussian graphical models
Under the assumptions outlined above, the filtered belief state

is a multivariate Gaussian distribution. The
Kalman filter represents this distribution using the moment
parameters—the mean vector and covariance matrix
If then its probability distribution is

(4)

where d is the length of u. In contrast, Gaussian graphical
models are usually based upon the canonical parameters—
the information vector r/ and matrix

(5)

where is the (log) nor­
malization constant. The canonical and moment parameters
are related by An advantage of the
canonical parameterization is that multiplication/division of
Gaussians reduces to addition/subtraction of the parameters.

Let be a set of random variables indexed
by elements of the finite set V. We will call a subset of V a
family. For a family be the
associated set of random variables. A potential over a family

is a non-negative function of Let F be a set of
families and let be a set of potential
functions over these families. (F, \P) defines a distribution

(6)

when the normalizer is finite.
The Markov graph associated with has vertex set

V and a clique of edges over each there is an
edge between are bound by a potential.
The primary value of the Markov graph representation comes
from the Hammersley-Clifford theorem, which states that s
separates from in the Markov graph
iff (provided In other words, graph
separation in the Markov graph encodes the conditional inde­
pendence properties of Because conditional independence
properties often translate into efficient inference algorithms
(e.g., junction tree), the Markov graph gives good intuitions
into the design of efficient approximations.

We can represent the Gaussian (5) by a Markov graph,
since if we partition the vector

ROBOTICS 1159

The final step of filtering is roll-up, or marginalizing out
the past state. The standard rule for marginalization in the
canonical parameterization is given by [Cowell et al., 1999]

Fact 1. If a = V\i and

(10)

(I D
(12)

Figure 2: Example evolution of a SLAM graphical model, (a)
In the initial belief state, the robot's state and the land­
marks' states and are marginally independent, (b)
Observing each landmark induces a correlation between
and resulting in a new edge, (c) The prediction update
adds the new robot state to the model and joins it to the
current robot state . (d) The roll-up phase marginalizes

out of the model, adding a clique edges over all of 's
neighbors.

2.4 F i l ter ing the S L A M graphical model

Using these results we can characterize how the structure of
the SLAM belief state evolves over time (see Figure 2). For
each observed landmark we multiply a measurement poten­
tial into the graphical model; this adds an edge be­
tween xt and Thus, after the estimation phase, the robot's
state will be connected to the states of all landmarks it has
observed. The prediction phase then connects and
Finally, the roll-up phase marginalizes out this places a
potential over the Markov blanket of which now includes
all observed landmarks and Now the SLAM graphical
model takes the form of a complete graph—i.e., the belief
state has no conditional independencies. By induction, this
will be true after every time step.

An intuition for why the graphical model becomes dense
over time is valuable. When the robot measures a landmark,
the landmark's state becomes directly correlated with that of
the robot, and thus indirectly correlated with all covariates of
the robot state, e.g., other landmark states. When the robot's
state is eliminated from the model during roll-up, these indi­
rect correlations must be expressed directly via new edges.

Importantly, these indirect correlations are often much
weaker than the direct ones. Thus, even though the SLAM
belief state has no true conditional independencies, there are
many "approximate" conditional independencies; e.g., the
landmarks observed at the beginning and end of a tour are
almost independent given those observed in the middle. By
removing "weak" edges from the graphical model we can en­
force these approximate conditional independencies so they
can be used to speed inference.

3 Junction tree filtering
As discussed in the introduction, the graphical model repre­
sentation is valuable for motivating our approximate filter, but
it is not an appropriate representation for its implementation.
Instead, we represent the belief state of the filter using a junc­
tion tree. We begin by briefly summarizing the relevant con­
cepts; see [Cowell et al, 1999] for details.

1160 ROBOTICS

and is the normalization constant. Thus, all the po­
tentials of a Gaussian graphical model are either unary (node
potentials) or binary (edge potentials). We also have the im­
portant interpretation that if then is
unity (and therefore superfluous), meaning there is no edge
between i and j in the corresponding Markov graph.

2.3 F i l ter ing in Gaussian graphical models

Filtering can be viewed as a three-step procedure: estima­
tion, in which we incorporate the current time step's mea­
surements; prediction, in which we augment the model with
the state variables of the next time step; and roll-up, in which
we marginalize out the state variables from the past time
step. When the measurement and motion models are linear-
Gaussian, the prediction and estimation steps reduce to mul­
tiplying small Gaussian potentials into the model; these up­
dates are summarized by

Proposition 1 . 3 Ignoring irrelevant normalization constants,
the motion update of equation (1) can be implemented by mul­
tiplying the potential

and the landmark measurement update of equation (3) can be
implemented by multiplying in the potential

into the model; the odometry measurement update of equation
(2) can be implemented by multiplying in the potential

The time complexity of computing (11) and (12) is quadratic
in the dimension of and cubic in the dimension of

The additive updates above can also be viewed as multiply­
ing in a new potential into
the model. The Markov blanket is the set of z's
neighbors in the Markov graph. Because missing edges in the
Markov graph correspond to zeros in A, we can infer that this
is really a potential over and therefore that marginal­
izing Ui out of the model places a clique of edges over the
Markov blanket of i.

3Model parameter indices are omitted for notational simplicity.

3.1 Junct ion trees
Let p be a distribution of the form (6) with families F and po­
tentials (C, E) be an undirected
graph where each vertex (or cluster) C is a subset of V\ T
is ^junction tree for p if the following three properties hold:

1. Singly connected property: T is a tree.
2. Potential property: For every family F there is

some cluster such that
3. Running intersection property: is present in two

clusters and of T, it is also present in all clusters on
the (unique) path between and

With each edge E we associate a separator s =
let S be the set of T\s separators.

Given a junction tree 7\ we can perform inference in the
model by passing messages between the clusters of T. We
begin by associating with T a set of potential functions

one for each cluster and
separator. The charge on T is defined to be

We initialize by setting all cluster and separator potentials
to unity, multiplying each potential into for some

C (which is possible by the potential property), and mul­
tiplying into an arbitrary then

Let c and be adjacent clusters with separator d.
Passing a message from c to d updates the separator potential

and the cluster potential as follows:

(14)

(15)

Importantly, these updates leave the charge (13) invariant, so
Thus, we can view them as reparameterizing the

distribution p. When messages are passed along every edge
in both directions (in an appropriate schedule), the cluster and
separator potentials are updated so that they are marginals of

over their respective variables. A junction tree in this state
is called consistent and it can be used to obtain marginals over
any set of variables that reside together in some cluster.

When T has no nonmaximal clusters, so the
number of messages required for inference is bounded by 2 •

In the case of a Gaussian graphical model, the cluster and
separator potentials are Gaussians; if they are represented by
their canonical parameters, the time complexity of passing a
message is dominated by the cost of the marginalization in
(14) which is implemented via (11) and (12); thus, it is at
worst cubic in the size of the cluster. In sum, inference is
linear in and cubic in the width of T, traditionally defined
as the size of the largest cluster minus one.

3.2 Incremental junc t ion tree maintenance
We adopt consistent junction trees as the belief state represen­
tation of our filter; i.e., the belief state wil l be represented by
the charge (13) of a consistent junction tree. Recall from Sec­
tion 2.3 that the prediction and estimation phases of the filter

update can be implemented by multiplying in small, simple
potentials to the probability distribution, and that the roll-
up phase is implemented by marginalizing variables out of
the model. In this section we describe how to incrementally
maintain a consistent junction tree under these updates.

In what follows we will make use of three nonstandard op­
erations to restructure a consistent junction tree.

• Cloning: To clone a cluster we create a copy d, attach
d to c with separator and set

• Merging: Let c and d be neighboring clusters with sep­
arator s. To merge d into c, we: (1) update d;
(2) update (3) swing all edges incident
to d over to c; and (4) remove d from C and s from 5.

• Pushing: Let c and d be neighboring clusters with sep­
arator s such that but To push i from c
to we update and and
pass a message from to d to update and By
extension we can push from c to a nonadjacent clus­
ter by successive pushes along the unique path from r
to (Any nonmaximal clusters created by pushing are
subsequently merged into their subsuming neighbors.)

It is easy to check that all of these operations preserve the
three structural constraints as well as the charge and consis­
tency of a junction tree.

Mult iplying in potentials
Assume our belief state is represented by a consistent junc­
tion tree T. In order to update the charge of T to reflect the
multiplication of a potential into we must find a
cluster and m u l t i p l y i n t o To restore consistency,
we could pass messages throughout 7\ but this is twice the
work needed: a simple consequence of the message-passing
updates (14) and (15) is that we need only distribute evidence
from i.e, we must pass messages along edges in a preorder
traversal from c.

If there is no cluster that covers the family a of the new po­
tential, then we must first modify the junction tree T to create
one. Draper [1995] presents several techniques to do this; in
the Gaussian case the problem is somewhat simpler, since the
potentials bind at most two variables. When multiplying in an
edge potential requires us to create a cluster cover­
ing , we find the closest pair of clusters and such
that and d and push / from c to d. We then multiply

into and distribute evidence from d.
It is worth noting that in several cases, conditional inde­

pendencies obviate the evidence distribution step. This is a
significant optimization, since message passing is by far the
most expensive operation. This occurs, for example, when
performing the prediction step (because is an unob­
served directed leaf of the graphical model and therefore does
not impact the distributions of the other nodes), when ob­
serving a landmark for the first time (due to its uninformative
prior), and in certain types of odometry updates.

Marginalizing out variables
Assume again that we have a consistent junction tree T rep­
resenting As described in Section 2.3, marginalizing
out of p places a potential over the Markov blanket of . Be­
cause the junction tree must have a cluster that covers this new

ROBOTICS 1161

Figure 3: Illustration of variable contraction. Clusters are
circles and separators are rectangles; is shaded, (a) i can
be contracted from or c because they are leaves of
cannot be contracted from because the running intersection
property would be violated, (b) Contracting i from c removes
it from c and s and marginalizes out of and

potential, marginalizing out is not as simple as marginal­
izing it out of all the cluster potentials that bind it.

Let be the Markov blanket of Because T has the
potential property, we are guaranteed that
i.e., that 's Markov blanket is covered by the clusters con­
taining (In fact, in the sequel this containment wil l often be
strict equality.) Moreover, because T has the running inter­
section property, all clusters containing i constitute a subtree
of T, which we denote By successively merging the clus­
ters of into each other, we can obtain a new junction tree
where i resides in a single cluster Marginalizing
Ui out of this junction tree is simple: we remove i from c*
and marginalize out of . I t is simple to check that this
operation results in a consistent junction tree for

4 Thinning the junction tree
The updates described in the previous section can cause the
clusters of the junction tree to grow; in particular, the merging
of clusters required by marginalizations can cause the width
of the junction tree to increase quickly. The complexity of
message passing scales with the width of the junction tree,
and therefore our goal is to define a "thinning" operation that
reduces the width (see Figure 3):
Definition 1. Let i V appear in more than one cluster of
the consistent junction tree T, let c be a leaf of Ti (the subtree
of T induced by i), and let s be the separator joining c to
A variable contraction of i from c removes from c and s
and marginalizes ux out of and . (c is merged into its
subsuming neighbor if it becomes nonmaximal.)

We now consider some properties of variable contraction.
Proposition 2. Variable contractions preserve consistency
and the singly connected and running intersection properties.
Thus, the new junction tree is valid for some distribution,
although perhaps not p: the potential property may be vio­
lated. Variable contraction is local and efficient: it requires
marginalizing a variable out of one cluster potential and one
separator potential, which in the Gaussian case can be accom­
plished in time using (11) and (12). Also, variable
contraction is a general method of "thinning" a junction tree:
Proposition 3. In combination with cloning, variable con­
traction can reduce the width of any junction tree.

The following proposition relates the original distribution and
the distribution resulting from a variable contraction:

Proposition 4. Let be the junction tree obtained from the
variable contraction of Definition 1. Then minimizes the
Kullback-Liebler divergence over all distributions
in which

Alternatively, the probability distribution represented by
has maximum likelihood (under the original junction tree's
distribution) over all distributions in which is conditionally
independent of g i v e n T h u s , we can consider each
variable contraction to be a maximum likelihood projection
that cuts edges between and c - s.

To reduce the width of a given junction tree, we should
choose the variable contraction that minimizes the approxi­
mation error, which we take to be the Kullback-Liebler di­
vergence from the original to the approximate distribution,

This approximation error can be computed effi­
ciently, as shown by the following result (cf. [Kjaerulff, 1993,
Theorem 11]):

Proposition 5. Let T be the junction tree obtained from the
variable contraction of Definition I. Then

(16)

To compute the conditional mutual information (16) we need
only the marginal . In a consistent junction tree, this
marginal is simply , and therefore the approximation er­
ror of a variable contraction can be computed locally. When

is a Gaussian distribution, the computation is espe­
cially efficient: its cost depends only the dimension of ui.

Proposition 6. Let c index a set of Gaussian random vari-

(17)

and are parameters of the potentials and so we
can simply extract from each the sub-blocks corresponding to
ui and compute the difference of their log determinants.

5 Thin junction tree filters for S L A M

We have now assembled most of the machinery required to
design a thin junction tree filter for the SLAM problem. Al l
that remains is the logic to decide into which clusters new po­
tentials are multiplied and also how variable contractions are
employed to thin the junction tree. There are many possibil­
ities; the method below presents a nice compromise between
simplicity and performance. We then describe a refinement
that can reduce the time complexity from linear to constant.

5.1 L inear- t ime approximate f i l tering
Recall from Section 3.1 that if the width of our junction tree
is k, then it wil l require space and message pass­
ing will take time. I n S L A M s o w e
can obtain a space f i l ter with a t i m e f i l ter opera­
tion by periodically thinning the junction tree so that its width
remains bounded by a constant

1162 ROBOTICS

We start with roll-up. When the robot state is marginal­
ized out, we must merge all of the clusters in which it resides.
In the worst case can reside in all of the clusters, in which
case our belief state wil l collapse to one large cluster. To pre­
vent this, we iteratively contract (choosing the contraction
that minimizes the error (17) each time) until it resides in only
one cluster c. Then, we perform the time update, which con­
sists of multiplying the motion potential
marginalizing out of multiplying the odometry potential

into and distributing evidence from
When multiplying in a landmark measurement potential

for a landmark that is currently in the model, we
use the method of Section 3.2, i.e., we push until it resides
in a cluster with (This may increase the sizes of some
clusters, but the subsequent contraction of in the next roll-
up ensures this increase in cluster size is temporary.) We then
multiply i n t o a n d distribute evidence from c.

If instead the landmark j has not previously been observed,
we must add the new variable to the model. If the smallest
cluster that contains (call it c) can admit another variable
without violating the width limit we add to c and multi­
ply into If not, then we clone c to obtain d, con­
tract xt until it resides only in d, and thin d via a sequence
of greedy optimal variable contractions. A cluster overlap
parameter governs the size to which d is thinned, and there­
fore how many variables reside in the separator s that joins
it to c (since in this case If is small, d wil l
admit more new landmark variables before another cloning
is required; the trade-off is that its separator s wil l shrink,
reducing the amount of information it can transmit.

5.2 Constant- t ime approximate f i l ter ing
The linear time complexity of the filter above arises mainly
because we pass messages to every cluster each time we dis­
tribute evidence from some cluster c. We can get a constant-
time filter operation by employing a lazy message passing
scheme, where we distribute evidence only to constantly
many nearby clusters; the approximation is that the marginals
of the remaining clusters wil l not be conditioned on the obser­
vation. This introduces minimal error when the observation is
uninformative about distant variables; this occurs, e.g., when
the robot is mapping new territory. Moreover, because we
are still updating the charge correctly, this approximation is
temporary: at any later time a full round of message passing
(taking linear time) wil l yield the same estimate we would
have obtained by passing all messages at every time step.

Alternatively, we can interpolate between the linear-time
update and this constant-time update by employing an adap­
tive message passing scheme in which messages are propa­
gated only as long as they induce significant changes in the
belief state. If we define "significant" sensibly, this scheme
wil l take constant time when mapping new territory; when
closing loops, it wil l take time linear in the length of the loop.

We measure the significance of a message over
the separator s by . the Kullback-Liebler diver­
gence from the new separator marginal to the original separa­
tor marginal. In the Gaussian case this is

where Importantly,
the significance of evidence propagated from a cluster c, to
another cluster c* (measured in this way) decreases with the
distance between them in the junction tree [Kjaerulff, 1993,
Theorem 13]. Thus, if a message was not significant for a
cluster, it need not continue the evidence distribution.

6 Experiments
Here we present a summary of our findings; the technical re­
port contains more detail and further experiments.

We compared TJTF, the Kalman filter, and FastSLAM on
large-scale SLAM simulations in which a robot moves around
in a square world that is populated with uniformly distributed
point-landmarks. Its motion and measurement models are all
subject to significant noise and are linearized using the un-
scented transformation. We used two types of trajectories: a
square loop (similar to that a robot mapping an indoor en­
vironment might travel) and a switchback trajectory (which
could be used to map a large open area). Noise and controls
were determined in advance so the robot followed the desired
path and each filter received identical observations.

Figure 4 shows two examples of our simulations. The
filters are evaluated by their computational cost (millions
of floating point operations), localization error (the distance
from the robot's position to the filter's estimate) and map er­
ror (the average distance from each landmark to the filter's
estimate). TJTF was run with the width limit k — 16, the
cluster overlap h — 4, and adaptive message passing with the
significance threshold set at 0.1 nats; FastSLAM was run with
100 particles, as recommended in [Montemerlo et a/., 2002].

We found that the estimation error of TJTF with maxi­
mum cluster sizes as small as 16 can be comparable with the
Kalman filter, and that it gets smaller as k increases. This
indicates that the edges removed by TJTF indeed carry little
information; it also suggests that the estimation error of TJTF
wil l be at least competitive with that of SEIF (an approximate
form of the Kalman filter) and less than that of the submap
approaches (which neglect long-distance correlations).

We also found that TJTF is good at closing loops; in Figure
4(b) we can see the localization and mapping error of TJTF
suddenly drop at t — 780, when the robot first reobserves its
starting point; also evident is a sudden increase in the compu­
tational cost: the filter is choosing to update the entire map in
linear time rather than using cheaper constant-time updates.
We found that FastSLAM had difficulty closing large loops
(notice its divergence in Figure 4(b)) and that its estimation
error in general was larger than that of TJTF.

Finally, using accurate counts of floating point operations,
we found that TJTF can be as fast as FastSLAM, and that it
becomes more efficient than the Kalman filter when the map
contains a few hundred or more landmarks.

7 Conclusion
We believe thin junction tree filters are a promising ap­
proximation technique for dynamic probabilistic inference.
First, they are flexible, in that they allow the practitioner to
trade computational complexity for approximation accuracy
by varying the width of the junction tree and the depth of

ROBOTICS 1163

Figure 4: In (a) and (c): the solid l ine is the actual robot path; the dashed line is the integrated odometry; the dash-dotted line is
the integrated control signal; circles are landmarks; dots are landmark observations (relative to the unknown actual viewpoint);
for clarity, only some of the 1000 landmarks are plotted. In (b) and (d) the floating point counts arc time-averaged for clarity.

evidence propagation. Second, the error of each local ap­
proximation can be computed exactly, g iv ing an important
indication of how trustworthy the approximate estimates aic.
Finally, the TJTF approximation is context sensitive in that it
is not chosen in advance; rather, the approximation is chosen
adaptively to minimize the approximation error.

When applied to the SLAM problem, TJTF performs com­
petitively wi th the exact filter, but wi th superior asymptotic-
space and time complexity. Interestingly, the approach pre­
sented here has significant connections to both the submap
approach and SEIF. First, l ike SK1F, TJTF cuts "weak" edges
from the graphical model to speed inference; however, in
TJTF we can use exact inference over this approximate model,
whereas SEIF must use approximate inference. Second, the
bel ief state of a TJTF has a natural interpretation as a coupled
set of local maps, just as in the submap approaches. In par­
ticular, each cluster of the junct ion tree can be viewed as a
submap. The TJTF formulation gives concrete semantics to
the relationships between the maps, including how they must
be updated, how consistency is maintained, and how the set
of local maps can be determined online to minimize the ap­
proximation error subject to a complexity constraint.

Acknowledgements
I gratefully acknowledge Intel Corporation for supporting this
research via an Intel Research Internship, as wel l as Bar­
bara Engelhardt, Kevin Murphy, Stuart Russell, and Sekhar
Tatikonda for valuable comments on a draft of this paper.

References
[Boycn and Roller, 1998] X. Boyen and D. Koller. Tractable infer­

ence for complex stochastic processes. In Proceedings of the 14th
Annual Conference on Uncertainty in AI, pages 33-42, 1998.

[Boyen and Koller, 1999] X. Boyen and D. Koller. Exploiting the
architecture of dynamic systems. In Proceedings of the 16th
National Conference on Artificial Intelligence (AAAI-99), pages
313-320, 1999.

[Cowell et al., 1999] R. Cowell, P. Dawid, S. Lauritzcn, and
D. Spiegelhaltcr. Probabilistic Networks and Expert Systems.
Springer, New York, NY, 1999.

[Draper, 1995] D. Draper. Clustering without (thinking about) tri-
angulation. In Uncertainty in Artificial Intelligence: Proceedings
of the Eleventh Conference (UAI-95), pages 125-133, 1995.

[Hebert et al, 1996] P. Hebert, S. Betgc-Brezetz, and R. Chatila.
Probabilistic map learning: Necessity and difficulties. In
L. Dorst, M. van Lambalgcn, and F. Voorbraak, editors, Reason­
ing with Uncertainty in Robotics, volume 1093 of Lecture Notes
in Computer Science. Springer, 1996.

[KjacruliT, 1993] U. Kjaerulff. Approximation of bayesian networks
through edge removals. Dept. of Mathematics and Computer Sci­
ence Research Report 1R-93-2007, Aalborg University, 1993.

[Montemerlo et al., 2002] M. Montemerlo, S. Thrun, D. Koller, and
B. Wegbreit. FastSLAM: A factored solution to the simultaneous
localization and mapping problem. In Proceedings of the Eigh­
teenth National Conference on Artificial Intelligence (AAAI-02),
pages 593-598,2002.

[Paskin, 2002] M. Paskin. Thin junction tree filters for simultane­
ous localization and mapping. Technical Report CSD-02-1198,
University of California, Berkeley, September 2002.

[Smith etal., 1990] R. C. Smith, M. Self, and P. Cheeseman. Es­
timating uncertain spatial relationships in robotics. In I. J. Cox
and G. T. Wilfong, editors, Autonomous Robot Vehicles, pages
167-193. Springer-Verlag, 1990.

[Speed and Kiiveri, 1986] T. P. Speed and H. T. Kiiveri. Gaus­
sian markov distributions over finite graphs. Annals of Statistics,
14(1):138 150, March 1986.

[Thrun etal, 2002] S. Thrun, D. Koller, Z. Ghahmarani,
H. Durrant-Whyte, and A. Ng. Simultaneous localization
and mapping with sparse extended information filters: Theory
and initial results. Technical Report CMU-CS-02-112, Carnegie
Mellon University, September 2002.

[Thrun, 2002] S. Thrun. Robotic mapping: A survey. In G. Lakc-
meycr and B. Nebel, editors, Exploring Artificial Intelligence in
the New Millenium. Morgan Kaufmann, 2002.

1164 ROBOTICS

