
Phase Transitions of Bounded Satisfiability Problems* 

1 Introduction and Summary of Results 
A phase transition of a "system" can be described as an abrupt 
change in the behavior of the system that occurs when a cer­
tain "control parameter" is at or near a certain critical value. 
Traditionally, phase transitions have been studied by physi­
cists working in the area of statistical mechanics. During the 
past decade, however, computer scientists have carried out an 
intensive study of phase transitions of algorithmic problems, 
first of NP-complete decision problems and, more recently, 
of decision problems that are complete for higher compu­
tational complexity classes. These investigations have shed 
new light on the "structure" of presumably intractable deci­
sion problems by examining them from a perspective that had 
been hitherto unexplored in computer science; moreover, for 
certain fundamental algorithmic problems, the location of the 
phase transition has been correlated to the peak average cost 
of natural algorithms for solving these problems. 

* Research of the authors was partially supported by NSF Grant 
No. IIS-9907419 

The Boolean satisfiability problems 3, con­
stitute the most thoroughly investigated collection of NP-
complete problems from the perspective of phase transitions. 
An instance of is a formula; the "control param­
eter" of such a formula is the ratio of the number of clauses 
over the number of variables occurring in the formula. Each 
fixed value r of this ratio gives rise to the family of probabil­
ity spaces 1, where is the collection 
of all kCNF-formulas with clauses generated by selecting 
k variables from variables without replacement and then 
negating each variable with probability 1/2. Franco and Paul 
[Franco and Paul, 1983] were the first to focus on this fixed 
clauses-to-variables ratio model and to initiate a study of the 
asymptotic behavior of the probability that a random 
formula in is satisfiable. During the past decade, 
much of the work in this area has been motivated from the 
conjecture of Chvatal and Reed [Chvatal and Reed, 1992] to 
the effect that, for every there is a positive real number 
rk such that if then whereas 
if then lim   

The above conjecture asserts that, for every 3, a 
phase transition occurs in the probability of a ran­
dom formula in being satisfiable, as In  
spite of intensive efforts by several researchers, this conjec­
ture has not been settled thus far. Nonetheless, progress to­
ward establishing this conjecture has been made in two dif­
ferent fronts. On the experimental front, large-scale experi­
ments with random Boolean formulas have provided evidence 
for the existence of a critical ratio and have yielded esti­
mates of its actual value. In particular, experiments by Sel-
man, Mitchell and Levesque [Selman et al., 1996] with ran­
dom 3CNF-formulas and analysis of these experiments by 
Kirkpatrick and Selman [Kirkpatrick and Selman, 1994] in­
dicate that is about 4.2. On the analytical front, there 
has been continuous progress toward establishing progres­
sively tighter upper and lower bounds for the value of r3. 
The best analytical results obtained to date assert that if r3  
exists, then 3.42 4.507 [Kaporis et al., 2002; 
Dubois et al, 2000]. The experiments carried out by Sel­
man, Mitchell and Levesque [Selman et al, 1996] for random 
3CNF-formulas also revealed that the critical ratio 4.2 ap­
pears to be the location at which the average cost of the Davis-
Putnam-Logemann-Loveland (DPLL) procedure for Boolean 
satisfiability peaks. 
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Abstract 
We investigate phase transitions for the family of 
bounded satisfiability problems 3SAT(b), recently 
introduced by Zhang, that ask: given a 3CNF-
formula, is there a truth assignment that violates no 
more than of its clauses. Zhang's results were 
experimental and for a fixed number of variables 
(n = 25), and suggested that the locations of the 
phase transitions for 3SAT(b) are separated and 
move significantly as b increases. Analysis of these 
locations was posed as an open question. 
We analytically show that the phase transitions of 
all 3SAT(6) problems must occur within a narrow 
region, regardless of how large the value of b is. 
Moreover, our experiments reveal that the phase 
transitions for these problems occur in a remarkable 
way. Specifically, unlike 3SAT, the probability 
curves for 3SAT(6) do not have a quasi-common 
intersection point about which they rotate as they 
become steeper with increasing n. Instead, they 
move rapidly to the left toward the narrow region 
that the analysis predicts. 



Many fundamental algorithmic problems are optimization 
problems and not mere decision problems. In particular, if 
a Boolean formula happens to be over-constrained and, thus, 
unsatisfiable, it is natural to ask for the maximum number 
of clauses in the formula that can be simultaneously satis­
fied. By focusing on 3CNF-formulas, we obtain the optimiza­
tion problem M A X 3SAT: given a 3CNF-formula find the 
maximum number of clauses of that can be simultaneously 
satisfied. M A X 3SAT is a prototypical constraint optimiza­
tion problem that is known to play a prominent role in the 
study of the approximability properties of NP-optimization 
problems. Indeed, as shown by Papadimitriou and Yan-
nakakis [Papadimitriou and Yannakakis, 1991], M A X SAT is 
a M A X SNP-complete problem; this means that M A X SAT 
is a constant-approximable optimization problem and that ev­
ery NP-optimization problem in the class M A X SNP can be 
reduced to it via an approximation-preserving polynomial-
time reduction (see also [Papadimitriou, 1994]). 

Its importance in complexity and approximability notwith­
standing, M A X 3SAT had not been investigated from the 
perspective of phase transitions until recently. Zhang [Zhang, 
2001] was the first to investigate phase transitions for M A X 
3SAT by carrying out an initial set of experiments for the 
family of bounded satisfiability problems 3SAT(6), where b 
is a non-negative integer. An instance of 3SAT(b) is a 3CNF-
formula cp and the question is: does there exist a truth assign­
ment that violates no more than b clauses of Equivalently, 
3SAT(6) asks whether the optimum value of M A X SAT on 
an instance is at least m - B, where m is the number of 
clauses of Thus, each 3SAT(b) is a decision problem ob­
tained from M A X SAT by imposing a "quality bound" on 
the optimum value. The control parameter of each 3SAT(6) 
is the ratio of clauses to variables, that is, the same control 
parameter as the one used for 3SAT. 

Zhang [Zhang, 2001] explored phase transitions for the 
bounded satisfiability problems 3SAT(6) by running exper­
iments on random 3CNF-formulas with n = 25 variables and 
for b = 5,10,15,20. His findings suggest that there is a se­
ries of separated phase transitions corresponding to different 
quality bounds. The location of each phase transition appears 
to increase with b (see Figure 7); moreover, the average cost 
for solving the optimization problem M A X SAT appears to 
be the envelope of the peak average cost for solving the deci­
sion problems 3SAT(b), as b increases. Zhang [Zhang, 2001] 
did not report on the asymptotic behavior of 3SAT(b) as the 
number of variables increases, because he ran experiments 
for just a single value (n = 25) of the number of variables. 
He posed the analysis of phase transitions for 3SAT(b) as an 
open problem and, in particular, raised the question of finding 
the exact location of the phase transitions for these decision 
problems. 

In this paper, we report on a systematic investigation of 
phase transitions for the family of bounded satisfiability prob­
lems 3SAT(6). Our investigation has produced both ana­
lytical and experimental results that yield a more complete 
and, at the same time, rather surprising picture of these phase 
transitions. As stated above, Zhang's [Zhang, 2001] initial 
experiments suggest that the location of the phase transition 
for each 3SAT(b) increases with b. Here, using the first-

moment method, we show analytically that the phase tran­
sitions for 3SAT(b) must occur (if they occur at all) within 
a rather narrow region, regardless of the value of b. More­
over, the same behavior is exhibited by the families kSAT(b) 
of decision problems underlying the optimization problems 
M A X kSAT, k 3. In particular, the locations of the 
phase transitions for 3SAT(b) are bounded from above by 
1/(3 - lg(7)) 5.19 and from below by the greatest known 
lower bound 3.42 for the location of the phase transition for 
3S AT. At the experimental front, we investigated the asymp­
totic behavior of 3SAT(b) for the values b = 3, 4 and 5 by 
running experiments for several different values of the num­
ber n of variables of random 3CNF-formulas (n = 10, 15, 
20, 25, 30, 35). Our most striking experimental finding is the 
discovery that, as n increases, the phase transition for each 
3SAT(b) emerges in a manner that is qualitatively different 
from that for 3SAT, as we describe next. 

In the case of 3SAT, the experiments in [Selman et a/., 
1996] revealed that the family of curves for the probability of 
satisfiability of a random 3CNF-formula (one curve for each 
number n of variables) has the property that the curves be­
come progressively steeper and every two of them intersect 
at a single point whose abscissa is near the location of the 
phase transition for 3SAT (see Figure 1). In contrast, our ex­
periments reveal that, for each bounded satisfiability problem 
3SAT(b), the family of curves for the probability of a "yes" 
answer of a random 3CNF-formula (one curve for each num­
ber n of variables) become progressively steeper but they do 
not intersect; instead, they are separated by a distance that 
is getting smaller as n increases. Figures 2, 3, and 4 depict 
these findings for 3SAT(3), 3SAT(4) and 3SAT(5), respec­
tively. This is a qualitatively different pattern of emergence 
of a phase transition that does not seem to have been encoun­
tered in earlier investigations of phase transitions of other NP-
complete problems in which the probability curves appear to 
have a quasi-common intersection point. 

2 Bounded Satisfiability Problems 
For every positive integer k 3, M A X kSAT is the follow­
ing optimization problem: given a kCNF-formula find the 
maximum number of simultaneously satisfied clauses of 
The study of phase transitions for an optimization problem 
begins by focusing on one or more decision problems that 
underlie that optimization problem. The most natural way to 
derive a decision problem from an optimization problem is to 
consider as input both an instance of the optimization prob­
lem and an arbitrary quality bound, and to ask whether the 
optimum value on this instance is bigger (or smaller) than the 
given quality bound. In the case of M A X kSAT, this gives 
rise to the following NP-complete decision problem: given a 
kCNF-formula and an integer c, is there a truth assignment 
to the variables of that satisfies at least c clauses of It 
is also possible to derive a family of decision problems that 
underlie M A X kSAT and are such that the inputs to each of 
them are kCNF-formulas only. For each non-negative integer 
6, let kS AT(b) be the following bounded satisfiability prob­
lem: given a kCNF-formula is there a truth assignment 
to the variables of that violates no more than b clauses of 
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(p? Clearly, A;SAT(0) is kSAT itself; moreover, it is easy 
to show that every bounded satisfiability problem A:SAT(6), 
where A; 3 and b 1, is NP-complete. Since the input to 
kSAT(b) is a kCNF-formula, phase transitions for the family 
kSAT(6) can be studied using the ratio of clauses to variables 
as the control parameter, that is, the same control parameter 
as the one used in the study of phase transitions for kS AT. 

There have been earlier investigations of phase transi­
tions for other fundamental optimization problems, includ­
ing the T R A V E L I N G S A L E S M A N PROBLEM and Walsh, 
1996b] and N U M B E R PARTIT IONING and Walsh, 
1996a]. It should be noted, however, that for each of these 
two optimization problems a single decision problem was 
considered (instead of a family of decision problems) because 
the quality bound was part of the input to the decision prob­
lem. Moreover, the control parameter for these problems was 
chosen in such a way that it encoded the quality bound in 
some direct or indirect way, and this choice was criticized 
in subsequent investigations [Slaney and Thiebaux, 1998]. 
Clearly, this criticism does not apply to the bounded satis­
fiability problems kSAT(fc). 

For every integers k 3, n 1, and b 0, let 
be the probability that a random formula in the space 

is a "yes" instance of kSAT(b), that is, there is a 
truth assignment that violates no more than b clauses of 
We now have all the notation in place to formulate the follow­
ing conjecture concerning phase transitions for the bounded 
satisfiability problems kSAT(b). 

Conjecture 2.1: For every integer A: 3 and every integer 
b 0, there is a positive real number r k,b such that 

Note that Chvatal and Reed's conjecture [Chvatal and 
Reed, 1992] concerning phase transitions for kSAT, k 3, 
is the special case of Conjecture 2.1 in which 6 = 0. As men­
tioned in Section 1, Zhang iZhang, 2001] raised the prob­
lem of finding the exact location of the phase transition for 
3SAT(6), which, in terms of the notation introduced here, 
amounts to first establishing Conjecture 2.1 for A: = 3 and 
then determining the critical ratio for each 6. Although 
far from solving these problems, the next result yields ana­
lytical upper bounds for the values of in particular, it 
demonstrates that for each A: 3, all critical ratios are 
bounded by a quantity that depends only on k. 

Proposition 2.2: Fix two integers k 3 and b 0. 

Proof: If X is a random variable taking non-negative values 
and having finite expectation E{X), then Markov's inequal­
ity asserts that This inequality has been 
used in the past to obtain a coarse upper bound for the criti­
cal ratio for the phase transition of Here, we will 
apply the same method to obtain upper bounds for the criti­
cal ratios for the phase transitions of In this 

case, however, bounding the expectation of a suitable random 
variable X is not as trivial as it was for kSAT, but still quite 
straightforward. 

Let be a random variable on such that if 
i s a formula in t h e n i s the number o f 

truth assignments on n variables that violate no more than b 
clauses of Clearly, thus our 
goal now is to bound the expectation E(X^r,b). 

For every truth assignment a on n variables, let be the 
Bernoulli random variable on such t h a t = 1, 
if Q violates no more than b clauses of and = 0, 
otherwise. It is easy to see that the number of formulas 
in for which a violates no more than b clauses is 

which implies that 

Since the linearity of expectation implies 
that Thus, 
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Thus, if then lim = 0, re­
gardless of the value of b. Now an application of Markov's 
inequality to gives the result.  

Concerning lower bounds for r*^, it is obvious that if r 
is a ratio such that almost all formulas are satisfiable, 
then = 1, regardless of the value of b. 
Consequently, if r* is the critical ratio for /cS AT, then  
r*,6, regardless of the value of b. Of course, this assumes 
that the critical ratios r* and r k,b actually exist. Until this is 
established, we can use the analytically derived lower bounds 
for r k as lower bounds for every In particular, the best 
currently known such lower bound for r3 is 3.42 [Kaporis et 
al, 2002]. By combining these remarks with Proposition 2.2, 
we obtain the following bounds for the phase transitions of 
the bounded satisfiability problems 3SAT(6). 



3 Experimental Results 
We ran experiments for random 3CNF-formulas drawn from 
n = 10, 15, 20, 25, 30 and 35 variable spaces. We imple­
mented a suitably modified version of the Davis-Logemann-
Loveland-Putnam (DPLL) procedure and tested each random 
formula drawn to determine whether it is a "yes" instance of 
the bounded satisfiability problems 3SAT(b), for b = 3, 4 
and 5. For each (n, b)-pair, probability curves were deter­
mined by recording the average number of "yes" instances in 
samples of 1200 formulas, one sample for each possible ratio 
of clauses to variables up to a ratio of 15. 

The probability curves for 3SAT(6) with b = 3, 4 and 5 
are depicted in Figures 2, 3 and 4, respectively. 

In these figures, we see that, as r increases, the probability 
curves start out in a region where the probability is 1 or close 
to 1 and then they transition to a region where the probability 
is 0 or close to 0. To make the terminology more precise, let 
us define the location of the transition for the probability of 
3S AT(b) to be the ratio r at which the probability is 0.5, and 
the width of the transition for the probability of 3SAT(6) to be 
the difference in the r values between the ratios at which the 
probability falls from 0.9 to 0.1. As n increases, the probabil­
ity curves move from right to left; moreover, both the location 
and the width of the transition appear to change with different 
values of n. For each fixed 6, the width becomes smaller with 
increasing n just as is the case for the probability curves for 
3SAT in Figure 1; the location, however, moves dramatically 
to the left in sharp contrast with the behavior for 3SAT, where 
the location moves very slightly and converges to a value in 
the transition region where all the curves appear to intersect 
at one point. The magnitude of the leftward movement of 
the transition location with increasing n appears to become 
greater with increasing values of b. Thus, the phase transi­
tions for the bounded satisfiability problems 3SAT(6) emerge 
in a pattern that is novel and qualitatively different from that 
of the phase transitions for other NP-complete problems. 

We also recorded the average cost of the modified DPLL-
procedure for solving 3SAT(6), where b = 3, 4, 5. Each of 
these problems is much harder on average than 3SAT; more­
over, these problems are getting harder on average as b in­
creases. As a matter of fact, the experiments for b = 5 and 
for n = 35 took several weeks to complete. Figure 5 depicts 
the average cost of solving 3SAT, while Figures 6 depicts the 
average cost of solving 3S AT(5). 

In Figure 6, the performance curves for 3SAT(5) move 
from lower to higher with increasing n and, as has been ob­
served with 3SAT, the peaks in cost appear to correspond to 
the location of the transitions. The peaks move from right to 
left in synchrony with the movement of the location of the 
transition for 3SAT(6); this movement is more dramatic than 
in the case of 3SAT. 

4 Finite Size Scaling 
The locations of the transition in the probability curves for 
3SAT(6) appear to approach a limiting critical ratio r 3,b that 
is within the analytically derived upper and lower bounds in 
Corollary 2.3. Nonetheless, it is not clear what the critical 
ratio r3,b actually is, nor can it be estimated by visual inspec-

Figure 1: The probability curves for bounded satisfiability with 
b — 0. There is a curve for each of six different values of n. They 
show the well known 3SAT behavior. As n increases the transition 
regions of the curves become steeper and appear to have a common 
intersection point about which they rotate. The common hypothesis 
is that in the limit the curves approach a step function through this 
point and its ratio is the critical phase transition value for 3SAT, 
approximately 4.2. 

Figure 2: These arc the probability curves for 3S AT(3). There is a 
curve for each of the same n values as in Figure 1. As 71 increases, 
the transition regions appear to steepen and distinctly move to the 
left. The steepening is similar to 3SAT behavior but here there is 
no apparent common rotation point. The transitions appear to be ap­
proaching a step function in the limit but it is not possible to visually 
determine the critical ratio. We used a form of finite size scaling to 
estimate it as approximately 4.4 
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Figure 3: These are the probability curves for 3S AT(4). There is a 
curve for each of the same n values as in the previous figures. Again, 
as n increases, the transition regions appear to steepen and distinctly 
move to the left. The steepening is similar to 3SAT behavior but here 
there is no apparent common rotation point. The transitions appear 
to be approaching a step function in the limit but it is not possible 
to visually determine the critical ratio. We used a form of finite size 
scaling to estimate it as approximately 4.5 

Figure 5: This set of curves plots the well known performance be­
havior of the DPLL procedure for 3SAT. This figure is here for com­
parison with the following figure for 3S AT(5). 

Figure 4: These are the probability curves for 3S AT(5). There is a 
curve for each of the same n values as in the previous figures. Again, 
as n increases, the transition regions appear to steepen and distinctly 
move to the left. The steepening is similar to 3SAT behavior but here 
there is no apparent common rotation point. The transitions appear 
to be approaching a step function in the limit but it is not possible 
to visually determine the critical ratio. We used a form of finite size 
scaling to estimate it as approximately 4.8. Note the analytical upper 
bound is approximately 5.19. 

Figure 6: This set of curves plots the algorithmic costs for 
3S AT(5). The behavior is similar to 3SAT in that cost increases with 
increasing n; moreover, cost exhibits the so-called "easy/hard/easy" 
pattern as the ratio increases. As would be expected the costs for 
bounded satisfiability arc much higher than for satisfiability. Note 
that the movement of the peak locations, as n increases, is quite 
marked and corresponds to the leftward movement of the transition 
regions in the probability curves. 
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3SAT(b) for 25 Varlables 
b= 1,2, 3. 4 and 5 Table 1: Finite-size Scaling Results 

5 10 
Ratio of Number of Clauses to Number of Variables 

Figure 7: This figure shows the apparently separate "phase transi­
tions" for different values of b when looking at probability curves for 
a fixed n, in this case 25 variables. The transition region moves from 
left to right with increasing b. This type of behavior was previously 
reported for 6 = 5,10,15, and 20 [Zhang, 2001]. 

tion since no two probability curves for 3S AT(b) intersect. A 
finite-size scaling analysis of the data, assuming a power law 
of the form allowed us to obtain estimates for 
both the critical ratio and for the exponent where 
b = 3,4 and 5. 

In [Kirkpatrick and Selman, 1994], an estimate for the 
value of the critical ratio rK was obtained by visually estimat­
ing the point at which the probability curves for kSAT appear 
to intersect, and then regression techniques were applied to 
determine the best exponent V k in the power law for kSAT. 
This cannot be done with the bounded satisfiability problems 
3SAT(b), since the probability curves do not intersect, but 
appear to be moving to the left as the number n of variables 
increases. Nevertheless the finite-size scaling hypothesis can 
still be tested with a more elaborate procedure. Our goal was 
to test whether it is possible find values for r3,b and v3,b such 
that when the ratio r is rescaled with the above power law, the 
probability curves for the different values n of the number of 
variables collapse to a single curve. Using routines for in­
terpolation and regression from Matlab, we stepped through 
small increments of putative r 3,b values and measured how 
well the curves collapsed to a single curve by calculating the 
sum of their pairwise squared differences when accordingly 
transformed. The estimated r3,b was taken to be the value 
that minimized this difference measure. We found this tech­
nique to be well behaved, in that it exhibited a clear min­
imum and gave much more precision than visually judging 
how well the curves appeared to collapse to a single curve. 
To further validate this technique, we checked it on the phase 
transition of 2SAT, which has been analytically determined 
to occur at the critical ratio r2 = 1 [Chvdtal and Reed, 1992; 
Fernandez de la Vega, 1992; Goerdt, 1996]. The agreement 
was very good, namely, the estimate for r2 was 0.98. 

b r 3 ,b V3,b 
3 
4 
5 

4.40+ 
4.48+ 
4.84 

0.64+ 
0.68+ 
0.77 

The results of the finite-size scaling analysis for 3SAT(b), 
where b = 3, 4 and 5, are shown in Table 1. Note that these 
results are consistent with the analytical upper and lower 
bounds for r 3,b in Corollary 2.3, that the r b,k are in the re­
gion between r k for k-SAT and the Markov upper bound for 
k-SAT. This consistency is the most that can be reasonably 
concluded from the finite-size scaling analysis. The tech­
nique provides a more principled way to make the estimates 
than eyeballing, but no great accuracy should be attributed to 
the estimates in spite of their apparent precision. Although 
the finite-size scaling results suggest that the locations of the 
phase transitions of 3SAT(b) are different for different 6's, it 
may still be the case that they all coincide with the location 
for 3SAT. 

5 Concluding Remarks 
The results reported here advance the understanding of the 
phase transitions for the family of bounded satisfiability prob­
lems 3SAT(b), introduced by Zhang [Zhang, 2001 J. 

Our main analytical finding is that the phase transitions of 
all 3SAT(6) problems must occur within a narrow region, re­
gardless of how large the value of b is. Moreover, our exper­
iments revealed that the phase transitions for these problems 
occur in a remarkable way. Specifically, unlike 3SAT, the 
probability curves for 3SAT(6) do not have a quasi-common 
intersection point about which they rotate as they become 
steeper with increasing n. Instead, they move rapidly to the 
left toward the narrow region that the analysis predicts. 

Identifying the exact locations of the phase transitions for 
3SAT(b) remains an open problem, which is at least as hard 
as identifying the location of the phase transition for 3SAT. 
Equally hard appears to be the problem of analytically es­
tablishing whether these locations are separated or coincide. 
Nonetheless, it may be possible to analytically obtain tighter 
bounds for these locations using some of the sophisticated 
techniques that have been quite successful in finding tighter 
bounds for the phase transition of 3SAT. 
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