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Abstract 
We empirically study phase transitions of the asym­
metric Traveling Salesman. Using random instances 
of up to 1,500 cities, we show that many properties 
of the problem, including the backbone and optimal 
tour cost, experience sharp transitions as the preci­
sion of intercity distances increases across a critical 
value. We also show that the average computational 
cost of the well-known branch-and-bound subtour 
elimination algorithm for the problem also exhibits 
a threshold behavior, transitioning from easy to diffi­
cult as the distance precision increases. These results 
provide strong positive evidences to a decade-long 
open question regarding the existence of phase tran­
sitions of the Traveling Salesman. 

1 Introduction 
Phase transition refers to such a phenomenon of a system in 
which some global properties change rapidly and dramatically 
when a control parameter crosses a critical value. A sim­
ple example of phase transition is water changing from the 
liquid phase to the solid phase when the temperature drops 
below the freezing point. Phase transitions of combinato­
rial problems and threshold behavior of combinatorial algo­
rithms have drawn much attention in recent years [12]. It 
has been shown that many combinatorial decision problems 
have phase transitions, such as Boolean satisfiability [7; 21; 
22], graph coloring [7] and number partitioning [4]. 

Another useful concept for characterizing combinatorial 
problems is that of backbones [17; 22]. A backbone variable 
refers to such a variable that has a fixed value in all solutions 
of a problem. Al l such backbone variables are collectively re­
ferred to as the backbone of the problem. The fraction of back­
bone, the percentage of variables in the backbone, reflects the 
constrainedness of the problem and directly affects an algo­
rithm searching for a solution. The larger the backbone, the 
more tightly constrained the problem becomes. 
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In contrast to numerous phase-transition studies on decision 
problems, the research on the phase transitions and backbones 
of optimization problems is limited. An early work on the 
symmetric Traveling Salesman Problem, which is an optimiza­
tion problem, introduced the concept of backbones and left an 
open question of whether there exists a phase transition of the 
TSP [17]. However, this question has not be addressed since 
1985. One of the most rigorous phase-transition results was 
obtained on number partitioning [4], an optimization problem. 
However, the phase transition analyzed was the existence of a 
perfect partition of a set of integers, which is in essence a de­
cision problem. In our early work, we studied the relationship 
between the phase transitions of satisfiability, a decision prob­
lem, and maximum satisfiability, an optimization problem [24]. 
In addition, the relationship between backbones and average-
case algorithmic complexity has also been considered [23]. 

In this paper, we study the phase transitions of the asym­
metric Traveling Salesman Problem (TSP), which has many 
real-world applications such as scheduling and routing. The 
TSP [13; 18] is an architypical combinatorial optimization 
problem, and also very often a touchstone for combinatorial 
algorithms. In this paper, we consider the asymmetric TSP 
(ATSP), where the distance from one city to another may not 
be necessarily the same as the distance in the reverse direc­
tion. The ATSP is more general and difficult than the symmet­
ric TSP (STSP). Our results provide strong positive evidences 
to the long-standing open question of [ 17] using the more gen­
eral form of the problem. Another reason that we choose the 
ATSP rather than the symmetric TSP is that many properties of 
the assignment problem [19], a problem closely related to the 
ATSP, are known (Section 3.2) and useful to our analysis. 

Specifically, using random problem instances of up to 1,500 
cities, we empirically reveal that the average optimal tour 
length, the accuracy of the best cost function (the assignment 
problem), and the backbone of the ATSP undergo sharp phase 
transitions. The control parameter is the precision of inter­
city distances which is typically represented by the number 
of digits for the distances. Note that these results are algo­
rithm independent and properties of the problem. Further­
more, we show that the average computational cost of the well-
known branch-and-bound subtour elimination algorithm [1 ; 
3] for the ATSP exhibits a threshold behavior, in which the 
computational cost grows abruptly and dramatically as the dis­
tance precision increases. 

Two related results are worth mentioning. The research in 
[26] revealed that the average complexity of the subtour elim-
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ination algorithm for the ATSP is controlled by the number of 
distinct intercity distances. We will further extend this result in 
Section 5. However, these results are algorithm specific, which 
may not necessarily reflect intrinsic features of the underly­
ing problem. The research in [11] studied the decision version 
of the symmetric TSP. Specifically, it analyzed the probabil­
ity that a tour of length less than a specific value exists for a 
random symmetric euclidean TSP, showing that the probabil­
ity has a one-to-zero phase transition as the length of the tar­
geting tour increases. Note that the phase-transition result in 
[ l l ] does not address the open question of [ 17] which is on the 
optimization version of the problem. 

2 The Problem and Algorithms 
Given n cities and a matrix D = (dlJ) that defines the dis­
tances or costs of pairs of cities, the Traveling Salesman Prob­
lem (TSP) is to find a minimum-cost complete tour visiting 
each city once. When the cost matrix is asymmetric, i.e., dij 
is not necessarily equal to d j,i, the problem is the asymmetric 
TSP (ATSP), which is more'difficult than the STSP, for both 
optimization and approximation [14]. 

The branch-and-bound (BnB) subtour elimination algo­
rithm [1 ; 3] solves the ATSP using the assignment problem 
(AP) as a lower-bound cost function. The AP, which can be 
solved in 0(n3), is to assign to each city i another city j with 
cost equal to distance d i,j, so that the total cost of all such as­
signments is minimized [19]. If the AP solution happens to be 
a complete tour, it is also an ATSP solution. 

The BnB search takes the ATSP as the root of the state space 
and solves the AP to the root node. If the AP solution is not 
a complete tour, decompose it into subproblems by selecting 
a subtour from the AP solution and generate subproblems by 
excluding some edges in the subtour to eliminate the subtour. 
We used the Carpaneto-Toth subtour-elimination heuristic [6] 
in our implementation, which generates no duplicate subprob-
lem, so that the search space is a tree. Next, select as the current 
problem a new subproblem that has been generated but not yet 
expanded. This process continues until there is no unexpanded 
problem, or all unexpanded problems have costs greater than 
or equal to the cost of the best complete tour found so far. 

Our algorithm is, in principle, the same as that of [5], which 
is probably the best known complete algorithm for the ATSP. 
The main difference between the two is that we use depth-first 
branch-and-bound (DFBnB), due to its low space requirement, 
while [5] used best-first search. We further extended our DF­
BnB algorithm to finding all optimal solutions and backbones. 

3 Previous, Related Results 
Two previous lines of work influenced this research and helped 
reveal the properties of the ATSP. 

3.1 Phase transit ions in tree search 
To capture the tree search of the DFBnB algorithm for the 
ATSP, we first introduce an abstract tree model. An incremen­
tal tree [15; 20; 25], T(m, d), is a tree with depth dy and inde­
pendent and identically distributed (i.i.d.) random branching 
factors with mean m. Edges are assigned costs that are finite 
and nonnegative i.i.d. variables. The cost of a node is the sum 
of the edge costs along the path from the root to that node. An 
edge cost is nothing but the difference between a node cost and 

the cost of its parent. An optimal goal is a node of minimum 
cost at depth The overall goal is to find an optimal goal node. 

Let be the probability of a node having the same cost 
as its parent. The expected number of child nodes of a node 
that have the same cost as their parent is mpo- The following 
results have been proven [15; 20; 25]. Let be the expected 
optimal goal cost of T(m,d) with m 1. Let NBFS AND 
NDFS Be the expected numbers of nodes expanded by best-
first search and DFBnB, respectively. 
Q1 and NBFS = NDFS — almost surely when mpo < 
1, where a1 and a2 are constants; (2) 
and = a n d NDFS = a l m o s t surely when 

= 1; (3) C* remains bounded by a constant and = 
and NDFS = almost surely when  

The above results mean that the cost of an optimal goal node 
almost surely undergoes a phase transition from a linear func­
tion of depth d to a constant when increases beyond one. 
Meanwhile, the expected complexity of best-first search and 
DFBnB changes dramatically from exponential to polynomial 
in d as mpo is reduced below one. 

3.2 Relationship between AP and ATSP 
The assignment problem (AP) cost function and its relationship 
with the ATSP have been a research interest for a long time [8; 
9; 10; 16]. The relationship between the AP cost, AP(D), 
and the ATSP cost, ATSP(D), has remarkably different char­
acteristics under different distance distributions of a random 
matrix D. The AP(D) and ATSP{D) can be the same with 
a high probability, or they can differ from each other, with a 
high probability, by a function of n. If the expected number 
of zeros in a row of D approaches infinity when 
AP(D) = ATSP{D) with a probability tending to one [9]. 
However, if the distances are uniform over 
AP(D) = ATSP(D) with a probability going to zero, where 

grows to infinity with n [9]. Indeed, when the entities of 
D are uniform over [0,1], E(ATSP(D) - AP(D)) 
where Co is a positive constant [10]. 

4 Phase Transitions of the ATSP 
The results in the previous section indicate that the quality of 
the AP function varies significantly, depending on the under­
lying distance distribution. Precisely, the difference between 
the AP cost, AP(D), and the ATSP cost, ATSP(D) has two 
phases, controlled by the number of zero distances in the dis­
tance matrix D. In one phase, the difference is zero with high 
probability, while in the other phase, the expectation of the dif­
ference is a function of the problem size n. 

How does the difference between ATSP(D) and AP(D) 
change phases? Does it have a sharp phase transition, or does 
it follow a slow process? Do other properties of the ATSP, such 
as the backbone, also have phase transitions? 

The two-phase result on the accuracy of the AP cost func­
tion discussed in Section 3.2 is in principle consistent with 
the phase-transition result of incremental random trees in Sec­
tion 3.1. The root of the search tree has a cost equal to the 
AP cost AP(D) to the problem and an optimal goal node has 
the ATSP tour cost ATSP{D). If we subtract the AP cost 
to the root from every node in the ATSP search tree, the root 
node has cost zero and an optimal goal node has cost equal to 
ATSP(D) - AP(D). When there are a large number of zero 
distances in D, the AP cost of a child node in a search tree is 
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more likely to be the same as the AP cost of its parent, since 
AP will tend to use the zero distances. Therefore, it is expected 
that more nodes in the search tree will have more than one child 
node having the same cost as their parents. In fact, the concept 
of zero distances can be extended to minimal-cost distances. 
If the cost of the minimal distance is known, we can simply 
subtract it from every distance without affecting the accuracy 
of the AP function. 

4.1 The control parameter 

Furthermore, the concept and role of zero and minimal dis­
tances can be extended to that of equal distances. The AP to a 
child node is obtained by excluding one arc, and possibly in­
cluding some arcs, of a subtour of the AP solution to the parent 
node. With this new restriction, the child AP is then computed 
by constructing a new augmenting path from the starting point 
to the end point of the excluded arc [19]. The child and parent 
AP solutions usually differ by only a relatively small number 
of arcs. In other words, the child AP solution is derived by 
replacing some arcs in the parent AP solution. If the numbers 
of distances of equal values are large, it is more likely that the 
child AP cost is equal to the parent AP cost. Conversely, when 
the number of distinct distances is large, it is unlikely the costs 
of two APs wil l be the same. When the distances are uniform 
over [0,1, • • •, R — 1], the probability that the child AP cost is 
equal to the parent AP cost will depend on the range JR. If R 
is small, relative to the problem size n, this probability wil l be 
high. In short, for a given problem size, the accuracy of the AP 
cost function is controlled by the number of distinct distances 
in matrix D. More precisely, the accuracy of the AP is deter­
mined by the fraction, denoted as of distinct distances. 

In practice, however, we do not directly control the number 
or the fraction of distinct distances. In addition to the actual 
structures of the "layouts" of the cities, the precision of the 
distances also affects the number of distinct distances. The 
precision of a number is usually represented by the maximal 
number of digits allowed for the number. As a result, the num­
ber of digits for distances is naturally a good choice for the 
control parameter. 

The effect of a given number of digits on the fraction of 
distinct distances is relative to the problem size n. Consider a 
matrix D with distances uniformly over 
where the range R is determined by the number of digits b. For 
a fixed b9 the fraction of distinct distances of a larger matrix D 
is obviously smaller than that of a smaller D. Thus, the control 
parameter for the fraction of distinct distances must be 
in the form of where f(n) is a rescaling function on 
the effect of the number of digits. 

To find the scaling function consider the number of 
distinct distances of matrix D for a given integer range R. The 
problem of finding the number of distinct distances is equiva­
lent to the bin-ball problem as follows. We are given M balls 
and R bins, and asked to place the balls into the bins. Each 
ball is independently put into one of the bins with an equal 
probability. We are interested in the fraction of bins that are 
not empty after all the placements. Here, for asymmetric TSP 
M = n2 - n balls correspond to the total number of nondi-
agonal distances of matrix D, and R bins represent the possi­
ble integers to be selected from. Since each ball (distance) is 
thrown independently and uniformly into one of R bins (inte­
gers), the probability that one bin is not empty after throwing 

Controlled by the effective number of digits 
the fraction of distinct distances has a phase transition of 
its own, also shown in Figure 1(a). The larger the problem, 
the sharper the transition, and there exists a crossover point 
among the transitions of problems with different sizes. We 
can examine the phase transitions more closely using finite-
size scaling. Finite-size scaling [2] is a method that has been 
successfully applied to phase transitions in similar systems of 
different sizes. Based on finite-size scaling, around a criti­
cal parameter (temperature), problems of different sizes tend 
to be indistinguishable except for a change of scale given 
by a power law in a characteristic length. Thus, finite-size 
scaling can help to characterize a phase transition precisely 
around a critical point of the control parameter as the prob­
lem scales to infinity. For the problem at hand, the effective 
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number of distinct distances and the problem 
size n play the roles of the temperature and the characteris­
tic length, respectively. This means that as n goes to infinity, 
the control parameter becomes where is the 
critical point and nl 1/vspecifies the change of scale. Using 

and numerical meth­
ods, we obtained the critical value = 
and rescaling component where the error 
bounds represent the 95% confidence intervals. The rescaled 
phase transitions are shown in Figure 1(b). 

Note that the number of digits used for intercity distances 
is nothing but a measurement of the precision of the distances. 
The larger the number of digits, the higher the precision be­
comes. This agrees with the common practice of using more 
effective digits to gain precision. Therefore, the phase transi­
tion of the control parameter is in turn determined by the pre­
cision of intercity distances. 

4.2 Phase transit ions 

With the control parameter, the effective number of digits 
for intercity distances, identified, we are now in a po­

sition to investigate possible phase transitions in (1) the ATSP 
cost, (2) the probability that an AP cost is equal to the corre­
sponding ATSP cost, (3) the relative error or accuracy of the 
AP lower-bound function, and finally (4) the backbone of the 
ATSP. The answers to the first three problems provides a de­
tailed picture on the accuracy of the AP cost function, and the 
answer to the last problem reveals the intrinsic constrainedness 
among the cities as the precision of distances changes. We ex­
amine these four problems in turn. 

We generated uniformly random problem instances of 100-, 
200-, 300- to 1,000-cities and 1,500-cities. Intercity distances 
are independently and uniformly chosen from {0,1,2, • • •, R-
1} for a given range R, which is controlled by the number of 
digits 6. We varied 6, with an increment of 0.1, from 1.0 to 6.0 
for instances with up to 1,000-cities and from 1.0 to 6.5 for in­
stances with 1,500-cities. For each combination of and we 
generated 10,000 instances for problems (l)-(3) listed above, 
and 1,000 instances for problem (4) due to its high computa­
tional cost. To make the result figures readable, we only use 
the curves from 100-, 500-, 1,000- and 1,500-city problems. 

There is a phase transition in the ATSP tour cost, 
ATSP(D), shown in Figure 2(a). The reported tour costs are 
obtained by dividing the integer tour costs from the DFBnB al­
gorithm by n x (R - 1), where n is the number of cities and R 
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Figure 4: (a) Average accuracy of AP lower-bound function, 
measured by the error of AP cost relative to ATSP cost, (b) 
Normalized average accuracy. 

the range of intercity costs. Equivalently, an intercity distance 
was virtually converted to a real value in [0,1]. By doing this, 
we can verify the existing analytical result on the AP and ATSP 
costs. This will be discussed in detail in the next subsection. 

As shown, the ATSP tour cost increases abruptly and dra­
matically as the effective number of digits increases, exhibiting 
phase transitions. The transitions become sharper as the prob­
lem becomes larger, and there exist crossover points among 
curves from different problem sizes. By finite-size scaling, we 
further determine the critical value of the control parameter at 
which the phase transitions occur. The scaled result is shown 
in Figure 2(b). It is worthwhile to mention that the AP cost 
(not shown) follows almost the same phase-transition pattern. 

Our numerical results show that when the number of dig­
its for intercity distances is very small, for example, less than 
1.9 digits or R 80 for n = 1,500, the AP and ATSP 
costs are equal to zero, meaning that these two costs are the 
same as well. Given a random distance matrix D, how likely 
is it that an AP cost will differ from the ATSP tour cost as 
the effective number of digits increases? We address this 
question by examining the probability that an AP cost AP(D) 
is equal to the corresponding ATSP cost ATSP(D) as B in­
creases. Figure 3(a) shows the results, averaged over the same 
set of instances for Figure 2. As shown, the probability that 
AP(D) = ATSP(D) also experiences phase transitions. Fig­
ure 3(b) shows the phase transitions after finite-size scaling. 

The results in Figure 3 also imply that the quality of the AP 
function degrades as the effective number of digits increases. 
The degradation also follows a phase-transition process. This 
is verified by Figure 4, using the data from the same set of 
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n digits | AP cost ATSP cost relative AP error (%) 
2100 8 6810 1 p.6435±0;0(K)8" 1.6444 ±0.0008 0 0402 ± 0.(M)09 
2300 8.7555 1.6439 ±0.0007 1 6445 ± 0.0008 0.0368 ± 0 0008 
2500 8 8235 1.6441 ±0.0007 1.6442 ±0 0007 0.0336 ± 0.0008 
2700 8.8861 1.6438 ±0 0007 1.6444 ± 0.0007 0.0309 ± 0.0007 
2900 8.9440 1.6439 ± 0.0007 1.6444 ±0 0007 0 0286 ± 0.0007 

Table 1: Results on AP cost, the ATSP cost and AP error rel­
ative to the ATSP cost, on random ATSP. Each datum is aver­
aged of 10,000 instances. Al l error bounds represent 95 percent 
confidence intervals. 

problem instances for the previous two figures. 
We now turn to the backbone of the ATSP, which is the frac­

tion of directed arcs that appear in all optimal solutions. The 
backbones also exhibit phase transitions as the effective num­
ber of digits for distances increases. The result is included in 
Figure 5. Interestingly, the phase-transition pattern of the back­
bone is almost identical to that of the fraction of distinct entities 
in the distance matrix, shown in Figure 1, and that of the ATSP 
tour cost, shown in Figure 2. 

The fraction of backbone captures, in essence, the tightness 
of the constraints among the cities. As more intercity dis­
tances become distinct, the number of tours of unique lengths 
increases. Consequently, the number of optimal solutions de­
creases and the fraction of backbone grows inversely. When 
more arcs are part of the backbone, optimal solutions become 
more restricted and the number of optimal solutions decreases, 
making it more difficult to find an optimal solution. 

4.3 Asymptotic AP precision 

As a by-product of the phase-transition results, we now pro­
vide asymptotic values of the ATSP cost, the AP cost and its 
accuracy. We attempt to extend the previous theoretical results 
on the AP cost, which is known to be within (1.51,1.94) [8], 
and the observation that the accuracy of the AP lower bounds 
increases as the problem size increases [1]. 

We need to be cautious in selecting the number of digits for 
intercity distances. As discussed earlier, the same number of 
digits for distances gives rise to different effective numbers of 
digits on problems of different sizes. Therefore, the number of 
digits must be scaled properly to have the same effect on prob­
lems of different sizes when we exam an asymptotic feature. 

Therefore, in our experiments, we fixed the scaled effec­
tive number of digits to a constant. Based on the phase-
transition of the control parameter in Figure 1, we took = 

a constant of 2. = 2 is suf-
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ficiently large so that all distances are distinct, regardless of 
problem size, and the quantities to be examined do not change 
substantially after finite-size scaling. = 2 is also relatively 
small so that we can experiment on large problems. In our im­
plementation of the DFBnB algorithm, distances are integers 
of 4 bytes. Thus the number of digits must be less than 9.4 
without causing an overflow in the worst case. Using = 2, 
we can go up to roughly 2,500-city ATSPs in the worst case. 

Table 1 shows the results, with up to 2,900 cities. The AP 
cost approaches to 1.6439 and the ATSP cost to 1.6444. The 
accuracy of AP function indeed improves as the problem size 
increases, with relative error reduced to about for 
2,900-city problems. 

5 Threshold Behavior of Subtour Elimination 
The phase-transition results indicate that the ATSP becomes 
more constrained and difficult as the distance precision be­
comes higher. We now study how the DFBnB subtour elimina­
tion algorithm behaves. We separate this issue from the phase 
transitions studied before because we now consider the behav­
ior of a particular algorithm, which may not be necessarily a 
feature of the underlying problem. Nevertheless, this is still an 
issue of its own interest because this algorithm is among the 
best known methods for the ATSP, and we hope that a better 
understanding of this algorithm can shed light on the typical 
case complexity of the problem. 

Figure 6(a) shows the average complexity of the DFBnB 
algorithm, measured by the number of calls to the AP func­
tion. The result is averaged over the same problem instances 
for each data point as used for the phase transitions in the pre­
vious section. Note that the number of AP calls increases sig­
nificantly from small problems to large ones using the same 
effective number of digits for distances. Thus, we normalize 
the result in such a way that for a given problem size, the min­
imal and maximal AP calls among all problem instances of the 
same size are mapped to zero and one, respectively, and the 
other AP calls are proportionally adjusted to a ratio between 
0 and 1. This allows us to compare the results from different 
problem sizes on one figure. The curves in Figure 6(a) follow 
a pattern similar to that of the phase transitions in the previous 
section. The complexity of the subtour elimination algorithm 
increases with the effective number of digits, and exhibits a 
threshold behavior similar to phase transitions. Indeed, we can 
use finite-size scaling to capture the behavior as the problem 
size grows, as illustrated in Figure 6(b). The results in Fig­
ure 6 and the results in the previous section indicate that the 
complexity of the subtour elimination algorithm goes hand-in-
hand with the constrainedness of the problem. 

Similar results have been reported in [26]. The results of this 
subsection extend that in [26] to different sizes of problems and 
by applying finite-size scaling to capture the threshold behav­
ior as problem size increases. 

6 Conclusions and Discussions 
Our main contributions are twofold. First, we provided strong 
positive evidences to the long-standing question of whether the 
Traveling Salesman Problem (TSP) has phase transitions [17]. 
We studied this issue on the more general asymmetric TSP 
(ATSP). We empirically showed that many properties, includ­
ing the ATSP tour cost and the fraction of backbone, have 
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two characteristically different values, and the transitions be-
tween them are rather abrupt and dramatic, displaying phase-
transition phenomena. The control parameter of the phase tran­
sitions is the effective number of digits representing the inter­
city distances, which in essence measures the precision of dis­
tances. Our results revealed the connection between distance 
precision and phase transition properties in the ATSP. Distance 
precision is the control parameter for various phase transitions 
of the ATSP. We believe that the concept of precision deter­
mining problem properties such as phase transitions is rather 
universal and may very well be applicable to other problems, 
including various scheduling and planning problems. 

Second, our phase transitions results provide a practical 
guidance to how to generate diff icult random ATSP problem 
instances and which instances to use to compare the asymp­
totic performance of two algorithms. A common practice in 
comparing algorithms when using a random ensemble is to 
generate problems with a fixed distance precision. Our results 
imply that the correct way is to use problem instances of dif­
ferent sizes that have the same or similar features such as the 
same fraction of backbones. This, in turn, requires to increase 
the number of digits for intercity distances as the problem size 
grows. We believe that this guidance is general and can be 
applied to other optimization problems. 
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