
Abstract 
Recent algorithms like RTDP and LAO* combine 
the strength of Heuristic Search (HS) and Dynamic 
Programming (DP) methods by exploiting knowl-
edge of the initial state and an admissible heuris­
tic function for producing optimal policies without 
evaluating the entire space. In this paper, we in­
troduce and analyze three new HS/DP algorithms. 
A first general algorithm schema that is a simple 
loop in which 'inconsistent' reachable states (i.e., 
with residuals greater than a given c) are found and 
updated until no such states are found, and serves 
to make explicit the basic idea underlying HS/DP 
algorithms, leaving other commitments aside. A 
second algorithm, that builds on the first and adds 
a labeling mechanism for detecting solved states 
based on Tarjan's strongly-connected components 
procedure, which is very competitive with existing 
approaches. And a third algorithm, that approx­
imates the latter by enforcing the consistency of 
the value function over the l ike ly ' reachable states 
only, and leads to great time and memory savings, 
with no much apparent loss in quality, when transi­
tions have probabilities that differ greatly in value. 

1 Introduction 
Heuristic search algorithms have been successfully used for 
computing optimal solutions to large deterministic problems 
(e.g., iKorf, 1997]). In the presence of non-determinism and 
feedback, however, solutions are not action sequences but 
policies, and while such policies can be characterized and 
computed by dynamic programming (DP) methods [Bellman, 
1957; Howard, 1960], DP methods take all states into account 
and thus cannot scale up to large problems [Boutilier et al, 
1999]. Recent algorithms like RTDP iBarto et al, 19951 and 
LAO* [Hansen and Zilberstein, 2001], combine the strength 
of Heuristic Search and Dynamic Programming methods by 
exploiting knowledge of the initial state SQ and an admissi­
ble heuristic function (lower bound) h for computing opti­
mal policies without having to evaluate the entire space. In 
this paper we aim to contribute to the theory and practice 
of Heuristic Search/Dynamic Programming methods by for­
mulating and analyzing three new HS/DP algorithms. The 
first algorithm, called FlND-and-REVlSE is a general schema 

that comprises a loop in which states reachable from s0 and 
the greedy policy that have Bellman residuals greater than a 
given 6 (we call them 'inconsistent' states), are found and up­
dated until no one is left. FIND-and-REViSE makes explicit 
the basic idea underlying HS/DP algorithms, including RTDP 
and LAO*. We prove the convergence, complexity, and op-
timality of FIND-and-REViSE, and introduce the second al­
gorithm, HDP, that builds on it, and adds a labeling mech­
anism for detecting solved states based on Tarjan's efficient 
strongly-connected components procedure [Tarjan, 1972]. A 
state is solved when it reaches only 'consistent' states, and 
solved states are skipped in all future searches. HDP termi­
nates when the initial state is solved. HDP inherits the con­
vergence and optimality properties of the general FlND-and-
REVISE schema and is strongly competitive with existing ap­
proaches. The third algorithm, HDP(i), is like HDP, except 
that while HDP computes a value function by enforcing its 
consistency over all reachable states (i.e., reachable from s0 

and the greedy policy), H D P ( I ) enforces consistency over the 
l ikely ' reachable states only. We show that this approxima­
tion, suitably formalized, can lead to great savings in time and 
memory, with no much apparent loss in quality, when transi­
tions have probabilities that differ greatly in value. 

Our motivation is twofold: to gain a better understanding 
of HS/DP methods for planning with uncertainty, and to de­
velop more effective HS/DP algorithms for both optimal and 
approximate planning. 

2 Preliminaries 
2.1 Model 
We model non-deterministic planning problems with full 
feedback with state models that differ from those used in the 
classical setting in two ways: first, state transitions become 
probabilistic; second, states are fully observable. The result­
ing models are known as Markov Decision Processes (MDPS) 
and more specifically as Stochastic Shortest-Path Problems 
iBertsekas, 1995], and they are given by:1 
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M6. positive action costs 0, and 
M7. fully observable states. 

Due to the presence of full feedback (M7) and the standard 
Markovian assumptions, the solution of an MDP takes the 
form of a function mapping states s into actions a A(s). 
Such a function is called a policy. A policy assigns a prob­
ability to every state trajectory starting in state 
so which is given by the product of the transition probabili­
ties where If we further assume that 
actions in goal states have no costs and produce no changes 

the expected cost 
associated with a policy R starting in state SQ is given by the 
weighted average of the probability of such trajectories times 
their cost An optimal solution is a policy 
7r* that has a minimum expected cost for all possible initial 
states. An optimal solution is guaranteed to exist provided the 
following assumption holds [Bertsekas, 19951: 

M8. the goal is reachable from every state with non-zero 
probability. 

Since the initial state s0 of the system is fixed, there is in 
principle no need to compute a complete policy but a partial 
policy prescribing the action to take in the states that can be 
reached following the policy from s0. Traditional dynamic 
programming methods like value or policy iteration compute 
complete policies, while recent heuristic search DP methods 
like RTDP and LAO* compute partial policies. They achieve 
this by means of suitable heuristic functions h(s) that provide 
admissible estimates (lower bounds) of the expected cost to 
reach the goal from any state s. 

2.2 Dynamic Programming 

Any heuristic or value function h defines a greedy policy 7T/t: 

(1) 

where the expected cost from the resulting states ,s' is as­
sumed to be given by We call the greedy action 
in s for the value function h. If we denote the optimal (ex­
pected) cost from a state s to the goal by it is well 
known that the greedy policy 7r/t is optimal when h is the op­
timal cost function, i.e. h =  

While due to the possible presence of ties in (1), the greedy 
policy is not unique, we wil l assume throughout the paper 
that these ties are broken systematically using an static order­
ing on actions. As a result, every value function V defines a 
unique greedy policy and the optimal cost function K* 
defines a unique optimal policy We define the relevant 
states as the states that are reachable from SQ using this opti­
mal policy; they constitute a minimal set of states over which 
the optimal value function needs to be defined.2 

Value iteration (vi) is a standard dynamic programming 
method for solving MDPs and is based on computing the op­
timal cost function V* and plugging it into the greedy policy 
(1). This optimal cost function is the only solution to the fixed 

2This definition of 'relevant states* is more restricted than the 
one in [Barto et al, 1995] that includes the states reachable from so 
by any optimal policy. 

point equation: 

(2) 

also known as Bellman's equation. For stochastic short­
est path problems like M1-M8 above, the border condition 
V(s) = 0 is also needed for goal states s G. Value it­
eration solves (2) by plugging an initial guess for V* in the 
right-hand side of (2) and obtaining a new guess on the left-
hand side. In the form of VI known as asynchronous value 
iteration [Bertsekas, 19951, this operation can be expressed 
as: 

(3) 

where V is a vector of size |S| initialized arbitrarily (normally 
to 0) and where the equality in (2) is replaced by assignment. 
The use of expression (3) for updating a state value in V is 
called a state update or simply an update. In standard (syn­
chronous) value iteration, all states are updated in parallel, 
while in asynchronous value iteration, only a selected subset 
of states is selected for update at a time. In both cases, it is 
known that if all states are updated infinitely often, the value 
function V converges eventually to the optimal value func­
tion. From a practical point of view, value iteration is stopped 
when the Bellman error or residual defined as the difference 
between left and right in (2): 

over all states s is sufficiently small. In the discounted MDP 
formulation, a bound on the policy loss (the difference be­
tween the expected cost of the policy and the expected cost 
of the optimal policy) can be obtained as a simple expres­
sion of the discount factor and the maximum residual. In 
stochastic shortest path models, no similar closed-form bound 
is known, although such bound can be computed [Bertsekas, 
1995]. Thus, one can execute value iteration until the max­
imum residual becomes smaller than a given then if the 
bound on the policy loss is higher than desired, the same pro­
cess can be repeated with a smaller and so on (see 
[Hansen and Zilberstein, 2001] for a similar idea). For these 
reasons, we will take as our basic task below, the computa­
tion of a value function V(s) with residuals no greater than a 
given parameter  

One last definition and a few known results before we pro­
ceed. We say that cost function V is monotonic iff 

(4) 

for every s S. Notice that a monotonic value function 
never decreases when updated, and moreover, must increase 
by more than when updated in a state whose residual 
is greater than As in the deterministic setting, a non­
monotonic cost function can be made monotonic by simply 
taking the value V(s) to be the max between V(s) and the 
right-hand side of Bellman's equation. The following results 
are well known. 
Theorem 1 a) The optimal values V* (s) of a model MJ-M8 
are non-negative and finite; b) the monotonicity and admis­
sibility of a value function are preserved through updates. 
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start with a lower bound function 
repeat 

FIND a state s in the greedy graph Gv with  
REVISE V at s 

until no such state is found 
return V 

Algorithm 1: FlND-and-REVlSE 

3 Find-and-Revise 
The FlND-and-REVlSE schema is a general asynchronous VI 
algorithm that exploits knowledge of the initial state and an 
admissible heuristic for computing optimal or nearly optimal 
policies without having to evaluate the entire space. Let us 
say that a value function V -consistent (inconsistent) over 
a state ,s when the residual over s is no greater (greater) than f, 
and that V itself is -consistent when it is -consistent over all 
the states reachable from s0 and the greedy policy Then 
FlND-and-REVlSE computes an -consistent value function by 
simply searching for inconsistent states in the greedy graph 
and updating them until no such states are left; see Alg. 1. 

The greedy graph refers to the graph resulting from 
the execution of the greedy policy starting in s0; i.e., s0 is 
the single root node in Gv,and for every non-goal state s in 
6 V i its children are the states that may result from executing 
the action in s. 

The procedures FIND and REVISE are the two parameters of 
the FlND-and-REVlSE procedure. For the convergence, opti-
mality, and complexity of FlND-and-REVlSE, we assume that 
FIND searches the graph systematically, and REVISE of V at 
s updates V at s (and possibly at some other states), both 
operations taking 0(|S|) time. 

Theorem 2 (Convergence) For a planning model MI-M8 
with an initial value function h that is admissible and 
monotonia FlND-a/w/-REVlSE yields an value 
function in a number of loop iterations no greater than 

where each iteration has time com-

Theorem 3 (Optimality) For a planning model Ml -MS with 
an initial admissible and monotonia value function, the value 
function computed by FIND-and-REVlSE approaches the op-
timal value function over all relevant states as e goes to 0. 

4 Labeling 
We consider next a particular instance of the general FIND-
and-REViSE schema in which the FIND operation is carried 
out by a systematic Depth-First Search that keeps track of 
the states visited. In addition, we consider a labeling scheme 
on top of this search that detects, with almost no overhead, 
when a state is solved, and hence, when it can be skipped 
in all future searches. A state s is defined as solved when 
the value function V is e-consistent over s and over all states 
reachable from s and the greedy policy Clearly, when this 
condition holds no further updates are needed in s or the states 
reachable from 5. The resulting algorithm terminates when 
the initial state s0 is solved and hence when an e-consistent 
value function has been obtained. 

Figure 1: A graph and its strongly-connected components. 

Due to the presence of cycles in the greedy graph, bottom-
up algorithms common in AO* implementations cannot be 
used. Indeed, if s is reachable (in the greedy graph) from 
a descendant s' of s, then bottom-up approaches will be un­
able to label either state as solved. A labeling mechanism that 
works in the presence of cycles is presented in [Bonet and 
Geffner, 2003] for improving the convergence of RTDP. Basi­
cally, after each RTDP trial, an attempt is made to label the last 
unsolved state .s in the trial by triggering a systematic search 
for inconsistent states from .s. If one such state is found, it 
is updated, and a new trial is executed. Otherwise, the state 
s and all its unsolved descendants are labeled as solved, and 
a new cycle of RTDP trials and labeling checks is triggered. 
Here we take this idea and improve it by removing the need 
of an extra search for label checking. The label checking will 
be done as part of the FIND (DFS) search with almost no over­
head, exploiting Tarjan's linear algorithm for detecting the 
strongly-connected components of a directed graph iTarjan, 
1972], and a correspondence between the strongly-connected 
components of the greedy graph and the minimal collections 
of states that can be labeled at the same time. 

Consider the (directed) greedy graph and the relation 
between pairs of states s and that holds when 

or when s is reachable from and is reachable from s 
in Gv. The strongly-connected components of Gv are the 
equivalence classes defined by this relation and form a parti­
tion of the set of states in Gv. For example, for the greedy 
graph in Fig. 1, where 2 and 4 are terminal (goal) states, the 
components are and 
C\ — Tarjan's algorithm detects the strongly-
connected components of a directed graph in time 
while traversing the graph depth-first, where n stands for the 
number of states in Gv) and e for the number of 
edges. 

The relationship between labeling and strongly-connected 
components in Gv is quite direct. Let us say first that a 
component C is e-consistent when all states s C are 
consistent, and that a component C is solved when every state 
s C is solved. Let's then define as the graph whose 
nodes are the components of and whose directed edges 
are when some state in is reachable from some 
state in C. Clearly, is an acyclic graph as two compo­
nents which are reachable from each other will be collapsed 
into the same equivalence class. In addition, 

1. a state s is solved iff its component C is solved, and 
furthermore, 
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2. a component C is solved iff C is consistent and all com­
ponents are solved. 

The problem of labeling states in the cyclic graph Gy can 
thus be mapped into the problem of labeling the components 
in the acyclic graph Gy, which can be done in bottom up 
fashion. 

From Fig. 1 is easy to visualize the component graph asso­
ciated to the greedy graph. Thus, if 2 is the only inconsistent 
state, for example, we can label the components C\ and Ci 
as solved, while leaving C3 and C4 unsolved. 

The code that simultaneously checks in depth-first fashion 
the consistency of the states and the possibility of labeling 
them is shown in Alg. 2. We call the resulting algorithm, 
HDP. HDP inherits its convergence and optimality properties 
from the FiND-and-REViSE schema and the correctness of the 
labeling mechanism. 

We do not have space to explain HDP code in detail, yet it 
should be clear to those familiar with Tarjan's algorithm; in 
particular, the use of the state visit number, S.IDX, and the 
'low-link' number, s.LOW, for detecting when a new compo­
nent has been found. The flag flag and the (normal) propa­
gation of the visit numbers prevent a component from being 
labeled as solved when it is inconsistent or can reach an in­
consistent component. 

Theorem 4 (Correctness) The value function computed by 
HDP for a planning model M1-M8, given an initial admissible 
and monotonic value function, is t-consistent. 

5 Experimental Results 
We now evaluate the performance of HDP in comparison with 
other recent Heuristic Search/DP algorithms such as the sec­
ond code for LAO* in [Hansen and Zilberstein, 2001], that we 
call Improved LAO* (ILAO*), and Labeled RTDP (LRTDP), a 
recent improvement of RTDP that accelerates its convergence 
[Bonet and Geffner, 2003]. We use parallel Value Iteration as 
the baseline. We've implemented all these algorithms in C++ 
and the experiments have been run on a Sun Fire-280R with 
750 MHz and 1Gb of RAM. 

The domain that we use for the experiments is the racetrack 
from [Barto et al, 1995]. The states are tuples 
that represent the position and speed of the car in the x, y 
dimensions. The actions are pairs a — (ax, ay) of instan­
taneous accelerations where Uncer­
tainty in this domain comes from assuming that the road is 
'slippery' and as a result, the car may fail to accelerate or 
desaccelerate. More precisely, an action a = (ax, ay) has 
its intended effect with probability 1 - p, while with prob­
ability p the action effects correspond to those of the action 

= (0,0). Also, when the car hits a wall, its velocity is set 
to zero and its position is left intact (this is different than in 
[Barto et al., 1995] where for some reason the car is moved 
to the start position). 

We consider the track l a r g e - b from [Barto et al, 1995], 
h- t r a c k from [Hansen and Zilberstein, 2001],3 and five 
other tracks (squares and rings of different size). Informa­
tion about these instances can be found in the first three rows 

3 T , Taken from the source code of LAO*. 

of Table 1, including number of states, optimal cost, and per­
centage of states that are relevant. 

As heuristic, we follow [Bonet and Geffner, 2003], and use 
the domain independent admissible and monotonic heuristic 
hmini obtained by replacing the expected cost in Bellman 
equation by the best possible cost. The total time spent com­
puting heuristic values is roughly the same for the different 
algorithms (except VI), and is shown separately in the fifth 
row in the table, along with its value for s0. The experiments 
are carried with three heuristics: 
and h = 0. 

The results are shown in Table 1. HDP dominates the other 
algorithms over all the instances for while LRTDP 
is best (with one or two exceptions) when the weaker heuris­
tics and 0 are used. Thus, while HDP seems best for 
exploiting good heuristic information over these instances, 
LRTDP bootstraps more quickly (i.e., it quickly computes a 
good value function). We hope to understand the reasons for 
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Table 1: Problem data and convergence time in seconds for the different algorithms with different heuristics. Results for 
e — 10 -3 and probability p = 0.2. Faster times are shown in bold. 

these differences in the future. 

6 Approximation 
HDP, like FIND-and-REViSE, computes a value function V by 
enforcing its consistency over the states reachable from So  
and the greedy policy ny. The final variation we consider, 
that we call HDP( I ) , works in the same way, yet it enforces 
the consistency of the value function V only over the states 
that are reachable from so and the greedy policy with some 
minimum likelihood. 

For efficiency, we formalize this notion of likelihood, using 
a non-negative integer scale, where 0 refers to a normal out­
come, 1 refers to a somewhat surprising outcome, 2 to a still 
more surprising outcome, and so on. We call these measures 
plausibilities, although it should be kept in mind, that 0 refers 
to the most plausible outcomes, thus 'plausibility greater than 
f, means 'a plausibility measure smaller than or equal to i.y 

We obtain the transition plausibilities Ka(s'\s) from the 
corresponding transition probabilities by the following dis­
cretization: 

(5) 

with when Plausibilities are 
thus formalized': the most plausible next states have always 
plausibility 0. These transition plausibilities are then com­
bined by the rules of the K calculus iSpohn, 1988] which is 
a calculus isomorphic to the probability calculus (e.g. [Gold-
szmidt and Pearl, 1996]). The plausibility of a state trajectory 
given the initial state, is given by the sum of the transition 
plausibilities in the trajectory, and the plausibility of reach­
ing a state, is given by the plausibility of the most plausible 
trajectory reaching the state. 

The HDP(i) algorithm, for a non-negative integer z, com­
putes a value function V by enforcing its consistency over 
the states reachable from So with plausibility greater than 
or equal to i. HDP(i) produces approximate policies fast by 
pruning certain paths in the search. The simplest case results 

from i = 0, as the code for HDP(O) corresponds exactly to the 
code for HDP, except that the possible successors of a state a 
in the greedy graph are replaced by the plausible successors. 

HDP(i) computes lower bounds that tend to be quite tight 
over the states that can be reached with plausibility no smaller 
than i. At run time, however, executions may contain 'sur­
prising* outcomes, taking the system 'out' of this envelope, 
into states where the quality of the value function and its cor­
responding policy, are poor. To deal with those situations, 
we define a version of HDP(i), called HDP(t,j), that inter­
leaves planning and execution as follows. HDP(i, j) plans 
from s = so by means of the HDP(i) algorithm, then exe­
cutes this policy until a state trajectory with plausibility mea­
sure greater than or equal to j, and leading to a (non-goal) 
state s' is obtained. At that point, the algorithm replans from 
s' with HDP(i), and the same execution and replanning cycle 
is followed until reaching the goal. Clearly, for sufficiently 
large j, HDP(i,j) reduces to HDP(i), and for large i, HDP(i) 
reduces to HDP. 

Table 2 shows the average cost for HDP(i,j) for i = 0 
(i.e., most plausible transitions considered only), and several 
values for j (replanning thresholds). Each entry in the ta­
ble correspond to an average over 100 independent execu­
tions. We also include the average cost for the greedy policy 
with respect to as a bottom-line reference for the fig­
ures. Memory in the table refers to the number of evaluated 
states. As these results show, there is a smooth tradeoff be­
tween quality (average cost to the goal) and time (spent in 
initial planning and posterior replannings) as the parameter 
j vary. We also see that in this class of problems the hmtn 
heuristic delivers a very good greedy policy. Thus, further 
research is necessary to assess the goodness of HD?(i,j) and 
the hmin heuristic. 

7 Related Work 
We have built on IBarto et al., 1995] and [Bertsekas, 1995], 
and more recently on [Hansen and Zilberstein, 2001] and 
[Bonet and Geffner, 2003]. The crucial difference between 
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h - t r a c k square - -2 r i n g - : \ r i n g - 4 
algorithm time quality memory time quality memory time quality memory time quality memory 
HDP(hmin) 7.547 41.894 35835 0.275 11.130 7245 4.145 22.047 43358 30.511 27.785 152750 

HDP(0,2) 0.853 42.950 7132 0.021 11.250 819 0.311 22.000 7145 1.758 28.500 24195 
HDP(0,4) 0.826 44.000 7034 0.022 11.500 650 0.327 23.300 6882 1.821 28.400 23857 

HDP(0,16) 0.701 46.800 6100 0.017 11.500 556 0.284 23.600 6331 1.580 30.800 21823 1 
HDP(0,64) 0.698 46.800 5899 0.014 11.610 564 0.264 25.500 6322 1.518 32.400 21823 

grccdy(hmi„) N/A 47.150 356 N/A 12.450 104 N/A 25.390 192 N/A 31.600 241 

Table 2: Results of HDP(0,y) for j = 2,4,16,64 and greedy policy with respect to 10 3andp = 0.2. Each value 
is the average over 100 executions. N/A in time for the greedy policy means "Not Applicable" since there is no planning. 

FiND-and-REViSE and general asynchronous value iteration 
is the focus of the former on the states that are reachable from 
the initial state SO and the greedy policy. In RTDP, the FIND 
procedure is not systematic and is carried out by a stochas­
tic simulation that may take time greater than 0(|5|) when 
the inconsistent states are reachable with low probability (this 
explains why RTDP final convergence is slow; see [Bonet and 
Geffner, 2003]). LAO*, on the other hand, keeps track of a 
subset of states, which initially contains .s0 only, and over 
which it incrementally maintains an optimal policy through 
a somewhat expensive REVlSE (full DP) procedure. This is 
then relaxed in the second algorithm ir. [Hansen and Zilber-
stein, 2001], called Improved LAO* here. The use of an ex­
plicit envelope that is gradually expanded is present also in 
iDean et ai, 1993] and [Tash and Russell, 1994]. Interest­
ingly, these envelopes are expanded by including the most 
l ikely' reachable states not yet in the envelope. The algo­
rithm HDP(i) exploits a similar idea but formulates it in a dif­
ferent form and has a crisp termination condition. 

8 Summary 
We have introduced and analyzed three HS/DP algorithms 
that exploit knowledge of the initial state and an admissible 
heuristic function for solving planning problems with uncer­
tainty and feedback: FiND-and-REViSE, HDP, and HDP( I ) . 
FiND-and-REViSE makes explicit the basic idea underlying 
HS/DP algorithms: inconsistent states are found and updated, 
until no one is left. We have proved its convergence, complex­
ity, and optimality. HDP adds a labeling mechanism based 
on Tarjan's SCC algorithm and is strongly competitive with 
current algorithms. Finally, HDP(i) and HDP(i, j) offer great 
time and memory savings, with no much apparent loss in 
quality, in problems where transitions have probabilities that 
differ greatly in value, by focusing the updates on the states 
that are more likely to be reached. 
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