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Abs t rac t 

Given a set of numbers, and a set of bins of 
fixed capacity, the NP-complete problem of bin 
packing is to find the minimum number of bins 
needed to contain the numbers, such that the 
sum of the numbers assigned to each bin does 
not exceed the bin capacity. We present two 
improvements to our previous bin-completion 
algorithm. The first speeds up the constant fac­
tor per node generation, and the second prunes 
redundant parts of the search tree. The re­
sulting algorithm appears to be asymptotically 
faster than our original algorithm. On prob­
lems with 90 elements, it runs over 14 times 
faster. Furthermore, the ratios of node gen­
erations and running times both increase with 
increasing problem size. 

1 In t roduc t i on and Overv iew 
Given a set of numbers, and a fixed bin capacity, the 
bin-packing problem is to assign each number to a bin 
so that the sum of the numbers assigned to each bin 
does not exceed the bin capacity. An optimal solution 
uses the fewest number of bins. For example, given the 
set of numbers 6, 12, 15, 40, 43, 82, and a bin capacity 
of 100, we can assign 6, 12, and 82 to one bin, and 15, 
40, and 43 to another, for a total of two bins. This is 
an optimal solution to this instance, since the sum of all 
the numbers, 198, is greater than 100, and hence at least 
two bins are required. An example application is given a 
set of orders for wire of varying lengths, and a standard 
length in which it is manufactured, how to cut up the 
minimum number of standard lengths to fill the orders. 

Bin packing was one of the earliest problems shown 
to be NP-complete[Garey & Johnson, 1979]. The vast 
majority of the literature on this problem concerns 
polynomial-time approximation algorithms, such as first-
fit decreasing (FFD) and best-fit decreasing (BFD), and 
the quality of the solutions they compute. First-fit de­
creasing sorts the numbers in decreasing order, orders 
the bins, and assigns each number in turn to the first 
bin in which it fits. Best-fit decreasing sorts the num­
bers in decreasing order and then assigns each number in 

turn to the fullest bin in which it fits. First-fit decreas­
ing requires three bins to pack the set of numbers above, 
while best-fit decreasing packs them into two bins. Both 
algorithms run in O(nlogn) time. 

In this paper we are concerned with finding optimal 
solutions, for several reasons. In applications with small 
numbers of bins, even one extra bin is relatively expen­
sive. In addition, being able to find optimal solutions 
to problem instances allows us to more accurately gauge 
the quality of approximation algorithms. Furthermore, 
an anytime algorithm for finding optimal solutions, such 
as that presented in this paper, can make use of any ad­
ditional time available to find better solutions than those 
returned by polynomial algorithms. Finally, optimal bin 
packing is computationally challenging, and may lead to 
insights applicable to other problems. 

First we review previous algorithms for optimal bin 
packing, including our bin-completion algorithm [Korf, 
2002]. We then describe two improvements to bin com­
pletion. The first is an algorithm for generating un-
dominated bin completions more efficiently, reducing the 
constant time per node generation. Next we describe a 
method to reduce the branching factor of the search, by 
eliminating branch points that are dominated by previ­
ous branches. In experiments on millions of problem in­
stances with uniformly distributed random numbers, our 
new algorithm appears to be asymptotically faster than 
our original bin-completion algorithm. This is based on 
the observation that both the ratio of nodes generated by 
the two algorithms, and also their running times, grow 
with increasing problem size. On problems of size 90, our 
new algorithm runs over 14 times faster than our original 
bin-completion algorithm. We also report mixed results 
on a common set of benchmark problems. 

2 Previous W o r k 

2.1 Martel lo and Toth 
A well-known algorithm for optimal bin packing 
[Martello & Toth, 1990a; 1990b] is based on depth-first 
branch-and-bound. The numbers are first sorted, and 
are considered from largest to smallest. It first computes 
an approximate solution as an initial upper bound, using 
the best solution among first-fit, best-fit, and worst-fit 
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decreasing. Then, for each number, the algorithm places 
it in each partially-filled bin that it fits into, or in an 
empty bin. Thus, the algorithm branches on the differ­
ent bins that a number can be placed in. It also uses a 
lower-bound function to prune the search. 

2.2 M o r e R e c e n t O R A p p r o a c h e s 
An anonymous reviewer pointed out some more recent 
references on optimal bin packing from the operations 
research literature, based on integer programming for­
mulations, wi th linear-programming relaxations. [Vale-
rio de CarvaJho, 1999; Scholl, Klein, & Jurgens, 1997; 
Vanderbeck, 1999; DeGraeve & Schrage, 1999; Vance et 
a/., 1994; Vance, 1998] While we have not yet fully di­
gested this work, we report below some comparison re­
sults on a standard set of benchmarks. 

2.3 B i n C o m p l e t i o n 
In [Korf, 2002], we described our bin completion algo­
r i thm, which uses a branching structure different from 
that of Martello and Toth. A feasible set is a set of 
numbers whose sum does not exceed the bin capacity. 
Initially, we sort the numbers in decreasing order of size. 
We then generate feasible sets that include the largest 
number. If there is more than one such set, the search 
may branch at that point. Each node of the search tree, 
except the root node, represents a complete assignment 
of numbers to a particular bin. The children of the root 
represent different ways of completing the bin contain­
ing the largest number. The nodes at the next level 
represent different feasible sets that include the largest 
remaining number, etc. The depth of any branch of the 
tree is the number of bins in the corresponding solution. 

Bin completion is also a branch-and-bound algorithm. 
It starts with the best-fit decreasing solution as an upper 
bound, and applies a lower-bound heuristic function to 
prune the search. Rather than assigning numbers one 
at a time to bins, it branches on the different feasible 
sets that can be used to complete each bin. Bin com­
pletion appears asymptotically faster than the Martello 
and Toth algorithm, and outperforms it by a factor of 
a thousand on problems of size 60. The key property 
that makes it more efficient is a dominance condition on 
the feasible completions of a bin that allows us to only 
consider a small subset of them. 

2.4 Set D o m i n a n c e 
Some sets of elements assigned to a bin cannot lead to 
solutions that are any better than those achievable by 
assigning other sets of elements to the same bin. We 
begin wi th some simple examples of these dominance 
relations, and then consider the general formulation. 

First, consider two elements x and y whose sum is 
exactly the bin capacity c. Assume that in one solution, 
x and y are in different bins. In that case, we can swap y 
with all other elements in the bin containing x, without 
increasing the number of bins. This gives us an equally 
good solution with x and y in the same bin. Thus, given 
a problem with two values x and y such that = c, 

we can always put x and y in the same bin, resulting 
in a smaller problem [Gent, 1998]. Unfortunately, this 
does not extend to three or more elements that sum to 
exactly the bin capacity. 

As another example, consider an element x such that 
any two remaining elements added to x wil l exceed c. 
In other words, at most one additional element can be 
added to the bin containing x. Let y be the largest 
remaining element such that Then, we can 
place y in the same bin as x without sacrificing solution 
quality. The reason is that if we placed any other single 
element z with x, then we could swap y wi th z, since 

As a final example, again assume that y is the largest 
remaining element that can be added to x such that x + 
y c, and that y equals or exceeds the sum of any set 
of remaining elements that can be added to x without 
exceeding c. In that case, we can again put x and y in 
the same bin, without sacrificing solution quality. The 
reason is that any other set of elements that were placed 
in the same bin as x could be swapped with y without 
increasing the number of bins. 

To illustrate the general form of this dominance rela­
t ion, let A and B be two feasible sets. If the elements 
in B can be partitioned into subsets, and the subsets 
can be matched to the elements of A such that the sum 
of the elements in each subset doesn't exceed the cor­
responding element of A, then set A dominates set B. 
In other words, if the elements of B can be packed into 
bins whose capacities are the elements of A, then set A 

Given all the feasible sets that contain a common el­
ement x, only the undominated sets need be considered 
for assignment to the bin containing x. The reason is 
that if we complete the bin containing x with a domi­
nated set, then we could swap each subset of numbers 
in the dominated set wi th the corresponding element of 
the dominating set, and get another solution without 
increasing the total number of bins. 

Martello and Toth use this dominance relation to some 
extent. In particular, they take each element x, starting 
with the largest element, and check if there is a single 
completion of one or two more elements that dominates 
all feasible sets containing x. If so, they place x with 
those elements in the same bin, and apply the reduction 
to the remaining subproblem. They also use dominance 
relations to prune some element placements as well. 

Our bin-completion algorithm, however, makes much 
greater use of this dominance condition. In particular, 
when branching on the completion of any bin, it only 
considers undominated completions. 

3 F ind ing Undomina ted Complet ions 
The first contribution of this paper is a faster algorithm 
to generate all the undominated completions of a bin. 
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3.1 Prev ious A l g o r i t h m 
The simplest algorithm is to generate all feasible sets 
that include a particular element, and then test each 
pair of sets for dominance. Our original implementation 
improved on this by only generating a subset of all feasi­
ble completions, and testing for pairwise dominance only 
among those. In particular, if only one additional num­
ber can be added to a bin, only the largest such number 
is added. If only two additional numbers can be added to 
a bin, the set of two-element undominated completions 
can be found in linear time, as follows. 

Each undominated two-element completion must have 
a sum greater than the largest feasible single number, 
and less than or equal to the remaining capacity of the 
bin. The remaining values are kept in sorted order, with 
two pointers, one initially assigned to the largest value 
and the other to the smallest value. If the sum of these 
two numbers exceeds the remaining capacity, the pointer 
to the larger number is moved to the next smaller num­
ber. If the sum of the two numbers is less than or equal 
to the largest single feasible number, the pointer to the 
smaller number is moved to the next larger number. If 
the sum of the two numbers is within this range, the 
pointer to the smaller number is increased to the largest 
number for which the sum of the two is stil l in range, 
and these two values form an undominated two-element 
completion. Then the pointer to the larger number is 
moved to the next smaller number, and the pointer to 
the smaller number is moved to the next larger number. 
This process continues unti l the two pointers meet. 

If the sum of the numbers in two feasible sets are un­
equal, only the one with the larger sum can dominate the 
other. If two sets have the same sum, only the one with 
the smaller cardinality can dominate the other. Once 
a subset of the feasible completions is found, each pair 
was tested to see if either dominates the other. This 
was done by trying to pack the numbers of the poten­
tial dominated set into bins whose capacities were the 
numbers of the potential dominating set. These small 
bin-packing problems were solved by brute-force search. 

There are two drawbacks to this approach. The first is 
the time to generate and then test the dominated feasible 
sets. The second is the memory needed to store the 
dominated feasible sets before they are pruned. 

3.2 Genera t ing U n d o m i n a t e d Sets Faster 
Ideally, we would like to generate all and only undomi­
nated bin completions, without pairwise testing of feasi­
ble sets for dominance. We describe such an algorithm 
in three stages: 1) how to generate all subsets of a uni­
verse, 2) how to generate only feasible subsets, and 3) 
how to generate only undominated feasible subsets. 

The easiest way to generate all 2n subsets of n el­
ements is to recursively traverse a binary tree, where 
each node represents a collection of subsets. The root 
node represents the entire power set, and the leaf nodes 
represent individual subsets. Each interior level of the 
tree corresponds to a different element. At each node, 
the left branch includes the corresponding element in all 

subsets below i t , and the right branch excludes the same 
element from all subsets below i t . The tree is traversed 
depth-first using only linear memory. 

To generate feasible completions of a bin containing a 
number x, we add an upper bound on the sum to each 
recursive call, which is initially the residual capacity, or 
the bin capacity minus x. We sort the remaining unas-
signed numbers in decreasing order of size. We only 
include numbers that are less than or equal to the up­
per bound. When we include a number by taking the 
left branch from a node, we subtract it from the upper 
bound of all recursive calls below that branch. When 
the upper bound drops to zero, we prune the tree below 
that node, since no further numbers can be added. This 
generates all feasible completions of a bin containing x. 

Generating undominated feasible completions requires 
a l i tt le more work. When we exclude a number that ex­
ceeds the upper bound, by taking the right branch from 
the corresponding node, nothing additional is required, 
since it can't be a member of any feasible set below that 
node. If we exclude a number that equals the upper 
bound, we can terminate that branch of the binary tree 
immediately, because any feasible subset of included el­
ements below that node cannot sum to more than the 
excluded element, and any subset with a smaller sum 
would be dominated by the excluded element. 

What happens when we exclude a number that is less 
than the upper bound? To prevent the excluded clement 
from dominating any included subset below i t , the sum 
of the numbers in any such subset must exceed the ex­
cluded element. This generates a lower bound on the 
sum of the elements in any included subset below this 
node, which is equal to the excluded element plus one, 
assuming that the numbers are integers. As with the 
upper bound, the lower bound is reduced by any sub­
sequently included elements in the recursive calls below 
the corresponding nodes. The lower bound generated by 
an excluded element is only used if it exceeds the current 
lower bound on that node. 

Thus, we perform a depth-first traversal of the binary 
tree representing all possible subsets of numbers remain­
ing to be assigned. This traversal is pruned by the upper 
and lower bounds propagated down the tree as described 
above, and generates complete subsets at the leaf nodes. 
These wil l include all undominated feasible sets, but may 
include some dominated feasible sets as well. 

To eliminate these, we perform an additional test on 
the feasible bin completions generated. The residual ca­
pacity r of a bin is the bin capacity c minus the largest 
number in the bin, which is common to all feasible com­
pletions of a given bin. Let t be the sum of all the num­
bers in a feasible set A, excluding the common largest 
number. The excluded numbers are all remaining num­
bers less than or equal to r that are not included in A. 
Set A wil l be dominated if and only if it contains any 
subset whose sum s is less than or equal to an excluded 
number x, such that replacing the subset with x wil l not 
exceed the bin capacity. This wi l l be the case if and only 
if Thus, to guarantee that a feasible set 
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A is undominated, we check each possible subset sum s, 
and each excluded number x, to verify that  

This algorithm generates feasible sets and immediately 
tests them for dominance, so it never stores multiple 
dominated sets. It tests for dominance by comparing 
subset sums of included elements to excluded elements, 
rather than comparing pairs of sets for dominance. 

Pseudo-code for this algorithm is given below. The 
feasible function takes a set I of included elements, a set 
E of excluded elements, a set R of remaining elements, 
a lower bound / and an upper bound u. It generates all 
feasible sets of remaining elements whose sum is within 
the two bounds, and calls the test function on each. In 
the init ial call, I and E are empty, R contains all remain­
ing elements less than or equal to the residual capacity r 
of the bin, u is set to r, and I is set to the largest single 
element that can feasibly be added to the bin, plus one. 
Test is the test described above, and is a function of the 
included elements J, the excluded elements E, and the 
residual capacity r. 

To improve this algorithm, we use the same optimiza­
tions used in our original algorithm to generate feasible 
sets. Namely, if only one more number can be added to 
a bin, we only add the largest such number, and if only 
two more numbers can be added, we generate all un­
dominated two-element completions in linear time. This 
algorithm speeds up the generation of all undominated 
sets, without affecting the number of bin completions 
considered. For that, we turn to our next contribution. 

4 P run ing the Search Space 
Consider a number w in a bin, with a capacity of c. As­
sume that two undominated feasible completions of the 

our search explores bin completions in decreasing order 
of subset sum, so in this case we consider before 

Furthermore, assume that after exhausting the 
subproblem below the assignment and while 
exploring the subproblem below the assignment 
we find a solution that assigns x and y to the same bin, 
say Since and 

we could swap z wi th x and y, resulting in 
a solution with the same number of bins, but including 
the bin assignments and However, all 
possible solutions below the node representing the bin 
assignment have already been explored. Thus, 

this solution is redundant, and doesn't need to be con­
sidered again. In particular, below the branch of 
the search tree, any solution that assigns x and y to the 
same bin wil l be redundant and can be pruned. 

In general, given a node with more than one child, 
when searching the subtree of any child but the first, 
we don't need to consider bin assignments that assign 
to the same bin all the numbers used to complete the 
current bin in a previously-explored child node. More 
precisely, let be a set of brother nodes 
in the search tree, and let be the sets 
of numbers used to complete the bin in each node, ex­
cluding the first number assigned to the bin, which is 
common to all the brother nodes. When searching the 
subtree below node Nt for i 1, we exclude any bin 
assignments that put all the numbers in Sj in the same 
bin, for j < i. Thus, no bin completion below node Ni 
can have as a subset the numbers in for By re­
jecting these bin assignments as redundant, the number 
of node generations is reduced. 

4.1 Cur ren t I m p l e m e n t a t i o n 
Our current implementation of this pruning rule propa­
gates a list of nogood sets along the tree. After generating 
the undominated completions for a given bin, we check 
each one to see if it contains any current nogood sets as 
a subset. If it does, we ignore that bin completion. 

To keep the list of nogood sets from getting too long, 
occupying memory to store them and time to test them 
against bin completions, we prune the list as follows. 
Whenever there is a non-empty intersection between a 
bin completion and a nogood set, but the nogood set is 
not a subset of the bin completion, we remove that no-
good set from the list that is passed down to the children 
of that bin completion. The reason is that by including 
at least one but not all the numbers in the nogood set 
in a bin completion, we've split up the nogood set, guar­
anteeing that it can't be a subset of any bin completion 
below that node in the search tree. 

This implementation could probably be improved with 
more sophisticated data structures for representing arid 
manipulating sets of elements. 

5 Exper imenta l Results 
We tested our algorithm on large sets of problems with 
uniformly-distributed high-precision numbers, and on a 
set of benchmark problems of relatively low precision. 

5.1 U n i f o r m H i g h Prec is ion Numbers 
We compared our original algorithm to our new bin-
completion algorithm on the same problem instances 
and on the same machine. Since high-precision numbers 
are often more difficult to pack than low-precision num­
bers, we used a bin capacity of one mill ion, and random 
numbers uniformly distributed from one to one million. 
Given the enormous variation in the difficulty of indi­
vidual problem instances, we ran one million instances 
of each problem size, which ranged from 5 to 95 numbers, 
in increments of 5. Table 1 shows the results. 
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[N Optimal Original Without Pruning With Nogood Pruning Ratios 
Bins Time Nodes Time Nodes Time Nodes Time 

5 3.215 6 .064 6 .064 5 1.000 1.200 1 
10 5.966 13 .119 13 .119 12 1.000 1.083 
15 8.659 19 .362 20 .360 19 1.006 1.000 
20 11.321 27 .727 28 .716 26 1.015 1.038 
25 13.966 36 1.249 37 1.204 35 1.037 1.029 
30 16.593 44 2.046 46 1.878 43 1.099 1.023 
35 19.212 55 3.376 57 2.827 52 1.194 1.058 
40 21.823 73 6.325 71 4.452 65 1.421 1.123 
45 24.427 103 13.346 94 7.338 81 1.819 1.272 

| 50 27.026 189 29.414 136 12.364 104 2.379 1.817 
55 29.620 609 124.476 367 28.931 174 4.303 3.500 
60 32.210 2,059 391.847 1,097 108.527 518 3.611 3.975 
65 34.796 28,216 7,984.196 15,694 649.553 2,658 12.292 10.616 
70 37.378 41,560 9,408.125 22,628 786.126 3,549 11.968 11.710 
75 39.957 194,851 57,529.770 119,928 5,308.159 21,739 10.838 8.963 
80 42.534 408,580 113,746.144 233,367 7,560.130 30,972 15.046 13.192 
85 45.108 412,576 129,618.988 282,851 8,697.441 36,098 14.903 11.429 
90 47.680 2,522,993 38,176.160 171,778 14.688 
95 50.253 324,811.294 1,343,092 

Table 1: Experimental Results for Uniformly Distributed, High-Precision Numbers 

The first column gives the problem size, which is the 
number of values being packed. The second column 
shows the average number of bins needed in the optimal 
solution. Since the numbers range uniformly from zero 
to the bin capacity, the expected value of any number is 
half the bin capacity, and the expected value of the sum 
of the numbers is the half the bin capacity times the 
number of values. As expected, the average minimum 
number of bins is slightly more than half the number of 
values, due to the inevitable wasted space in the bins. 

The third column gives the average running time of 
our original bin-completion algorithm [Korf, 2002], in 
microseconds. This is also the total time in seconds to 
solve all one million problem instances. A l l implementa­
tions are on a 440 Megahertz Sun Ultra 10 workstation. 

The next two columns, labelled "Without Pruning", 
give the average node generations and running times in 
microseconds for our implementation of bin completion 
with our new method of generating undominated feasi­
ble sets, but without pruning nogood sets. While this 
program considers the same number of candidate solu­
tions as our original one, the node generations differ from 
those reported in our earlier paper [Korf, 2002]. The 
reason is that we define a node as a recursive call to the 
search routine, and our current implementation checks 
terminating conditions before making a recursive call, 
rather than at the beginning of the search function. Our 
new program outperforms our original one by a factor of 
up to 1.84 in running time. We didn't run it on problems 
of size 90 or 95 due to the time that would be required. 

The next two columns, labelled "Wi th Nogood Prun­
ing" , give the average number of nodes generated and 
average running time in microseconds for our full algo­
r i thm, including nogood pruning. Comparing the num­

ber of node generations to the corresponding column 
without pruning shows the effect of nogood pruning. 

The last two columns give performance ratios of our 
best program, including nogood pruning. The node ra­
tio is the number of nodes generated without nogood 
pruning, divided by those generated with nogood prun­
ing. The time ratio is the running time of our original 
program, divided by our current best program. 

As problem size increases, nogood pruning generates 
increasingly fewer nodes than without pruning. On the 
largest problems we ran both algorithms on, the ratio 
of node generations is about a factor of 15. The fact 
that the node generation ratio increases with increasing 
problem size suggests that nogood pruning reduces the 
asymptotic time complexity of bin completion. 

The ratios of the running times displays a similar 
trend, although the values are less than the ratios of 
node generations. This is due to the increased overhead 
of nogood pruning. On the larger problems, our new al­
gorithm is over an order of magnitude faster than our 
original algorithm. Problems of size 95 take an average 
of only 1.343 seconds per problem to solve optimally. 

V a r i a t i o n i n I n d i v i d u a l P r o b l e m D i f f i cu l t y 
There is tremendous variation in the difficulty of individ­
ual problems. For example, in 68.56% percent of the one 
mill ion problems with 95 numbers, the best-fit decreas­
ing solution uses the same number of bins as the lower 
bound, solving the problem without any search. Among 
the same problems, however, twenty instances generated 
more than a bill ion nodes, three of those generated more 
than ten bill ion nodes, and one of those generated more 
than a hundred bill ion nodes. Our program solved over 
125,000 problems of size 100 in about a day, and then 
failed to solve the next problem in over 43 days. What 
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distinguishes the hard problems from the easy ones? 
Among all problems of size 95, the average number of 

bins in the optimal solution is 50.253. Among the twenty 
hardest problems, however, the average optimal number 
of bins is only 39.85. Intuitively, this makes sense, since 
fewer bins means more items per bin, and hence more 
undominated feasible sets to consider. 

On the other hand, problems wi th a relatively small 
number of bins in the optimal solution are not neces­
sarily difficult. The reason is that wi th smaller num­
bers, approximation algorithms like best-fit decreasing 
are more accurate. For example, eleven problems of size 
95 required 36 or fewer bins. Seven of those required no 
search, and the average number of nodes generated to 
solve all eleven was only 12,704, compared to an average 
of 324,811 nodes for all one million problem instances. 

Thus, the hard problems tend to use fewer bins, but 
problems that use fewer bins are not necessarily hard, 
since often the lower bounds agree with the solutions 
returned by approximation algorithms. 

5.2 B e n c h m a r k P r o b l e m s 

We also ran our best algorithm on eight sets of twenty 
benchmark problems each, from the operations research 
library maintained by J.E. Beasley at Imperial College, 
London. These problem instances were originally gen­
erated by Falkenauer [Falkenauer, 1996], and have been 
used by a number of other researchers [Valerio de Car-
valho, 1999; Vanderbeck, 1999]. We compare our results 
to [Valerio de Carvalho, 1999], since he reports the most 
detailed results. He ran his experiments on a 120 MHz 
Pentium, compared to our 440 MHz Sun workstation. 

U n i f o r m P rob lems 
The first four problem sets, called uniform problems, 
consist of numbers chosen uniformly from 20 to 100, with 
a bin capacity of 150. Each set contains 20 problems, 
which are of size 120, 250, 500, and 1000 numbers each. 

On the uniform problems of size 120, our best algo­
r i thm took 2 seconds on problem 0, 3 seconds on prob­
lem 3, and solved the rest instantly, meaning in less 
than a second. In eleven of these problems, either the 
best-fit decreasing solution, or the first solution found by 
bin completion, matched our lower bound, requiring no 
search. [Valerio de Carvalho, 1999] reports an average of 
4.22 seconds for these problem instances. 

For the uniform problems of size 250, our algorithm 
solved all but three instantaneously, solved problem 15 
in 318 seconds, but failed to solve problems 7 and 13 in 
over ten minutes each. In twelve of these problems, the 
first solution found by bin completion matched our lower 
bound. [Valerio de Carvalho, 1999] reports an average 
of 5.98 seconds for these problems. 

On uniform problems of size 500, our algorithm solved 
14 problems instantly, took 4 and 160 seconds on prob­
lems 3 and 5, respectively, but failed to solve problems 0, 
6, 7, and 8 in ten minutes each. In eleven of these prob­
lems, the first solution found by bin completion matched 

our lower bound. [Valerio de Carvalho, 1999] reports an 
average of 6.93 seconds on these instances. 

For uniform problems of size 1000, our algorithm 
solved problems 0, 1, 5, 6, 8, 10, 11, 13 and 18 instantly, 
and solved problems 14 and 16 in 69 and 10 seconds, re­
spectively. In seven of these problems, the first solution 
found by bin completion matched our lower bound. It 
failed, however, to solve the remaining 9 problems in ten 
CPU minutes each. [Valerio de Carvalho, 1999] reports 
an average of 7.45 seconds for these problems. 

T r i p l e t P rob lems 
The other four problem sets are called triplets, since each 
bin contains exactly three elements in the optimal solu­
tion. The bin capacity is 1000, with numbers in the range 
250 to 500. The first number in each bin was chosen uni­
formly from 380 to 490, the second was chosen from 250 
to one-half the size of the first number, and the third el­
ement was chosen so that the sum of the three is exactly 
1000. Thus, no space is wasted in the optimal solution. 

Our algorithm solved all 20 triplets of size 60 instantly, 
while [Valerio de Carvalho, 1999] reports an average of 
4.14 seconds on these problems. 

On triplets of size 120, our algorithm solved all but 
four problems instantly, and required 26, 1, 3, and 2 
seconds on problems 0, 4, 13, and 19, respectively, for an 
average time of 1.6 seconds. [Valerio de Carvalho, 1999] 
reports an average of 26.95 seconds on these instances. 

On triplets of size 249, our algorithm solved instances 
3, 4, 9, 11, and 19 instantly, required 2, 19, 206, 157, 1, 
75 and 126 seconds on problems 0, 6, 7, 8, 10, 13, and 
15, respectively, but failed to solve the remaining 8 prob­
lems after 10 minutes each. [Valerio de Carvalho, 1999] 
reports an average of 122.85 seconds on these problems. 

We were unable to solve any of the triplets of size 501, 
with ten CPU minutes each. [Valerio de Carvalho, 1999] 
reports an average of 360.69 seconds on these instances. 

Discussion o f Benchmark Resul ts 
On the uniform problems of size 120, and on the triplets 
of size 60 and 120, our algorithm outperformed that of 
[Valerio de Carvalho, 1999] in average running time, tak­
ing into account the different clock speeds of our ma­
chines. On the remaining sets of problems, our algo­
r i thm would require a longer average running time, since 
it failed to solve some instances in ten minutes. On uni­
form problems of size 250 and 500, however, our algo­
r i thm took less time than that of [Valerio de Carvalho, 
1999] on most problem instances, 17 out of 20 for size 
250, and 14 out of 20 for size 500. On uniform problems 
of size 1000, our algorithm took less time on 9 out of 20 
problems, and on triplets of size 249 our algorithm was 
faster on 8 out of 20 problems. Overall, our algorithm 
performed worse than that of [Valerio de Carvalho, 1999] 
on the largest problem sets, however. 

One possible reason for this difference in performance 
is that we designed our algorithm with high-precision 
numbers in mind, ranging from one to a million in our 
experiments. Wi th these values, there are no duplicate 
numbers in the same problem instance, and no pairs of 
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numbers that sum to exactly the bin capacity. Thus, we 
didn't consider optimizations that are only possible with 
duplicate numbers. In the uniform benchmark datasets, 
however, the values range from 20 to 100, and in the 
triplets datasets they range from 250 to 500. As a result, 
these problem sets contain many identical numbers. 

While high-precision values are usually more difficult 
to pack, this is not the case with the triplet datasets con­
sidered here. In particular, if they were generated in the 
same way, but using high-precision values instead, the 
first solution found by bin completion would be optimal, 
since there would be only one way to fill each bin com­
pletely, and that completion would be considered first. 
Furthermore, it would be immediately recognized as op­
timal, since there is no extra space in any of the bins. 

6 Conclusions 
We presented two improvements to our original bin-
completion algorithm. The first is an algorithm for gen­
erating all undominated bin completions directly, with­
out testing pairs of completions for dominance. More 
importantly, we presented an algorithm to identify and 
eliminate redundant bin completions, which prunes the 
search space. Combining these two improvements yields 
an algorithm that appears to be asymptotically faster 
than our original, and runs over 14 times faster on prob­
lems of size 90. For numbers uniformly distributed from 
zero to the bin capacity, we can solve a million problems 
of size 95 optimally in an average of 1.343 seconds per 
problem instance. 

There is enormous variation in individual problem dif­
ficulty, with most problems being solved instantly, but 
some running for days or weeks. One problem of size 100 
ran for 43 days without verifying an optimal solution. 

On a set of standard benchmark problems, the results 
were mixed. Our algorithm outperformed that of [Vale-
rio de Carvalho, 1999] on the smaller problem instances, 
but did worse on the largest problem instances. These 
benchmarks problems contain relatively low-precision 
values, which may provide further opportunities for im­
proving the performance of bin completion. 

It is important to note that most of the algorithms 
described in this paper are anytime algorithms. In other 
words, they produce an approximate solution immedi­
ately, and as they continue to run they produce better 
solutions, unti l they find and eventually verify the opti­
mal solution. Furthermore, the gap between the approx­
imate solution and the lower bound is often only a single 
bin, and always known throughout the computation, al­
lowing the user to decide how much effort to expend in 
trying to achieve this improvement. 
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