
An Improved Algor i thm for Opt imal B in Packing

Richard E. K o r f
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abs t rac t

Given a set of numbers, and a set of bins of
fixed capacity, the NP-complete problem of bin
packing is to find the minimum number of bins
needed to contain the numbers, such that the
sum of the numbers assigned to each bin does
not exceed the bin capacity. We present two
improvements to our previous bin-completion
algorithm. The first speeds up the constant fac­
tor per node generation, and the second prunes
redundant parts of the search tree. The re­
sulting algorithm appears to be asymptotically
faster than our original algorithm. On prob­
lems with 90 elements, it runs over 14 times
faster. Furthermore, the ratios of node gen­
erations and running times both increase with
increasing problem size.

1 In t roduc t i on and Overv iew
Given a set of numbers, and a fixed bin capacity, the
bin-packing problem is to assign each number to a bin
so that the sum of the numbers assigned to each bin
does not exceed the bin capacity. An optimal solution
uses the fewest number of bins. For example, given the
set of numbers 6, 12, 15, 40, 43, 82, and a bin capacity
of 100, we can assign 6, 12, and 82 to one bin, and 15,
40, and 43 to another, for a total of two bins. This is
an optimal solution to this instance, since the sum of all
the numbers, 198, is greater than 100, and hence at least
two bins are required. An example application is given a
set of orders for wire of varying lengths, and a standard
length in which it is manufactured, how to cut up the
minimum number of standard lengths to fill the orders.

Bin packing was one of the earliest problems shown
to be NP-complete[Garey & Johnson, 1979]. The vast
majority of the literature on this problem concerns
polynomial-time approximation algorithms, such as first-
fit decreasing (FFD) and best-fit decreasing (BFD), and
the quality of the solutions they compute. First-fit de­
creasing sorts the numbers in decreasing order, orders
the bins, and assigns each number in turn to the first
bin in which it fits. Best-fit decreasing sorts the num­
bers in decreasing order and then assigns each number in

turn to the fullest bin in which it fits. First-fit decreas­
ing requires three bins to pack the set of numbers above,
while best-fit decreasing packs them into two bins. Both
algorithms run in O(nlogn) time.

In this paper we are concerned with finding optimal
solutions, for several reasons. In applications with small
numbers of bins, even one extra bin is relatively expen­
sive. In addition, being able to find optimal solutions
to problem instances allows us to more accurately gauge
the quality of approximation algorithms. Furthermore,
an anytime algorithm for finding optimal solutions, such
as that presented in this paper, can make use of any ad­
ditional time available to find better solutions than those
returned by polynomial algorithms. Finally, optimal bin
packing is computationally challenging, and may lead to
insights applicable to other problems.

First we review previous algorithms for optimal bin
packing, including our bin-completion algorithm [Korf,
2002]. We then describe two improvements to bin com­
pletion. The first is an algorithm for generating un-
dominated bin completions more efficiently, reducing the
constant time per node generation. Next we describe a
method to reduce the branching factor of the search, by
eliminating branch points that are dominated by previ­
ous branches. In experiments on millions of problem in­
stances with uniformly distributed random numbers, our
new algorithm appears to be asymptotically faster than
our original bin-completion algorithm. This is based on
the observation that both the ratio of nodes generated by
the two algorithms, and also their running times, grow
with increasing problem size. On problems of size 90, our
new algorithm runs over 14 times faster than our original
bin-completion algorithm. We also report mixed results
on a common set of benchmark problems.

2 Previous W o r k

2.1 Martel lo and Toth
A well-known algorithm for optimal bin packing
[Martello & Toth, 1990a; 1990b] is based on depth-first
branch-and-bound. The numbers are first sorted, and
are considered from largest to smallest. It first computes
an approximate solution as an initial upper bound, using
the best solution among first-fit, best-fit, and worst-fit

1252 SEARCH

decreasing. Then, for each number, the algorithm places
it in each partially-filled bin that it fits into, or in an
empty bin. Thus, the algorithm branches on the differ­
ent bins that a number can be placed in. It also uses a
lower-bound function to prune the search.

2.2 M o r e R e c e n t O R A p p r o a c h e s
An anonymous reviewer pointed out some more recent
references on optimal bin packing from the operations
research literature, based on integer programming for­
mulations, wi th linear-programming relaxations. [Vale-
rio de CarvaJho, 1999; Scholl, Klein, & Jurgens, 1997;
Vanderbeck, 1999; DeGraeve & Schrage, 1999; Vance et
a/., 1994; Vance, 1998] While we have not yet fully di­
gested this work, we report below some comparison re­
sults on a standard set of benchmarks.

2.3 B i n C o m p l e t i o n
In [Korf, 2002], we described our bin completion algo­
r i thm, which uses a branching structure different from
that of Martello and Toth. A feasible set is a set of
numbers whose sum does not exceed the bin capacity.
Initially, we sort the numbers in decreasing order of size.
We then generate feasible sets that include the largest
number. If there is more than one such set, the search
may branch at that point. Each node of the search tree,
except the root node, represents a complete assignment
of numbers to a particular bin. The children of the root
represent different ways of completing the bin contain­
ing the largest number. The nodes at the next level
represent different feasible sets that include the largest
remaining number, etc. The depth of any branch of the
tree is the number of bins in the corresponding solution.

Bin completion is also a branch-and-bound algorithm.
It starts with the best-fit decreasing solution as an upper
bound, and applies a lower-bound heuristic function to
prune the search. Rather than assigning numbers one
at a time to bins, it branches on the different feasible
sets that can be used to complete each bin. Bin com­
pletion appears asymptotically faster than the Martello
and Toth algorithm, and outperforms it by a factor of
a thousand on problems of size 60. The key property
that makes it more efficient is a dominance condition on
the feasible completions of a bin that allows us to only
consider a small subset of them.

2.4 Set D o m i n a n c e
Some sets of elements assigned to a bin cannot lead to
solutions that are any better than those achievable by
assigning other sets of elements to the same bin. We
begin wi th some simple examples of these dominance
relations, and then consider the general formulation.

First, consider two elements x and y whose sum is
exactly the bin capacity c. Assume that in one solution,
x and y are in different bins. In that case, we can swap y
with all other elements in the bin containing x, without
increasing the number of bins. This gives us an equally
good solution with x and y in the same bin. Thus, given
a problem with two values x and y such that = c,

we can always put x and y in the same bin, resulting
in a smaller problem [Gent, 1998]. Unfortunately, this
does not extend to three or more elements that sum to
exactly the bin capacity.

As another example, consider an element x such that
any two remaining elements added to x wil l exceed c.
In other words, at most one additional element can be
added to the bin containing x. Let y be the largest
remaining element such that Then, we can
place y in the same bin as x without sacrificing solution
quality. The reason is that if we placed any other single
element z with x, then we could swap y wi th z, since

As a final example, again assume that y is the largest
remaining element that can be added to x such that x +
y c, and that y equals or exceeds the sum of any set
of remaining elements that can be added to x without
exceeding c. In that case, we can again put x and y in
the same bin, without sacrificing solution quality. The
reason is that any other set of elements that were placed
in the same bin as x could be swapped with y without
increasing the number of bins.

To illustrate the general form of this dominance rela­
t ion, let A and B be two feasible sets. If the elements
in B can be partitioned into subsets, and the subsets
can be matched to the elements of A such that the sum
of the elements in each subset doesn't exceed the cor­
responding element of A, then set A dominates set B.
In other words, if the elements of B can be packed into
bins whose capacities are the elements of A, then set A

Given all the feasible sets that contain a common el­
ement x, only the undominated sets need be considered
for assignment to the bin containing x. The reason is
that if we complete the bin containing x with a domi­
nated set, then we could swap each subset of numbers
in the dominated set wi th the corresponding element of
the dominating set, and get another solution without
increasing the total number of bins.

Martello and Toth use this dominance relation to some
extent. In particular, they take each element x, starting
with the largest element, and check if there is a single
completion of one or two more elements that dominates
all feasible sets containing x. If so, they place x with
those elements in the same bin, and apply the reduction
to the remaining subproblem. They also use dominance
relations to prune some element placements as well.

Our bin-completion algorithm, however, makes much
greater use of this dominance condition. In particular,
when branching on the completion of any bin, it only
considers undominated completions.

3 F ind ing Undomina ted Complet ions
The first contribution of this paper is a faster algorithm
to generate all the undominated completions of a bin.

SEARCH 1253

3.1 Prev ious A l g o r i t h m
The simplest algorithm is to generate all feasible sets
that include a particular element, and then test each
pair of sets for dominance. Our original implementation
improved on this by only generating a subset of all feasi­
ble completions, and testing for pairwise dominance only
among those. In particular, if only one additional num­
ber can be added to a bin, only the largest such number
is added. If only two additional numbers can be added to
a bin, the set of two-element undominated completions
can be found in linear time, as follows.

Each undominated two-element completion must have
a sum greater than the largest feasible single number,
and less than or equal to the remaining capacity of the
bin. The remaining values are kept in sorted order, with
two pointers, one initially assigned to the largest value
and the other to the smallest value. If the sum of these
two numbers exceeds the remaining capacity, the pointer
to the larger number is moved to the next smaller num­
ber. If the sum of the two numbers is less than or equal
to the largest single feasible number, the pointer to the
smaller number is moved to the next larger number. If
the sum of the two numbers is within this range, the
pointer to the smaller number is increased to the largest
number for which the sum of the two is stil l in range,
and these two values form an undominated two-element
completion. Then the pointer to the larger number is
moved to the next smaller number, and the pointer to
the smaller number is moved to the next larger number.
This process continues unti l the two pointers meet.

If the sum of the numbers in two feasible sets are un­
equal, only the one with the larger sum can dominate the
other. If two sets have the same sum, only the one with
the smaller cardinality can dominate the other. Once
a subset of the feasible completions is found, each pair
was tested to see if either dominates the other. This
was done by trying to pack the numbers of the poten­
tial dominated set into bins whose capacities were the
numbers of the potential dominating set. These small
bin-packing problems were solved by brute-force search.

There are two drawbacks to this approach. The first is
the time to generate and then test the dominated feasible
sets. The second is the memory needed to store the
dominated feasible sets before they are pruned.

3.2 Genera t ing U n d o m i n a t e d Sets Faster
Ideally, we would like to generate all and only undomi­
nated bin completions, without pairwise testing of feasi­
ble sets for dominance. We describe such an algorithm
in three stages: 1) how to generate all subsets of a uni­
verse, 2) how to generate only feasible subsets, and 3)
how to generate only undominated feasible subsets.

The easiest way to generate all 2n subsets of n el­
ements is to recursively traverse a binary tree, where
each node represents a collection of subsets. The root
node represents the entire power set, and the leaf nodes
represent individual subsets. Each interior level of the
tree corresponds to a different element. At each node,
the left branch includes the corresponding element in all

subsets below i t , and the right branch excludes the same
element from all subsets below i t . The tree is traversed
depth-first using only linear memory.

To generate feasible completions of a bin containing a
number x, we add an upper bound on the sum to each
recursive call, which is initially the residual capacity, or
the bin capacity minus x. We sort the remaining unas-
signed numbers in decreasing order of size. We only
include numbers that are less than or equal to the up­
per bound. When we include a number by taking the
left branch from a node, we subtract it from the upper
bound of all recursive calls below that branch. When
the upper bound drops to zero, we prune the tree below
that node, since no further numbers can be added. This
generates all feasible completions of a bin containing x.

Generating undominated feasible completions requires
a l i tt le more work. When we exclude a number that ex­
ceeds the upper bound, by taking the right branch from
the corresponding node, nothing additional is required,
since it can't be a member of any feasible set below that
node. If we exclude a number that equals the upper
bound, we can terminate that branch of the binary tree
immediately, because any feasible subset of included el­
ements below that node cannot sum to more than the
excluded element, and any subset with a smaller sum
would be dominated by the excluded element.

What happens when we exclude a number that is less
than the upper bound? To prevent the excluded clement
from dominating any included subset below i t , the sum
of the numbers in any such subset must exceed the ex­
cluded element. This generates a lower bound on the
sum of the elements in any included subset below this
node, which is equal to the excluded element plus one,
assuming that the numbers are integers. As with the
upper bound, the lower bound is reduced by any sub­
sequently included elements in the recursive calls below
the corresponding nodes. The lower bound generated by
an excluded element is only used if it exceeds the current
lower bound on that node.

Thus, we perform a depth-first traversal of the binary
tree representing all possible subsets of numbers remain­
ing to be assigned. This traversal is pruned by the upper
and lower bounds propagated down the tree as described
above, and generates complete subsets at the leaf nodes.
These wil l include all undominated feasible sets, but may
include some dominated feasible sets as well.

To eliminate these, we perform an additional test on
the feasible bin completions generated. The residual ca­
pacity r of a bin is the bin capacity c minus the largest
number in the bin, which is common to all feasible com­
pletions of a given bin. Let t be the sum of all the num­
bers in a feasible set A, excluding the common largest
number. The excluded numbers are all remaining num­
bers less than or equal to r that are not included in A.
Set A wil l be dominated if and only if it contains any
subset whose sum s is less than or equal to an excluded
number x, such that replacing the subset with x wil l not
exceed the bin capacity. This wi l l be the case if and only
if Thus, to guarantee that a feasible set

1254 SEARCH

A is undominated, we check each possible subset sum s,
and each excluded number x, to verify that

This algorithm generates feasible sets and immediately
tests them for dominance, so it never stores multiple
dominated sets. It tests for dominance by comparing
subset sums of included elements to excluded elements,
rather than comparing pairs of sets for dominance.

Pseudo-code for this algorithm is given below. The
feasible function takes a set I of included elements, a set
E of excluded elements, a set R of remaining elements,
a lower bound / and an upper bound u. It generates all
feasible sets of remaining elements whose sum is within
the two bounds, and calls the test function on each. In
the init ial call, I and E are empty, R contains all remain­
ing elements less than or equal to the residual capacity r
of the bin, u is set to r, and I is set to the largest single
element that can feasibly be added to the bin, plus one.
Test is the test described above, and is a function of the
included elements J, the excluded elements E, and the
residual capacity r.

To improve this algorithm, we use the same optimiza­
tions used in our original algorithm to generate feasible
sets. Namely, if only one more number can be added to
a bin, we only add the largest such number, and if only
two more numbers can be added, we generate all un­
dominated two-element completions in linear time. This
algorithm speeds up the generation of all undominated
sets, without affecting the number of bin completions
considered. For that, we turn to our next contribution.

4 P run ing the Search Space
Consider a number w in a bin, with a capacity of c. As­
sume that two undominated feasible completions of the

our search explores bin completions in decreasing order
of subset sum, so in this case we consider before

Furthermore, assume that after exhausting the
subproblem below the assignment and while
exploring the subproblem below the assignment
we find a solution that assigns x and y to the same bin,
say Since and

we could swap z wi th x and y, resulting in
a solution with the same number of bins, but including
the bin assignments and However, all
possible solutions below the node representing the bin
assignment have already been explored. Thus,

this solution is redundant, and doesn't need to be con­
sidered again. In particular, below the branch of
the search tree, any solution that assigns x and y to the
same bin wil l be redundant and can be pruned.

In general, given a node with more than one child,
when searching the subtree of any child but the first,
we don't need to consider bin assignments that assign
to the same bin all the numbers used to complete the
current bin in a previously-explored child node. More
precisely, let be a set of brother nodes
in the search tree, and let be the sets
of numbers used to complete the bin in each node, ex­
cluding the first number assigned to the bin, which is
common to all the brother nodes. When searching the
subtree below node Nt for i 1, we exclude any bin
assignments that put all the numbers in Sj in the same
bin, for j < i. Thus, no bin completion below node Ni
can have as a subset the numbers in for By re­
jecting these bin assignments as redundant, the number
of node generations is reduced.

4.1 Cur ren t I m p l e m e n t a t i o n
Our current implementation of this pruning rule propa­
gates a list of nogood sets along the tree. After generating
the undominated completions for a given bin, we check
each one to see if it contains any current nogood sets as
a subset. If it does, we ignore that bin completion.

To keep the list of nogood sets from getting too long,
occupying memory to store them and time to test them
against bin completions, we prune the list as follows.
Whenever there is a non-empty intersection between a
bin completion and a nogood set, but the nogood set is
not a subset of the bin completion, we remove that no-
good set from the list that is passed down to the children
of that bin completion. The reason is that by including
at least one but not all the numbers in the nogood set
in a bin completion, we've split up the nogood set, guar­
anteeing that it can't be a subset of any bin completion
below that node in the search tree.

This implementation could probably be improved with
more sophisticated data structures for representing arid
manipulating sets of elements.

5 Exper imenta l Results
We tested our algorithm on large sets of problems with
uniformly-distributed high-precision numbers, and on a
set of benchmark problems of relatively low precision.

5.1 U n i f o r m H i g h Prec is ion Numbers
We compared our original algorithm to our new bin-
completion algorithm on the same problem instances
and on the same machine. Since high-precision numbers
are often more difficult to pack than low-precision num­
bers, we used a bin capacity of one mill ion, and random
numbers uniformly distributed from one to one million.
Given the enormous variation in the difficulty of indi­
vidual problem instances, we ran one million instances
of each problem size, which ranged from 5 to 95 numbers,
in increments of 5. Table 1 shows the results.

SEARCH 1255

[N Optimal Original Without Pruning With Nogood Pruning Ratios
Bins Time Nodes Time Nodes Time Nodes Time

5 3.215 6 .064 6 .064 5 1.000 1.200 1
10 5.966 13 .119 13 .119 12 1.000 1.083
15 8.659 19 .362 20 .360 19 1.006 1.000
20 11.321 27 .727 28 .716 26 1.015 1.038
25 13.966 36 1.249 37 1.204 35 1.037 1.029
30 16.593 44 2.046 46 1.878 43 1.099 1.023
35 19.212 55 3.376 57 2.827 52 1.194 1.058
40 21.823 73 6.325 71 4.452 65 1.421 1.123
45 24.427 103 13.346 94 7.338 81 1.819 1.272

| 50 27.026 189 29.414 136 12.364 104 2.379 1.817
55 29.620 609 124.476 367 28.931 174 4.303 3.500
60 32.210 2,059 391.847 1,097 108.527 518 3.611 3.975
65 34.796 28,216 7,984.196 15,694 649.553 2,658 12.292 10.616
70 37.378 41,560 9,408.125 22,628 786.126 3,549 11.968 11.710
75 39.957 194,851 57,529.770 119,928 5,308.159 21,739 10.838 8.963
80 42.534 408,580 113,746.144 233,367 7,560.130 30,972 15.046 13.192
85 45.108 412,576 129,618.988 282,851 8,697.441 36,098 14.903 11.429
90 47.680 2,522,993 38,176.160 171,778 14.688
95 50.253 324,811.294 1,343,092

Table 1: Experimental Results for Uniformly Distributed, High-Precision Numbers

The first column gives the problem size, which is the
number of values being packed. The second column
shows the average number of bins needed in the optimal
solution. Since the numbers range uniformly from zero
to the bin capacity, the expected value of any number is
half the bin capacity, and the expected value of the sum
of the numbers is the half the bin capacity times the
number of values. As expected, the average minimum
number of bins is slightly more than half the number of
values, due to the inevitable wasted space in the bins.

The third column gives the average running time of
our original bin-completion algorithm [Korf, 2002], in
microseconds. This is also the total time in seconds to
solve all one million problem instances. A l l implementa­
tions are on a 440 Megahertz Sun Ultra 10 workstation.

The next two columns, labelled "Without Pruning",
give the average node generations and running times in
microseconds for our implementation of bin completion
with our new method of generating undominated feasi­
ble sets, but without pruning nogood sets. While this
program considers the same number of candidate solu­
tions as our original one, the node generations differ from
those reported in our earlier paper [Korf, 2002]. The
reason is that we define a node as a recursive call to the
search routine, and our current implementation checks
terminating conditions before making a recursive call,
rather than at the beginning of the search function. Our
new program outperforms our original one by a factor of
up to 1.84 in running time. We didn't run it on problems
of size 90 or 95 due to the time that would be required.

The next two columns, labelled "Wi th Nogood Prun­
ing" , give the average number of nodes generated and
average running time in microseconds for our full algo­
r i thm, including nogood pruning. Comparing the num­

ber of node generations to the corresponding column
without pruning shows the effect of nogood pruning.

The last two columns give performance ratios of our
best program, including nogood pruning. The node ra­
tio is the number of nodes generated without nogood
pruning, divided by those generated with nogood prun­
ing. The time ratio is the running time of our original
program, divided by our current best program.

As problem size increases, nogood pruning generates
increasingly fewer nodes than without pruning. On the
largest problems we ran both algorithms on, the ratio
of node generations is about a factor of 15. The fact
that the node generation ratio increases with increasing
problem size suggests that nogood pruning reduces the
asymptotic time complexity of bin completion.

The ratios of the running times displays a similar
trend, although the values are less than the ratios of
node generations. This is due to the increased overhead
of nogood pruning. On the larger problems, our new al­
gorithm is over an order of magnitude faster than our
original algorithm. Problems of size 95 take an average
of only 1.343 seconds per problem to solve optimally.

V a r i a t i o n i n I n d i v i d u a l P r o b l e m D i f f i cu l t y
There is tremendous variation in the difficulty of individ­
ual problems. For example, in 68.56% percent of the one
mill ion problems with 95 numbers, the best-fit decreas­
ing solution uses the same number of bins as the lower
bound, solving the problem without any search. Among
the same problems, however, twenty instances generated
more than a bill ion nodes, three of those generated more
than ten bill ion nodes, and one of those generated more
than a hundred bill ion nodes. Our program solved over
125,000 problems of size 100 in about a day, and then
failed to solve the next problem in over 43 days. What

1256 SEARCH

distinguishes the hard problems from the easy ones?
Among all problems of size 95, the average number of

bins in the optimal solution is 50.253. Among the twenty
hardest problems, however, the average optimal number
of bins is only 39.85. Intuitively, this makes sense, since
fewer bins means more items per bin, and hence more
undominated feasible sets to consider.

On the other hand, problems wi th a relatively small
number of bins in the optimal solution are not neces­
sarily difficult. The reason is that wi th smaller num­
bers, approximation algorithms like best-fit decreasing
are more accurate. For example, eleven problems of size
95 required 36 or fewer bins. Seven of those required no
search, and the average number of nodes generated to
solve all eleven was only 12,704, compared to an average
of 324,811 nodes for all one million problem instances.

Thus, the hard problems tend to use fewer bins, but
problems that use fewer bins are not necessarily hard,
since often the lower bounds agree with the solutions
returned by approximation algorithms.

5.2 B e n c h m a r k P r o b l e m s

We also ran our best algorithm on eight sets of twenty
benchmark problems each, from the operations research
library maintained by J.E. Beasley at Imperial College,
London. These problem instances were originally gen­
erated by Falkenauer [Falkenauer, 1996], and have been
used by a number of other researchers [Valerio de Car-
valho, 1999; Vanderbeck, 1999]. We compare our results
to [Valerio de Carvalho, 1999], since he reports the most
detailed results. He ran his experiments on a 120 MHz
Pentium, compared to our 440 MHz Sun workstation.

U n i f o r m P rob lems
The first four problem sets, called uniform problems,
consist of numbers chosen uniformly from 20 to 100, with
a bin capacity of 150. Each set contains 20 problems,
which are of size 120, 250, 500, and 1000 numbers each.

On the uniform problems of size 120, our best algo­
r i thm took 2 seconds on problem 0, 3 seconds on prob­
lem 3, and solved the rest instantly, meaning in less
than a second. In eleven of these problems, either the
best-fit decreasing solution, or the first solution found by
bin completion, matched our lower bound, requiring no
search. [Valerio de Carvalho, 1999] reports an average of
4.22 seconds for these problem instances.

For the uniform problems of size 250, our algorithm
solved all but three instantaneously, solved problem 15
in 318 seconds, but failed to solve problems 7 and 13 in
over ten minutes each. In twelve of these problems, the
first solution found by bin completion matched our lower
bound. [Valerio de Carvalho, 1999] reports an average
of 5.98 seconds for these problems.

On uniform problems of size 500, our algorithm solved
14 problems instantly, took 4 and 160 seconds on prob­
lems 3 and 5, respectively, but failed to solve problems 0,
6, 7, and 8 in ten minutes each. In eleven of these prob­
lems, the first solution found by bin completion matched

our lower bound. [Valerio de Carvalho, 1999] reports an
average of 6.93 seconds on these instances.

For uniform problems of size 1000, our algorithm
solved problems 0, 1, 5, 6, 8, 10, 11, 13 and 18 instantly,
and solved problems 14 and 16 in 69 and 10 seconds, re­
spectively. In seven of these problems, the first solution
found by bin completion matched our lower bound. It
failed, however, to solve the remaining 9 problems in ten
CPU minutes each. [Valerio de Carvalho, 1999] reports
an average of 7.45 seconds for these problems.

T r i p l e t P rob lems
The other four problem sets are called triplets, since each
bin contains exactly three elements in the optimal solu­
tion. The bin capacity is 1000, with numbers in the range
250 to 500. The first number in each bin was chosen uni­
formly from 380 to 490, the second was chosen from 250
to one-half the size of the first number, and the third el­
ement was chosen so that the sum of the three is exactly
1000. Thus, no space is wasted in the optimal solution.

Our algorithm solved all 20 triplets of size 60 instantly,
while [Valerio de Carvalho, 1999] reports an average of
4.14 seconds on these problems.

On triplets of size 120, our algorithm solved all but
four problems instantly, and required 26, 1, 3, and 2
seconds on problems 0, 4, 13, and 19, respectively, for an
average time of 1.6 seconds. [Valerio de Carvalho, 1999]
reports an average of 26.95 seconds on these instances.

On triplets of size 249, our algorithm solved instances
3, 4, 9, 11, and 19 instantly, required 2, 19, 206, 157, 1,
75 and 126 seconds on problems 0, 6, 7, 8, 10, 13, and
15, respectively, but failed to solve the remaining 8 prob­
lems after 10 minutes each. [Valerio de Carvalho, 1999]
reports an average of 122.85 seconds on these problems.

We were unable to solve any of the triplets of size 501,
with ten CPU minutes each. [Valerio de Carvalho, 1999]
reports an average of 360.69 seconds on these instances.

Discussion o f Benchmark Resul ts
On the uniform problems of size 120, and on the triplets
of size 60 and 120, our algorithm outperformed that of
[Valerio de Carvalho, 1999] in average running time, tak­
ing into account the different clock speeds of our ma­
chines. On the remaining sets of problems, our algo­
r i thm would require a longer average running time, since
it failed to solve some instances in ten minutes. On uni­
form problems of size 250 and 500, however, our algo­
r i thm took less time than that of [Valerio de Carvalho,
1999] on most problem instances, 17 out of 20 for size
250, and 14 out of 20 for size 500. On uniform problems
of size 1000, our algorithm took less time on 9 out of 20
problems, and on triplets of size 249 our algorithm was
faster on 8 out of 20 problems. Overall, our algorithm
performed worse than that of [Valerio de Carvalho, 1999]
on the largest problem sets, however.

One possible reason for this difference in performance
is that we designed our algorithm with high-precision
numbers in mind, ranging from one to a million in our
experiments. Wi th these values, there are no duplicate
numbers in the same problem instance, and no pairs of

SEARCH 1257

numbers that sum to exactly the bin capacity. Thus, we
didn't consider optimizations that are only possible with
duplicate numbers. In the uniform benchmark datasets,
however, the values range from 20 to 100, and in the
triplets datasets they range from 250 to 500. As a result,
these problem sets contain many identical numbers.

While high-precision values are usually more difficult
to pack, this is not the case with the triplet datasets con­
sidered here. In particular, if they were generated in the
same way, but using high-precision values instead, the
first solution found by bin completion would be optimal,
since there would be only one way to fill each bin com­
pletely, and that completion would be considered first.
Furthermore, it would be immediately recognized as op­
timal, since there is no extra space in any of the bins.

6 Conclusions
We presented two improvements to our original bin-
completion algorithm. The first is an algorithm for gen­
erating all undominated bin completions directly, with­
out testing pairs of completions for dominance. More
importantly, we presented an algorithm to identify and
eliminate redundant bin completions, which prunes the
search space. Combining these two improvements yields
an algorithm that appears to be asymptotically faster
than our original, and runs over 14 times faster on prob­
lems of size 90. For numbers uniformly distributed from
zero to the bin capacity, we can solve a million problems
of size 95 optimally in an average of 1.343 seconds per
problem instance.

There is enormous variation in individual problem dif­
ficulty, with most problems being solved instantly, but
some running for days or weeks. One problem of size 100
ran for 43 days without verifying an optimal solution.

On a set of standard benchmark problems, the results
were mixed. Our algorithm outperformed that of [Vale-
rio de Carvalho, 1999] on the smaller problem instances,
but did worse on the largest problem instances. These
benchmarks problems contain relatively low-precision
values, which may provide further opportunities for im­
proving the performance of bin completion.

It is important to note that most of the algorithms
described in this paper are anytime algorithms. In other
words, they produce an approximate solution immedi­
ately, and as they continue to run they produce better
solutions, unti l they find and eventually verify the opti­
mal solution. Furthermore, the gap between the approx­
imate solution and the lower bound is often only a single
bin, and always known throughout the computation, al­
lowing the user to decide how much effort to expend in
trying to achieve this improvement.

7 Acknowledgments
Thanks to the anonymous reviewers, particularly for
pointing out the recent work on this problem in the op­
erations research community. This work was supported
by NSF under grant No. EIA-0113313, by NASA and

JPL under contract No. 1229784, and by the State of
California MICRO grant No. 01-044.

References
[DeGraeve & Schrage, 1999] DeGraeve, Z.,

and Schrage, L. 1999. Optimal integer solutions to
industrial cutting stock problems. INFORMS Journal
on Computing 11(4):406-419.

[Falkenauer, 1996] Falkenauer, E. 1996. A hybrid group­
ing genetic algorithm for bin packing. Journal of
Heuristics 2:5-30.

[Garey & Johnson, 1979] Garey, M., and Johnson, D.
1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco: W.H.
Freeman.

[Gent, 1998] Gent, I. 1998. Heuristic solution of open
bin packing problems. Journal of Heuristics 3:299-
304.

[Korf, 2002] Korf, R. 2002. A new algorithm for opti­
mal bin packing. In Proceedings of the National Con­
ference on Artificial Intelligence (AAAI-02), 731-736.
Edmonton, Alberta, Canada: A A A I Press.

[Martello & Toth, 1990a] Martello, S., and Toth, P.
1990a. Bin-packing problem. In Knapsack Problems:
Algorithms and Computer Implementations. Wiley,
chapter 8, 221-245.

[Martello & Toth, 1990b] Martello, S., and Toth, P.
1990b. Lower bounds and reduction procedures for
the bin packing problem. Discrete Applied Mathemat­
ics 28:59-70.

[Scholl, Klein, & Jurgens, 1997] Scholl, A.; Klein, R.;
and Jurgens, C. 1997. Bison: A fast hybrid pro­
cedure for exactly solving the one-dimensional bin
packing problem. Computers and Operations Research
24(7):627-645.

[Valerio de Carvalho, 1999] Valerio de Carvalho, J.
1999. Exact solution of bin-packing problems using
column generation and branch-and-bound. Annals of
Operations Research 86:629-659.

[Vance et a/., 1994] Vance, P. H.; Barnhart, C; John­
son, E. L.; and Nemhauser, G. L. 1994. Solving bi­
nary cutting stock problems by column generation and
branch-and-bound. Computational Optimization and
Applications 3:111-130.

[Vance, 1998] Vance, P. H. 1998. Branch-and-price algo­
rithms for the one-dimensional cutting stock problem.
Computational Optimization and Applications 9:211-
228.

[Vanderbeck, 1999] Vanderbeck, F. 1999. Computa­
tional study of a column generation algorithm for bin
packing and cutting stock problems. Mathematical
Programming Series A 86:565-594.

1258 SEARCH

