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Abstract 
In fields such as medicine, geography, and me­
chanics, spatial reasoning involves reasoning 
about entities—for example cavities and invad­
ing particles—that may coincide without over­
lapping. The purpose of this paper is to develop 
a mereotopology for domains that include coin­
cident entities, such as material objects, holes, 
geopolitical entities and spatial regions. In addi­
tion, I construct mathematical models of this 
mereotopology in which nontrivial coincidence 
relations are defined. 

1 Introduction 
Two objects coincide when they occupy overlapping re­
gions of space.1 My hand and my body (partially) coin­
cide. The Mississippi River and Minnesota (partially) 
coincide. Note that the objects in both pairs actually 
stand in a stronger relation than coincidence. The objects 
in each pair overlap (i.e. share parts). My hand is a part 
of both itself and my body. The first ten kilometers of the 
Mississippi River are part of both the river and the state. 
Any two overlapping entities are, trivially, coincident— 
their locations are identical at their common parts. 

It is an assumption of this paper that the relation of co­
incidence is broader than that of overlap. In other words, 
I assume that there are pairs of coincident objects which 
do not share parts. The food that is currently being di­
gested in my stomach cavity coincides with, but does not 
overlap, my stomach cavity. The U.S. Embassy in Paris 
coincides with, but does not overlap, France. Any object 
coincides with, but does not overlap, the spatial region at 
which it is located at a given point of time. 

A mereotopology is a formal theory of parthood and 
connection relations. It has long been recognized that 
mereotopology forms an essential part of formal ontol­
ogy. Several different mereotopologies have been pro­
posed in recent literature, including [Asher and Vieu, 

1995; Borgo et al, 1996; Gotts et al., 1996; Smith, 
1996]. These theories are ultimately intended for reason­
ing about spatial relations among material objects. How­
ever, it is assumed in nearly all of this work that the im­
mediate domains of application are restricted to spatial 
regions.2 When material objects are introduced, as in 
[Cohn, 2001], mereotopological relations are still re­
stricted to regions. Each object's spatial properties are 
determined by those of the region at which it is located. 
Thus, distinctive coincidence relations are not usually 
introduced into standard mereotopologies: on domains of 
regions, coincidence is just overlap. 

Likewise, mathematical models for these theories typi­
cally use domains consisting of subsets of a topological 
space. See, for example, [Biacino and Gerla, 1991; Asher 
and Vieu, 1995; Cohn and Varzi, 1998]. On these do­
mains, there is no natural way of defining a coincidence 
relation that is distinct from overlap. 

The goal of this paper is to construct a mereotopology 
for domains that include coincident but non-overlapping 
entities. In particular, domains for the theory may include 
both material objects and the regions at which they are 
located, in addition to other types of entities, such as 
holes or geopolitical entities, which may coincide with 
material objects. My theory allows mereotopological re­
lations to apply directly to all entities within the domain, 
be they regions, material objects, holes, or what have 
you. It also extends mereotopology by adding coinci­
dence relations and by making explicit the relation be­
tween an object and the region at which it is located. To 
guide the development of the formal theory, I construct 
mathematical models in which a coincidence relation 
distinct from overlap is defined. 

The formal theory presented in this paper borrows 
much from the theory of location of [Casati and Varzi, 
1999]. It differs in that it divides the domain into differ-

1 Note that with this usage, coincident objects need only oc­
cupy overlapping spatial regions. I will use the term "com­
plete coincidence" for the stronger relation that holds between 
objects that occupy identical spatial regions. 

Here and throughout this paper the term "region" designates 
any part of an immaterial space in which objects are located. 1 
leave open the question of whether these parts may be of 
mixed dimensionalities. This contrasts with the usage in, for 
example [Gotts et al., 1996], where the term "region" does not 
apply to lower-dimensional entities, such as boundaries or 
points. 
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ent layers, each of which is mereotopologically inde­
pendent of the others, and also in providing mathematical 
models that allow distinct members of the domain to be 
located at the same region. Additional work on combin­
ing either coincidence or location relations with other 
spatial relations can be found in [Bennett, 2001; Borgo et 
al., 1997; Cohn, 2001; Schulz and Hahn, 2001]. 

2 Layered Models 
I introduce a class of mathematical structures in which 
members of the domain can coincide without overlap­
ping. I call these structures Layered Models because their 
domains are partitioned into equivalence classes, called 
layers. Members of the same layer coincide only when 
they overlap. Members of different layers never overlap 
and cannot be parts of the same object, though they may 
coincide. Examples of types of entities assigned to dis­
tinct layers are: 1. spatial regions, 2. material objects, 3. 
holes within these material objects. A l l regions are parts 
of a special layer that covers the entire space. 

Layered Models are the target models of Layered 
Mereotopology, the formal theory developed in  

Layered Models are defined as follows. Let  
be a topological space, where X is the set of points 

and cl is the closure operator. Let /be either, N, the set of 
all natural numbers or an init ial segment of N. The ele­
ments of the domain, D, of a Layered Model are ordered 
pairs, where and (I wi l l generally 
use the abbreviation, for A l l variables referring 
to objects in Layered Models appear in Arial font to dis­
tinguish them from the variables of the formal theory.) 
The second component of each ordered pair determines 
the layer to which the pair belongs. A l l pairs of the form 

belong to a special layer, called the region 
layer. 

then it follows that only objects which are parts of the 
same layer can overlap: 0 ( x „ yj) i f f x n y and i = j. 

If underlap, U, is defined in the usual way, 

then it follows that, since all objects are parts of their 
layer, objects underlap if and only if they are parts of the 
same layer: U(Xj, yj) i f f i = j. 

A connection relation, C, is defined on D as: 

As with parthood, only objects residing on the same layer 
can be connected to each other. 

Other mereotopological relations, such as external 
connection and tangential parthood, can be defined in 
terms of P and C in the usual way. For example, an ex­
ternal connection relation, EC, can be defined as follows: 

E and  
In contrast to parthood and connection relations, coin­

cidence relations can hold between objects from different 
layers. Three different coincidence relations are defined 
on D. 

(coincidence) 
(complete coincidence) 
(covering) 

Another relation that can hold among objects from dif­
ferent layers is abutment, A. 

Finally, I add the function, r, from D to Layer 0 which 
assigns each member of the domain to its representative 
on the region layer: 

r(x0) = x0 

Notice that, when restricted to Layer 0, r is the identity 
function: for any Also notice that two 
objects abut if and only if their regions are externally 
connected. 

I wi l l give a simple example of a Layered Model de­
signed to illustrate the way in which the models can be 
used to represent spatial relations among regions, mate­
rial objects, and immaterial entities such as holes. The 
background topological space for this model is K3 with 
its standard topology. The region layer in this model has 
as parts the members of the set  

Suppose that we wish to represent relations holding 
among a vase, a portion of water in the vase, a flower 
standing in the vase, and the interior of the vase. The 
vase, water, and flower are represented, respectively, by 
parts, V1, W1, and f1, of Layer 1 where the subsets, v, w, 
and f, of are disjoint. The interior of the vase, a hole, 
is represented by h2 on Layer 2 where h and v are dis­
joint, but connected, w is a proper subset of h 
and h and f have a nonempty intersection 
According to this representation, the water is not part of 
the hole, but the fact that the water is contained in the 
interior of the vase is represented in the model by the 
covering relation, Cov(W1, h2), holding between W1 and 
h2. Similarly, the flower does not overlap the interior of 
the vase, but the fact that the flower is partially contained 
in the interior of the vase is represented by the coinci­
dence relation: Coin(f1, h2). The vase and its interior do 
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not coincide. Nor are they connected. But the fact that the 
vase touches its interior is represented by the abutment 
relation: A(v1, h2). Finally, every object is exactly co-
located with its spatial region. This is represented in the 
model by the complete coincidence of the object and its 
region. For example, CCoin  

3 Layered Mereology 
A mereology is a formal theory of the binary parthood 
relation. My aim in this section is to develop a mereol­
ogy, called Layered Mereology, that is satisfied by the 
parthood relation, P, defined on Layered Models. Lay­
ered Mereology is extended in and to Layered 
Mereotopology, a theory that also includes coincidence 
and connection relations. 

Layered Mereology (and also its extension, Layered 
Mereotopology) is formulated in first-order logic. Rela­
tions and functions are represented in the formal theory 
with plain text letters to distinguish them from the rela­
tions and functions defined in Layered Models. Layered 
Mereology assumes one primitive, the binary relation P, 
which, on the intended interpretation, represents 
parthood. 

The following relations are defined in the formal the­
ory in terms of P: 

It is trivial to see that, if P is interpreted as P in Lay­
ered Models, the defined relations O and U wi l l be inter­
preted as U and O, respectively. 

The axioms of Layered Mereology wi l l be somewhat 
nonstandard. For example, they cannot require that any 
pair of objects, x and y, have a mereological sum. My 
goal is to axiomatize P in such a way that, when re­
stricted to a single layer, it satisfies the axioms (and 
axiom schema) of General Extensional Mereology 

The in (GEM5) stands for any first-order formula in 
which z does not occur free. (GEM5) states that if any 
member of the domain satisfies the formula then there 
must be a sum of all objects satisfying in the domain. 
(GEM5) must be altered for Layered Mereology because 
Layered Models only include the sums of objects that arc 
parts of the same layer. 

I wi l l discuss summation in Layered Models in more 
detail shortly. For now, notice that the relation P in Lay­
ered Models satisfies each of the first four axioms of 

3 Throughout this paper, initial universal quantifiers arc sup­
pressed unless they are needed for clarity. 

GEM. They are therefore used in their original forms as 
axioms for Layered Mereology.4 

The first three axioms require that P is a partial order­
ing. (PI) says that P is reflexive. (P2) says that P is anti­
symmetric. (P3) says that P is transitive. That (P1)-(P3) 
are satisfied by P in Layered Models follows immedi­
ately from the fact that P is just the subset relation re­
stricted to the separate layers. 

(P4) says that, if x is not a part of y, then there is some 
part, z, of x that does not overlap y. (P4) is satisfied in 
Layered Models by virtue of condition 3 of  

It follows from (PI) - (P4) that overlap, O, is exten­
sional. This means that any two members of the domain 
that overlap the same objects are identical. 

Because O is extensional, for any formula in which z 
does not occur free, if we can assign z to a member of the 
domain that satisfies 

(*) 
then this object is the unique sum of all However, 
for any such formula there need not be an object satis­
fying even if some member of the domain satisfies 
For example, let be x = x and let D be the domain of a 
Layered Model. Then every member of D satisfies <|). But 
if there are with then no member of D sat­
isfies This is because such an object would have to 
overlap every member of D and there can be no member 
of D that overlaps both and for  

Thus, we need a restricted version of (GEM5) that re­
quires sums to exist only if all summands are part of the 
same layer. Such an axiom schema wi l l be satisfied in all 
Layered Models by virtue of condition 2 of Given 
that two objects in a Layered Model are parts of the same 
layer if and only if they underlap, the restricted summa­
tion axiom schema can read as follows: 

Here, is the formula with all free instances of x 
replaced by y (and where variable substitution is per­
formed as necessary so y is free in where x is free in 

(P5) says that if there is some object that satisfies 
and any two objects that satisfy underlap, then there is 
a sum of all objects satisfying  

For convenience, when is any formula in which z 
does not occur free, I wi l l use the abbreviation 
for the substitution instance of the formula  

We would like to be able to say more things about lay­
ers within the mereology. So far, we can only say that 
two objects are on the same layer. We would like to be 
able to say that a certain object is a layer or is the layer 
of a particular object. (D4) defines a relation holding 
between y and z when z is the sum of all objects that y 
underlaps (i.e. y's layer). 

4 All axioms of Layered Mereology are labeled with a "P". 
"PT" is used for theorems of Layered Mereology. 
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It follows immediately that every object has a layer: 
(PT2) (every object has a layer) 

Thus the relation, L, is a function. I w i l l use the func­
tional term l(x) to stand for the layer of x. 

The following theorems can also be derived: 
(PT3) Pxl(x) (every object is part of its layer) 
(PT4) Uxy <-> l(x) = l(y) 

(two objects underlap i f f they have the same layer) 
(PT5) Uxy <-> Pyl(x) 

(x underlaps y i f f y is part of x's layer) 
The unary predicate, LY, distinguishes certain mem­

bers of the domain as layers. 
(D5) LYz =: Lxz (z is a layer) 

It follows easily from (PT3), (PT4), and (D5) that: 
(PT6) LYz Lzz (z is a layer i f f z is its own layer) 

(PT6) tells us that layers are those members of the do­
main which are the mereological sums of all objects that 
they underlap. 

When P is interpreted as P in Layered Models, LYXj if 
and only if Xi = Layer i. 

We can use the formula schema zSMx[>] to introduce 
more useful relations. (D6) - (D8) are the standard defini­
tions of the sum, product, and difference relations. (D9) 
defines a relative complement relation. 
(D6) +(v, y, z) =: zSMx[Pxv v Pxy] 

(z is the binary sum of v and y) 
(D7) x(v, y, z) =: zSMx(Pxv & Pxy) 

(z is the binary product of v and y) 
(D8) - (v , y, z) =: zSMx(Pxy & ~Oxv) 

(z is the difference of v in y) 
(D9) -(v, z) =: zSMx(Uxv & ~Oxv) 

(z is the relative complement of v) 
The following theorems concerning the relative com­

plement can be derived: 
(PT7) LYx (x has a relative complement 

i f f x is not a layer) 

(PT8) -(x, z) - ( x , I(x), z)(z is x's relative comple­
ment i f f z is the difference of x in x's layer) 

Using (PT4) it is easy to prove that, when they exist, 
sums, products, and relative complements belong to the 
same layer as the original object(s). 

It is straightforward to show that any layer of a model 
of Layered Mereology is a model of General Extensional 
Mereology (GEM). More precisely, we can prove the 
following: 
(Meta-Theorem)Let M be any model of Layered Mereol­
ogy with domain, D. Note that M need not belong to the 
class of Layered Models defined in §2. Let w e D and let 
Dw = {y : y D & l(y) = l (w)} . Let Mw be the structure 
whose domain is Dw with P interpreted as in M (i.e. Pyz 
holds in Mw i f f y, z Dw and Pyz holds in M). Then Mw 

satisfies axioms (PI) - (P4) and axiom schema (GEM5). 

4 The Region Funct ion 
In Layered Mereology, we have no way of stating that 
two objects coincide. Layered Mereology lets us describe 
the parthood relations between objects. It does not let us 
describe the (relative) locations of objects. To do this, I 
extend Layered Mereology by adding the unary function, 
r. On the intended interpretation r assigns each object, x, 
to the region, r(x), at which x is exactly located. In Lay­
ered Models, r is interpreted as the function r. 

Using r, we can define a one-place predicate, R, which 
distinguishes the sub-domain of regions. 
(D10) Ry =: (r(x) = y) (y is a region) 
When r is interpreted as r in Layered Models, Rx, if and 
only if i = 0. 

The axioms for r are added to axioms (PI) - (P6).5 It is 
easy to check that they are satisfied in Layered Models. 
(R l ) Ry & Rz -> Uyz (all regions are located in the 

same layer) 
(R2) Ry & Uyz -> r(z) = z (every member of the region 

layer is its own region) 
The theorems below are immediate consequences of 

(R l )and(R2) . 
(RT1) Ry -> r(y) = y (every region is located at itself) 
(RT2) Ry & Uyz -> Rz (every member of a region's layer 

is a region) 
(RT3) Ex & ( -> Rx) & zSMx -> Rz 

(every sum of regions is a region) 
Additional axioms relate the region function to 

parthood. 
(R3) Pxy -> Pr(x)r(y) ( i f x is part of y, then x's re­

gion is part of y's region) 
Notice that the converse of (R3) is not generally satis­

fied in Layered Models. r(Xj) may be part of r(yj) even 
though Xj is not part of yj. This wi l l be the case whenever 
x y, but i # j . 

On the other hand, in Layered Models, if 0(r(Xj), r(yj)) 
and i = j, then 0 ( x „ yj must also hold. 

5 A l l axioms specific to the r function are marked with "R". 
Theorems specific to the r function are marked with " R T " . 
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It is easy to see that when P is interpreted as P in Lay­
ered Models, holds if and only if = Layer i. How­
ever, axioms (P1)-(P5) do not allow us to infer that for 
any object, y, there is some object that is the sum of all 
objects that underlap y. In other words, our axioms so far 
do not allow us to infer that every object has a layer. This 
would follow from (P5) if we knew that any two objects 
that underlap y must underlap each other (i.e. that U is 
transitive). Notice that the underlap relation for Layered 
Models, U, is an equivalence relation (reflexive, symmet­
ric, and transitive) and that the sets consisting of all ob­
jects from a single layer are the equivalence classes de­
termined by the U relation. It follows from (P1)-(P5) that 
U is reflexive and symmetric, but not that U is transitive. 

I, therefore, add a final axiom to Layered Mereology: 
(underlap is transitive) 



(R4) Uxy & 0(r(x) , r(y)) -> Oxy ( i f x and y are on the 
same layer and x's region overlaps y's re­
gion, then x overlaps y) 

The coincidence relations are defined in terms of the 
region function, r. 
(D l 1) CCoin(x, y) =: r(x) = r(y)(x and y completely 

coincide) 
(D12) Cov(x, y) =: P(r(x), r(y)) (y covers x) 
(D13) Coin(x, y) =: 0(r(x) , r(y)) (x and y coincide) 

It is easy to check that when P is interpreted as P and r 
as r in Layered Models, CCoin, Cov, and Coin are, re­
spectively, CCoin, Cov, and Coin. 

The following theorems can be derived from (P1)-(P6) 
and(Rl)-(R4). 
(RT4) Cov(x, y) & Cov(y, x) <-> CCoin(x, y) (y covers x 
and x covers y i f f x and y completely coincide) 
(RT5) CCoin(x, y) & CCoin(x, z) & Uyz -> y = z (any 
object can completely coincide with at most one object in 
any layer) 
(RT6) CCoin(x, y) & Uxy -> x = y ( i f x and y com­
pletely coincide and are on the same layer, then x = y) 
(RT7) Cov(x, y) & Uxy —> Pxy ( i f y covers x and x 
and y are on the same layer, then x is part of y) 
(RT8) Coin(x, y) & Uxy —> Oxy ( i f x and y coincide 
and are on the same layer, then x and y overlap) 

In addition, the implications illustrated in the diagram 
below can be derived. The arrow indicates that the atomic 
formula at the start of the arrow implies the atomic for­
mula at the end of the arrow. 

Figure 1: Implication hierarchy 

5 Layered Mereotopology 
The base theory can be extended to Layered Mereotopol­
ogy in a straightforward way by adding a connection 
relation, C, where Cxy means "x is connected to y". C is 
interpreted as C in Layered Models. 6 

(CI) Cxx (connection is reflexive) 
(C2) Cxy -> Cyx (connection is symmetric) 
(C3) Pxy -> (Czx -> Czy) ( i f x is part of y, every­
thing connected to x is connected to y) 
(C4) Cxy -> Uxy ( i f x and y are connected, 
then they are parts of the same layer) 
(C5) Cxy -> C(r(x), r(y)) ( i f x and y are connected, 
their regions are also connected) 

6 Axioms specific to Layered Mereotopology are marked with 
a "C". Theorems are marked with "CT" 

(C6) Uxy & C(r(x), r(y)) -> Cxy ( i f x and y are mem­
bers of the same layer and their regions are connected, 
then x and y are connected) 

External Connection and Abutment are defined as fol­
lows. 
(D14) ECxy =: Cxy & ~ Oxy (x and y are externally 

connected) 
(D15) Axy =: EC(r(x), r(y)) (x and y abut) 
When C is interpreted as C in Layered Models, EC is the 
relation, EC and A is the relation, A. 

The following theorems are easily derived: 
(CT1) ECxy —> Axy ( i f x and y are externally con­

nected, then x and y abut) 
(CT2) Uxy -> (Axy <-> ECxy) ( i f x and y are on the same 
layer, then they abut i f f they are externally connected) 
(CT3) Axy —> ~Coin(x, y) ( i f x and y abut, then they do 

not coincide) 
The tangential part relation, TP, is usually defined in 

terms of external connection as follows: 
TPxy =: Pxy & (ECzx & ECzy)  
This definition is not appropriate for layered models. 

To see why, consider the Layered Model whose underly­
ing topological space is K with its standard topology and 
whose layers have the members of the following sets as 
parts: 

Layer 0: 
Layer 1:  
It would follow from the standard definition of TP that 

[0, l]1 has no tangential parts, since it is not externally 
connected to any member of the domain. For example, it 
would follow that [0, 0]1 and [ 1 , l]1 are not tangential 
parts of [0, l ] 1 . 

I wi l l therefore use the following definition of tangen­
tial part: 
(D16) TPxy =: Pxy & (Azx & Azy) (x is a tangential 
part of y) 

Applying this definition to the previous model, it turns 
out that any part of [0, l]1 that contains either [0, 0]1 or 
[ 1 , l]1 is a tangential part of [0, l ] 1 . More generally, it 
follows from (D16) that, for objects x and y on the same 
layer, x is a tangential part of y if and only if x's region is 
a tangential part of y's region. 
(CT5) Uxy -> (TPxy <-> TP(r(x), r(y))) 

Interior parthood is then defined as usual. 
(D17) IPxy =: Pxy & -TPxy (x is an interior part of y) 

Relational counterparts of topological operators can 
now be defined in the usual way. For instance, an ob­
ject's interior can be defined as the sum of its interior 
parts: 
(D18) INT(y, z ) = : zSMx[IPxy] (z is the interior of y) 

Since each layer of any model of Layered Mereology 
is a model of GEM, it is easy to show that each layer of 
any model of Layered Mereotopology is a model of the 
standard mereotopology which uses as the definition 
of tangential parthood and includes axioms (C1)-(C3) in 
addition to those of GEM. 
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6 Conclusions and Fur ther Work References 
The goal of this paper was to construct a mereotopology 
for domains that include coincident but non-overlapping 
entities. The result is an extension of mereotopology that 
includes coincidence relations and a region function in 
addition to mereotopological relations. 

These additional elements of the theory make it par­
ticularly appropriate for applications that involve reason­
ing about objects that are located in holes. Reasoning 
about holes is crucial in a wide variety of domains, in­
cluding medicine (body cavities and orifices) and me­
chanics (valves, pathways formed by piping). For more 
examples, see [Casati and Varzi, 1994]. 

The particular theory presented in this paper allows the 
same mereotopological relations to apply directly to all 
spatial entities, including regions, material objects, and 
holes. This approach is an alternative to that of [Cohn, 
2001] in which spatial relations apply to material objects 
only indirectly, via the spatial regions at which they are 
located. One advantage of allowing direct descriptions of 
the spatial properties of material objects is that this 
leaves open the possibility of attributing different spatial 
structures to material objects and the regions at which 
they are located. For example, we may wish to represent 
material objects as having only closed, regular, divisible 
parts, but represent spatial regions as sums of points. 
Slight changes in the conditions on the domains of Lay­
ered Models (specifically, condition 4) and in the axioms 
of Layered Mereotopology (specifically, (R4)) would 
allow models in which the parts of different layers are 
restricted to different granularities. 

One other project for further work is to relax the re­
strictions on the underlap relation so that members of the 
domain that properly coincide (i.e. coincide without over­
lapping) can be parts of the same object. An organism 
has both material parts, such as a heart and a liver, and 
immaterial parts, such as an abdominal cavity. It has been 
argued in [Schulz and Hahn, 2001] that material and 
immaterial parts of the body may properly coincide: the 
brain is located in the cranial cavity, but it is not part of 
the cranial cavity. It is possible to define models similar 
Layered Models in which properly coincident members 
of the domain may underlap. It remains to develop a for­
mal theory of coincidence and mereotopological relations 
for these kinds of models. 
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