
Comparing Best-First Search and Dynamic Programming for Optimal Multiple 
Sequence Alignment 

Heath Hohwald, Ignacio Thayer, Richard E. Korf 
Computer Science Department 

University of California, Los Angeles 
Los Angeles, CA 90095 

Email: {heath,iet,korf}@cs.ucla.edu 

Abstract 

Sequence alignment is an important problem in 
computational biology. We compare two different 
approaches to the problem of optimally aligning 
two or more character strings: bounded dynamic 
programming (BDP), and divide-and-conquer fron­
tier search (DCFS). The approaches are compared 
in terms of time and space requirements in 2 
through 5 dimensions with sequences of varying 
similarity and length. While BDP performs better 
in two and three dimensions, it consumes more time 
and memory than DCFS for higher-dimensional 
problems. 

1 Introduction and Overview 
Aligning multiple DNA or protein sequences, known as 
sequence alignment, is an important problem in computa­
tional biology. Sequence alignment is useful for compar­
ing genomes and finding genes, for determining evolution­
ary linkage of different biological sequences, and for predict­
ing protein sequence secondary and tertiary structure [Durbin 
et al, 1998], [Waterman, 1995]. We consider two algo­
rithms for finding an optimal alignment of two or more se­
quences: bounded dynamic programming (BDP), and divide-
and-conquer frontier search (DCFS), a best-first search algo­
rithm. 

Dynamic programming (DP) is the traditional approach for 
solving sequence alignment problems. DCFS is a more re­
cent approach, and the two methods have been compared for 
the problem of aligning two and three sequences [Korf and 
Zhang, 2000]. We extend this work by comparing the two 
algorithms for simultaneously aligning larger numbers of se­
quences, and find that DCFS is both faster and can solve 
larger problems, suggesting that the more traditional DP ap­
proach is not the best choice for aligning more than three se­
quences. 

We begin by introducing to the multiple sequence align­
ment problem, and show how it can be mapped to the prob­
lem of finding a lowest-cost corner-to-corner path in a d-
dimensional grid. We describe the dynamic programming 
approach in Section 3, and the DCFS algorithm in Section 
4. We discuss the heuristic evaluation functions we use for 
sequence alignment in Section 5. In Section 6, we explain 

the methodology used in comparing the two approaches, and 
present our results. Future work is discussed in Section 7, and 
we conclude in Section 8. 

2 Sequence Alignment and The Grid Problem 

2.1 Pairwise sequence alignment and cost function 

Two sequences are aligned by inserting gaps into each of the 
sequences so that each character in one sequence corresponds 
to a character or gap in the other. Each pair of corresponding 
symbols (gaps or characters) in the sequences can be charac­
terized as a match (two identical characters), substitution (two 
different characters), or gap (gap in one sequence but not the 
other). For example, given the sequences ACGTACGTACGT 
and ATGTCGTCACGT, one alignment is as follows: 

ACGTACGT-ACGT 
ATGT-CGTCACGT 

The cost of an alignment is calculated by assigning a cost to 
each position of the two sequences, and then summing the 
costs over all positions. For example, a cost function might 
charge 0 units for matching characters, 1 unit for a substitu­
tion, and 2 units for a gap. If this cost function is applied to 
the alignment above, the result is a total cost of 5, since we 
have two gaps (marked by a ' - ' ) , and one substitution (T for 
C in the second position). An optimal alignment is one that 
minimizes a given cost function. For these sequences and this 
cost function, this alignment is optimal. 

2.2 Mu l t ip le sequence al ignment and cost funct ion 

The problem of optimally aligning multiple sequences is a 
natural extension of pairwise alignment: insert gaps in the 
sequences such that a given cost function is minimized. For 
multiple alignments, we use the sum-of-pairs (SP) cost func­
tion, i.e. the cost of an alignment of multiple sequences is the 
sum of the cost of all induced pairwise alignments. The cost 
of each position is still determined by a given cost function 
such as that described in the previous section. As an exam­
ple, consider the following alignment of three sequences: 

SEARCH 1239 



1) AGTTA-
2) AGCT-G 
3) -GACAG 

Using the same cost function above, the cost of this align­
ment is 17, obtained by summing the costs of the pairwise 
alignments of sequences [1,2] (5), [1,3] (6), and [2,3] (6). 

2.3 The gr id problem 

The sequence alignment problem can be mapped to the prob­
lem of finding a lowest-cost corner-to-corner path in a di­
rected grid, where each dimension corresponds to one of the 
sequences [Needleman and Wunsch, 1970]. We associate a 
cost with each edge in the grid, and the cost of an alignment 
is the sum of the edge costs along the corresponding path. 
In the directed-grid problem, we are only allowed to move 
toward the goal, either orthogonally or diagonally. 

In two dimensions, the directed-grid problem is to find the 
lowest-cost path in an x x y grid, where x and y are the lengths 
of the two strings. The path goes from the upper-lefthand cor­
ner to the lower-righthand corner, and the legal moves are to 
the right, down, or diagonally right and down. For exam­
ple, for the two sequences in Subsection 2.1, the correspond­
ing grid and the optimal solution path are shown in Figure 1. 
The horizontal move corresponds to the gap in the vertical se­
quence, while the vertical move corresponds to the gap in the 
horizontal sequence. Diagonal moves correspond to matches 
or substitutions. 

In three dimensions, we have a three-dimensional grid of 
size x x y x z and can move in one of seven directions from 
each node in the grid: to the right (along the x axis), down 
(along the y axis), back (along the z axis), right and down, 
right and back, down and back, and finally right, down, and 
back. In general, the k-dimensional directed-grid problem 
seeks a lowest-cost path in a k-dimensional grid, with 2k — 
1 possible moves from each node. Aligning k sequences of 
length / requires a grid of size lk. 

Figure 1: Optimal alignment of the two sequences from Sub-
section 2.1. The solid line represents the solution path, and 
the dashed line represents a substitution. 

3 Dynamic Programming 

3.1 Standard dynamic programming 
Dynamic programming (DP) is a general technique that can 
be used to find a lowest-cost path in a directed grid. Note 
that any optimal path passing through a node n must include 
an optimal path passing through one of its predecessors. To 
determine the lowest-cost path to a node n, we do not need to 
consider all possible paths to the node; rather, we only need to 
know the costs to reach each of n's immediate predecessors. 

This observation yields an efficient algorithm for search­
ing a directed grid, which we describe for the case of an x x y 
grid. We scan the grid from left to right and from the top to 
the bottom, and at each node n we store the cost of a lowest-
cost path from the start node to n. This cost is the minimum 
obtained by adding the cost of the edge from the left to the 
cost of the node to the left, the cost of the edge from above 
to the cost of the node above, and the cost of the edge from 
diagonally above and left to the cost of the node diagonally 
above and to the left. When we reach the goal node, we have 
the cost of an optimal path and can trace back through the 
grid to find the associated path. DP has both 0(x x y) time 
and space complexity, since we store costs for all nodes and 
compute the cost at each node in constant time. DP can be 
generalized to k dimensions, where the time and space com­
plexity is 0(lk) for a hypercube with length /. 

3.2 Hirschberg's divide-and-conquer method 

Using a divide-and-conquer approach proposed 
by [Hirschberg, 1975], the space complexity of DP is 
reduced from This reduction allows much 
larger problems to be solved. Hirschbcrg's method is best 
illustrated in the two-dimensional grid problem. We find 
a node n in the middle row of the grid that is guaranteed 
to be on an optimal path and then recursively solve two 
subproblems: finding an optimal path from the start node 
to n, and finding an optimal path from n to the goal node. 
In order to find such a node n, we first calculate the costs 
from left to right in each row from the top to the middle 
row, and then calculate costs from the right to left in each 
row from the bottom to the middle row. When we have 
forward and backward costs to reach the middle row, we 
add the corresponding entries for each node and take the 
node of minimum total cost to be node n, a node on the 
optimal corner-to-corner path. Storing these costs requires 
two rows in memory: one for the top-down computation 
and one for the bottom-up computation, thus reducing the 
space requirement from The same idea can be 
applied in k dimensions, reducing the space complexity from 

3.3 Eppstein's divide-and-conquer method 

While Hirschberg's algorithm is bidirectional, he also men­
tioned a unidirectional version of the algorithm that he at­
tributed to Eppstein [Hirschberg, 1997], hereafter called Epp­
stein's divide-and-conquer method. The algorithm is best ex­
plained in two dimensions. Instead of maintaining two rows 
of costs, one for each direction of search, we proceed row by 

1240 SEARCH 



row from the start row to goal row and maintain only a sin­
gle row of costs. After we pass the middle row, we maintain 
with each node a pointer back to its ancestor on the middle 
row along a lowest-cost path from the initial node. When we 
reach the goal state, we have a pointer to a node on the mid­
dle row that is on a lowest-cost corner-to-corner path. As in 
Hirschberg's method, we then have two smaller path-finding 
problems that we solve recursively. This algorithm also has 

space complexity. 

3.4 Bounded dynamic p rogramming 
One limitation of both these algorithms is that they evalu­
ate every node in the grid. Bounded dynamic programming 
(BDP) is an extension of DP that introduces an upper bound 
on the solution cost. It was presented by [Spouge, 1989] 
as a method of finding optimal lattice paths. Given an up­
per bound on the total solution cost, we can prune nodes of 
equal or greater cost since they cannot lie on a solution path of 
lower cost. For each node n we compute where 
g(n) is the cost to reach n from the initial node, and 
is a lower bound on the cost of reaching the goal node from 
node n. If this sum is equals or exceeds the upper bound, we 
know that n does not lie on a lower-cost solution path. When 
aligning sequences of equal length, an initial upper bound can 
be computed by directly aligning the sequences without any 
gaps. 

3.5 I terat ive upper bounds 
In general, a better upper bound on the solution cost will 
prune more nodes. An initial bound obtained from directly 
aligning the sequences is usually much greater than the true 
cost. A better approach is to use iterative deepening [Korf, 
1985]. Starting with an upper bound that is less than the 
optimal solution cost, the algorithm wil l fail to reach the 
goal node by pruning too many nodes. The bound is then 
iteratively increased, and search repeated, until the goal is 
reached. This strategy has been applied to bounded dynamic 
programming by [Ukkonen, 1985]. 

Normally, the upper bound is increased to the lowest cost 
among all nodes pruned in the current iteration. We can do 
better by quickly running a few shallow searches with bounds 
likely to be below the optimal solution cost. By regressing the 
depths reached on the bounds used, we can estimate the solu­
tion cost, since we know the depth of the goal node. We use 
this predicted bound as the starting point for traditional itera­
tive deepening, thus eliminating many iterations with bounds 
that are too low. This method of using BDP with iterative 
upper bounds is referred to as BDP-1UB [Korf and Zhang, 
2000]. The principle of iterative upper bounds can be applied 
in conjunction with either Hirschberg's or Eppstein's algo­
rithm, but in practice, Eppstein's algorithm is faster and is 
used in the results that follow. 

When using iterative deepening, no iterations of the algo­
rithm that use an upper bound less than the optimal solution 
cost can reach the goal. On the other hand, using an up­
per bound greater than the optimal solution cost examines 
more nodes than necessary. Usually we don't know the so­
lution cost in advance, and have no choice but to use iterative 
deepening. However, if we knew the optimal solution cost, 

this would represent a perfect bound (PB). Using this opti­
mal bound with BDP is the best case scenario in terms of 
performance and does not depend on any particular iterative 
deepening scheme. We refer to this scenario as BDP-PB, and 
use this algorithm below when comparing performance with 
DCFS. 

3.6 Disadvantages of dynamic p rogramming 

While BDP-1UB is easy to implement in two dimensions, ex­
tending it to three or more dimensions is much more diffi­
cult. Other researchers have also noted this difficulty [Zhang, 
2002]. While we were able to implement a BDP-1UB algo­
rithm written explicitly for three dimensions, we were not 
able to extend the implementation to four or more dimen­
sions using the same approach. In higher dimensions, we 
used a generalized implementation that explicitly checks for 
legal operators at each node. This introduces a constant fac­
tor to the time complexity of DP since processing each node 
takes longer than it would in an implementation tailored to a 
specific dimension. 

Another drawback of DP is that it can be used to find 
lowest-cost paths in directed grids, but not in more general 
grids where we allow moves in all directions. The reason is 
that dynamic programming must know a priori which nodes 
are the parents of a given node. For the general shortest-
path problem, we must use a best-first search algorithm, such 
DCFS, which is a generalization of Eppstein's algorithm. 

4 Divide-and-Conquer Frontier Search 
Divide-and-conquer frontier Search (DCFS) is a recent gen­
eral heuristic search algorithm [Korf, 1999]. Best-first-search 
algorithms, such as Dijkstra's algorithm [Dijkstra, 1959] or 
A* [Hart et al, 1968], normally store both a Closed list of 
nodes which have been expanded, and an Open list of nodes 
which have been generated but not yet expanded. DCFS 
stores only the Open list, which corresponds to the frontier 
of the searched area. The size of the Closed list is often much 
larger than the size of the Open list, and DCFS reduces the 
space requirement of aligning k strings of length / from 0{lh) 
to (){lk'x) [Korf, 1999]. 

Since DCFS does not store the Closed list, it is necessary 
to prevent the generation of nodes that have already been ex­
panded. To do this, every node stores a list of operators to 
its neighbors. When a node n is expanded, the operator from 
each neighbor n' back to n is marked as used. Therefore, 
when n' is expanded, used operators are not applied, and n is 
not regenerated. 

Unlike standard best-first search, when DCFS reaches the 
goal node, it cannot retrace pointers to discover the solution 
path, since the Closed list is not saved. Alternatively, stor­
ing a path with each Open node would require space linear in 
the path length for each node. In order to recover the solu­
tion path, before starting the search, a hyperplane is chosen 
that divides the search space in half. Every node n on the 
Open list beyond this hyperplane stores a pointer to the node 
in the hyperplane that is on the optimal path to n. In two di­
mensions, this hyperplane is simply a row or column halfway 
along one of the dimensions. We choose the hyperplane to 

SEARCH 1241 



split the longest dimension of the space. When the algorithm 
encounters the goal node, it has a pointer to a node on the 
middle plane that is on the optimal solution path. The algo­
rithm then recurses to find an optimal path from the start node 
to the optimal middle node, and also from the middle node to 
the goal node. 

DCFS is a general heuristic search algorithm. We use 
divide-and-conquer frontier A* search (DCFA*) with the cost 
function where g(n) is the cost of a path 
from the start node to node n, and h(n) is a heuristic estimate 
of reaching the goal from node n. 

5 Heuristic Evaluation Functions 
An accurate heuristic evaluation function is important to limit 
the number of nodes visited during search. In two dimen­
sions, we use the distance of a node from the corner-to-corner 
diagonal times the gap cost as a heuristic, since any solu­
tion path must return to the diagonal in order to arrive at the 
goal node. In general, the heuristic cost of a node at is 

times the gap cost, where are the 
coordinates of the goal node. 

In three dimensions, we can compute a better lower bound. 
Since we are using the sum-of-pairs cost function, we can 
use the sum of the optimal pairwise alignments as a lower-
bound heuristic. Obviously, the cost of an optimal pairwise 
alignment is always less than or equal to the cost of any other 
alignment of the two strings as part of a multiple alignment. 
For example, an optimal alignment of three sequences is: 

The cost of this alignment is 44, since the costs of the align­
ment shown for the pairs [1,2], [1,3], [2,3] are 18, 13, and 13 
respectively. The heuristic estimate for the cost of aligning 
these strings is only 43, however, since the optimal pairwise 
alignment of the pair [1,2] is only 17, as shown below. 

The heuristic evaluation of a particular node in the grid is 
a lower bound on the lowest-cost path from that node to the 
goal. This corresponds to the alignment of the sequence suf­
fixes that correspond to that node. For a three-dimensional 
alignment, we precompute and store three two-dimensional 
matrices, one for each pair of strings. Each entry of each ma­
trix contains the cost of optimally aligning the correspond­
ing remaining suffixes of the pair of strings. To compute the 
overall heuristic for any node in the cube, we sum the corre­
sponding elements from each of the three matrices. 

In the general case of aligning k sequences using the sum-
of-pairs cost, the alignment of any d sequences induced by 
the multiple alignment wil l cost at least as much as the op­
timal alignment of those d sequences. Therefore in four or 
more dimensions we can also include optimal alignments of 
three sequences in the heuristic. While the three-dimensional 
alignments are more expensive to compute and occupy more 
space than two-dimensional alignments, including them gives 

Figure 2: The five ways to partition the edges of a complete 
graph of four nodes, only four of which include a triangle. 

a more accurate heuristic function, resulting in fewer nodes 
visited during the search. 

To guarantee that the heuristic be a lower bound, we cannot 
include the cost of aligning the same pair of sequences more 
than once. For example, the cost of a pair of sequences that 
are part of a three-way alignment cannot be included in an­
other three-way alignment, or as a pairwise alignment. Con­
sider a complete graph with a node for each sequence, and 
an edge between every pair of nodes, representing that pair 
of sequences. In this graph a triangle represents a three-way 
alignment. We need to partition the edges of this graph into 
groups of single edges and triangles, without including any 
edge in more than one group, ideally in a way that maximizes 
the resulting heuristic value. 

For example, we can partition the edges of a complete 
graph of four nodes (K4) into six single edges, or one tri­
angle and three single edges. In general, we want to include 
as many three-way alignments as possible, in order to make 
the heuristic function more accurate. There are four different 
ways to partition the edges of K4 into one triplet and three 
pairs (see Figure 2). For the complete graph on five nodes, 
K5, there are 15 different ways to partition the nodes into 
two triplets and four pairs. One way of selecting which par­
titioning to use is to evaluate all of them and choose the one 
which gives the largest heuristic evaluation for the original se­
quences. The hope is that a larger heuristic evaluation of the 
start node is an indicator of larger heuristic values through­
out the search. We found that evaluating all possible parti­
tions, instead of randomly choosing one, used more time than 
it saved and did not yield significant savings. 

We represent the three-dimensional heuristics with an oc­
tree, which stores only certain parts of a cube, along with 
enough information to generate the other parts of the cube if 
needed. [McNaughton et al., 2002] Computing parts of this 
octree on demand saves a significant amount of space. We 
found that storing three-dimensional heuristics in an octree 
leads to an overall savings on hard problems because the time 
used to calculate the heuristics is offset by time saved during 
the search. 

1242 SEARCH 



Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes 
BDP-PB 
DCFA* 

59.82 77,653 
0.06 5,601 

59.83 77,690 
0.07 5,601 

60.06 220,262 
0.27 32,971 

78.12 21,109,562 
38.20 762,740 

89.79 34,838,768 
57.90 1,286,730 

Table 1: Average results over 50 generated problems of generalized versions of the two algorithms on 4 dimensional problems, 
length 400. The table displays average time in seconds, the average number of nodes expanded for DCFA*, and the average 
number of nodes visited for BDP-PB. 

= 1 = 0.75 = 0.25 = 0 
Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes 

BDP-PB 
DCFA* 

15.41 33,896 
0.02 2,701 

15.39 33,896 
0.02 2,701 

15.33 39,199 
0.02 5,246 

16.08 351,878 
0.78 97,408 

17.61 1,009,293 
1.46 110,742 

Table 2: Average results over 50 generated problems of the generalized versions of the two algorithms on 5 dimensional 
problems, length 90. The table displays average time in seconds, the average number of nodes expanded for DCFA*, and the 
average number of nodes visited for BDP-PB. 

6 Comparison of the Approaches 
6.1 Methodology 
We compared divide-and-conquer frontier A* (DCFA*) and 
bounded dynamic programming with perfect bounds (BDP-
PB) on problems of aligning 2, 3, 4 and 5 sequences. Our 
goal was to determine which algorithm could solve harder 
problems within our space limits. The difficulty of a problem 
is determined by the number, length, and similarity of the 
sequences. We ran the tests on a 1.8 Ghz Intel Pentium 4 
with 1 GB of RAM, 8 KB LI cache, and 512 KB L2 cache. 
For DCFA*, we always used a fixed-size hash table of 16 
million nodes which occupies 512 MB of memory. We tested 
both algorithms on both randomly-generated sequences and 
on real sequences from BAliBASE [Thomson et al, 1999]. 

For the randomly-generated sequences, we varied se­
quence similarity to see how it affected the performance of 
the algorithms. We first generated a reference sequence uni­
formly from an alphabet of four letters, simulating DNA se­
quences, and then generated the actual sequences from the 
reference sequence. Each character in the actual sequences 
was generated independently, with a probability of match­
ing the corresponding character in the reference sequence, 
and probability of being randomly generated, including 
the matching character. We varied from 0 1 in incre­
ments of 0.25. Problem instances with = 1 are identical se­
quences, which are easy to align, and were run in order to get 
an upper bound on solvable problem size. Problem instances 
with = 0 are the hardest problems, since the sequences are 
completely random. We ran both algorithms on 50 problems 
for each similarity, dimension, and length, and averaged the 
results. We found little variability between different random 
trials of the same experiment. 

For actual sequences, we used real protein sequences from 
the BAliBASE database of benchmark alignments [Thomson 
et al.9 1999]. Proteins are represented by strings from an al­
phabet of 20 amino acids. The pairwise cost function we used 
charges 0 units for a match, 1 unit for a substitution, and 2 
units for a gap. For multiple sequences we used the sum-
of-pairs cost function. For problems in four and five dimen­
sions, there is a choice of using two-dimensional or three-

dimensional heuristics. We ran the algorithms using both 
heuristics and reported the faster of the two times. 

6.2 Experimental results 

Our previous work [Korf and Zhang, 2000] showed that DP 
outperforms DCFA* in two and three dimensions, with ran­
dom strings. Our new results corroborate these findings; 
in two dimensions, BDP-1UB aligns completely random se­
quences much faster than DCFA*. For example, for length 
20,000 it is an average of almost 50 times faster. In three di­
mensions, the disparity is somewhat smaller, with DP align­
ing completely random sequences of length 5,500 an average 
of about 18 times faster. DCFA* exceeds our one hour time 
limit for larger problems. 

In four and five dimensions, however, DCFA* was able to 
solve much larger problems than BDP, due to memory con­
straints. DP allocates memory based on problem size. In four 
dimensions, it was able to align sequences up to length 400, 
independent of the similarity of the sequences. In contrast, 
DCFA* was able to align four completely random sequences 
of length 800 in about 17 minutes. 

Furthermore, for problems that both algorithms could 
solve, DCFA* was significantly faster than BDP. In these ex­
periments we compared DCFA* with BDP-PB, where we use 
the optimal solution cost as our initial upper bound. In a re­
alistic setting where this bound is not known a priori, BDP 
would fare even worse in comparison. The average results of 
aligning four sequences of length 400 arc shown in Table 1. 
As the sequences become more similar, the performance ad­
vantage of DCFA* increases. 

In five dimensions, BDP-PB was able to solve problems 
of length 90, whereas DCFA* was able to align completely 
random sequences of length 250 in about 5 minutes, and 
could align some random sequences of length 350. Both algo­
rithms are compared on problems of aligning five sequences 
of length 90 in Table 2. Comparing both tables, we see the 
relative performance of BDP-PB on random problems de­
creases when moving from four to five sequences. While 
BDP-PB takes about 50% longer than DCFA* to align four 
completely random sequences of length 400, it takes about 

SEARCH 1243 



| Sequence Set #Seq. Min. Seq. Length Max. Seq. Length Sol. Cost BDP-PB DCFA 
luky(ref l ) 4 186 200 1,213 7.78 6.45 
3grs(refl) 4 201 237 1,309 8.83 4.30 

1 lz in(ref l ) 4 206 216 813 5.15 1.97 
2hsdA(refl) 4 225 263 1,388 11.96 5.46 
lajsA(ref3) 4 365 387 2,102 56.23 27.28 
lpamA(ref3) 4 404 490 2,757 * 31.78 
451c(refl) 5 70 87 727 9.38 0.57 
lp lc(ref l ) 5 88 99 608 18.03 0.40 
9rnt(refl) 5 96 103 539 * 0.46 
2mhr(refl) 5 110 117 719 * 0.66 
5ptp(refl) 5 222 245 1,648 * 7.45 
l ton(ref l) 5 224 244 1,978 * 26.69 
2cba (ref1) 5 237 259 2,113 * 21.41 
kinase (ref 1) 5 263 276 2,440 * 41.26 
glg (ref1) 5 438 486 3,665 * 88.90 

Table 3: Results of the generalized versions of DCFA* and BDP-PB for 4 and 5 dimensional real protein sequence sets, with 
minimum and maximum sequence lengths for each set indicated. Times are in seconds. Problems unsolvable by BDP-PB, due 
to memory limitations, are denoted by a '*'. 

12 times longer when aligning five completely random se­
quences of length 90. 

Our results in four and five dimensions were obtained using 
dimension-independent implementations of both algorithms 
in four and five dimensions. We were not able to test perfor­
mance of hand-tailored versions for four and five dimensions 
due to the difficulties discussed in Subsection 3.6. While 
the overhead of these dimension-independent implementa­
tions contributes to the disparity in speed between the two 
algorithms, the space requirement of BDP-PB is the more 
serious drawback. We believe BDP-PB runs slower in four 
and five dimensions because bounds checking becomes more 
complicated and cache performance decreases. The book-
keeping necessary to maintain bounded regions becomes sig­
nificant, as reflected by the nearly uniform performance for 
five-dimensional problems. 

DCFA* can run larger problems in higher dimensions be­
cause the amount of memory required by BDP-PB depends 
on problem size and dimension. Much of this memory will 
not be used since many nodes lie outside the bounds, and wil l 
never be visited. The problem gets worse as the sequences 
become more similar, and as the dimensionality increases. 
DCFA*, on the other hand, allocates a fixed-size hash table, 
allowing it to align longer sequences as they become more 
similar. While DCFA* uses memory more efficiently than 
BDP-PB, both algorithms are limited by space, with the pro­
grams filling the available memory in less than an hour. 

Performance of the algorithms on real sequence sets is pre­
sented in Table 3. As for randomly-generated sequences, 
DCFA* is faster than BDP-PB for four and five dimensional 
problems. A number of the real sequence sets were solvable 
by DCFA* but not BDP-PB because of memory constraints. 
In addition, there were some sequence sets not solvable by ei­
ther algorithm. We used groups of 5 or fewer sequences from 
the first and third sets of BAliBASE (refl and ref3). Neither 
algorithm could solve problems from the other sets, which 
involved very large numbers of sequences. 

7 Future Work 
The most significant drawback of BDP in higher dimensions 
is its space requirements. One possible solution is to dynami­
cally allocate space only for the nodes actually visited, allow­
ing larger problems to fit in memory. Combining BDP with 
dynamic node allocation can be viewed as a hybrid algorithm 
between dynamic programming and best first search. The 
main drawback to this hybrid method is that node processing 
becomes significantly more complicated to implement since 
there is no longer a direct mapping between a node's location 
in memory and its position in the grid as in traditional dy­
namic programming. The mapping of memory to position is 
an integral component of DP, and thus this hybrid algorithm 
is fundamentally different than standard DP. Cache perfor­
mance, one of the main advantages of DP, would also de­
crease. 

8 Conclusions 
We compared two classes of algorithms to optimally solve 
sequence alignment problems: bounded dynamic program­
ming and divide-and-conquer frontier search. We determined 
the effects of including three-dimensional alignments in the 
heuristic function. We then compared divide-and-conquer 
frontier A* (DCFA*) to bounded dynamic programming with 
perfect bounds (BDP-PB) on problems of aligning two, three, 
four and five sequences with varying degrees of similarity. 
We also compared performance on real protein sequence sets. 
Our results indicate that BDP's inefficient use of memory 
does not allow it to solve problems which DCFA* can solve, 
and in practice is significantly slower in 4 and 5 dimensions. 
This surprising result contrasts with findings in lower dimen­
sions, where BDP is the method of choice. 

9 Acknowledgments 
Thanks to Weixiong Zhang for his invaluable help in proof­
reading a draft of this paper, supplying us with three di-

1244 SEARCH 



mensional BDP code, and for helpful feedback throughout. 
The research was supported by NSF under grant No. E1A-
0113313. 

References 
[Dijkstra, 1959] E.W. Dijkstra. A note on two problems in 

connexion with graphs. Numerische Mathematik, 1:269-
271, 1959. 

[Durbinrtf l / . , 1998] R. Durbin, S. Eddy, A. Krogh, and 
G. Mitchison. Biological sequence analysis. Cambridge 
University Press, 1998. ISBN: 0-521-62971-3. 

[Hart et aL, 1968] P.E. Hart, N.J. Nilsson, and B. Raphael. A 
formal basis for the heuristic determination of minimum 
cost paths. IEEE Trans. Systems Science and Cybernetics, 
SSC-4(2):100-107, July 1968. 

[Hirschberg, 1975] D. S. Hirschberg. A linear space algo­
rithm for computing longest common subsequences. Com­
munications of the ACM, 18:341-343, 1975. 

[Hirschberg, 1997] D. S. Hirschberg. Serial computations of 
Lcvenshtein distances. In A. Apostolico and Z. Galil, ed­
itors, Pattern matching algorithms, chapter 4, pages 123— 
141. Oxford University Press, 1997. 

iKorfand Zhang, 2000] Richard E. Korf and Weixiong 
Zhang. Divide-and-conquer frontier search applied to op­
timal sequence alignment. In Proceedings of the 7th Con­
ference on Artificial Intelligence (AAAI-00) and of the 12th 
Conference on Innovative Applications of Artificial Intel­
ligence (IAAI-00), pages 910-916, Menlo Park, CA, July 
30- 3 2000. AAA1 Press. 

[Korf, 1985] Richard E. Korf. Depth-first iterative-
deepening: An optimal admissible tree search. Artificial 
Intelligence, 27(1 ):97-109, 1985. Reprinted in Chapter 6 
of Expert Systems, A Software Methodology1 for Modern 
Applications, P.G. Raeth (Ed.), IEEE Computer Society 
Press, Washington D.C., 1990, pp. 380-389. 

[Korf, 1999] Richard E. Korf. A divide and conquer bidi­
rectional search: First results. In Dean Thomas, editor, 
Proceedings of the 16 th International Joint Conference on 
Artificial Intelligence (IJCAI-99-Vol2), pages 11184-1191, 
S.F.,July 31-August6 1999. Morgan Kaufmann Publish­
ers. 

[McNaughton et al., 2002] Matthew McNaughton, Paul Lu, 
Jonathan Schaeffer, and Duane Szafron. Memory-efficient 
A* heuristics for multiple sequence alignment. Proceed­
ings of the Eighteenth National Conference on Artificial 
Intelligence, July-August 2002. 

[Needleman and Wunsch, 1970] S. B. Needleman and C. D. 
Wunsch. A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. J. 
Mol Biol, 48:443-453,1970. 

[Spouge, 1989] J. L. Spouge. Speeding up dynamic pro­
gramming algorithms for finding optimal lattice paths. 
SIAMJ. Appi Math., 49(5): 1552-1566, October 1989. 

[Thomson et al, 1999] J.D. Thomson, F. Plewniak, and 
O. Poch. BAliBASE: a benchmark alignment database for 

the evaluation of multiple alignment programs. Bioinfor-
matics, 15(l):87-88, 1999. 

[Ukkonen, 1985] E. Ukkonen. Algorithms for approximate 
string matching. Information and Control, 64:100-118, 
1985. 

[Waterman, 1995] M. S. Waterman. Introduction to Compu­
tational Biology. Chapman & Hall, 1995. 

[Zhang, 2002] Weixiong Zhang. Personal communication, 
August 2002. 

SEARCH 1245 


