Incremental Tractable Reasoning about Qualitative Temporal Constraints

Alfonso Gerevini
DEA - Universita degli studi di Brescia, via Branze 38,1-25123 Brescia, Italy
gerevini@ing.unibs.it

Abstract

In many applications of temporal reasoning we are in-
terested in reasoning incrementally In particular, given
a CSP of temporal constrains and a new constraint, we
want to maintain certain properties in the extended CSP
(e.g., a solution), rather than recomputing them from
scratch. The Point Algebra (PA) and the Interval Algebra
(1A) are two well-known frameworks for qualitative tem-
poral reasoning. Most of the existing algorithms for PA
and the known tractable fragments of IA, such as ORD-
Horn, has been designed for "static" reasoning. In this
paper we study the incremental version of some funda-
mental problems of temporal reasoning, proposing new
algorithms that amortize their complexity when process-
ing a sequence of input constraints. After analyzing the
role of path-consistency for incremental satisfiability, we
propose algorithms for maintaining a solution of a CSP
over either PA or ORD-Horn, and the minimal labels of a
CSP over PA. Our algorithms improve the complexity of
using existing techniques by a factor of {n} or O{n?),
where n is the number of variables involved in the CSP.

1 Introduction

Constraint-based qualitative temporal reasoning is a widely
studied area of Al in which the most prominent approaches
are Allen's Interval Algebra (IA) [1983] and Vilain and
Kautz's Point Algebra (PA) [1986]. Given a CSP of tempo-
ral constraints, fundamental reasoning problems are deciding
satisfiability of the CSP, finding a solution, and computing its
"minimal labels". These problems arc NP-hard for the full
IA, while they are polynomial for PA and for several frag-
ments of |A, such as Nebel & Burckert [19951 ORD-Horn
subalgebra, which is the unique maximal tractable subclass
of IA containing all the basic relations.

In many applications of temporal reasoning we are in-
terested in "dynamic" or on-line reasoning. For instance,
given an initial (possibly empty) CSP of temporal constraints,
whenever a new constraint is asserted, we want to in maintain
a solution of the CSP, rather than recomputing it from scratch
using a "static" algorithm.

The design of algorithms for dynamic polynomial prob-
lems is an important research field in operation research and
theoretical computer science (e.g., [Ausiello et ai, 1991]).
A dynamic problem can be either semi-dynamic or fully-
dynamic. In the semi-dynamic version we deal with informa-
tion that is incrementally given (or decrementally retracted).

TEMPORAL REASONING

In the fully-dynamic version, we deal with both assertions
and retractions. Typically, the worst-case performance of an
algorithm for a dynamic problem is specified in terms of its
amortized complexity for a single operation (assertion or re-
traction), that can be defined as the average runtime per oper-
ation over a worst-case sequence of operations [Tarjan, 1985].

The large majority of the algorithms that have been devel-
oped for reasoning within tractable classes of qualitative tem-
poral constraints are static. In this paper we investigate the
incremental version of some reasoning problems for PA and
ORD-Horn, discussing the behavior of existing techniques
and proposing new ones. Given a sequence s of 0(112) input
constraints involving n variables, our incremental algorithms
improve the total runtime required for processing s using ex-
isting techniques by a factor of O(n) or O(n?).

In Section 2 we give the necessary background on PA and
I A. In Section 3, after analyzing the use of a path-consistency
algorithm for incremental satisfiability checking, we propose
new incremental algorithms for finding a solution of a CSP
over either PA or ORD-Horn, and for computing the minimal
labels of a CSP over PA. Finally, in Section 4 we briefly dis-
cuss the fully-dynamic version of the problems considered,
and we mention further results and future work.

2 Background on PA and IA

Vilain and Kautz's Point Algebra [1986] consists of three
basic relations between time points (<, >, =), all possible
unions of them (¥, >, #, and 7, where ? is the universal rela-
tion), and of the empty relations {@). Allen's Interval Algebra
[1983] consists of thirteen basic relations between temporal
intervals, all possible unions of these relations, and the empty
relation. PA and IA are closed under the operations union (),
intersection (M), difference (\), converse (™), and composi-
tion (0). The first four operations are defined in the standard
way. The composition for two relations can be derived from
the transitivity tables of the basic relations in PA and IA.

A qualitative temporal constraint satisfaction problem (or
briefly temporal CSP) in our context is a set of constraints
of the kind xRu, where x and y are cither point variables or
interval variables, and R is either a PA-relation (if x and y
are point variables) or an IA-relation (otherwise).

Given a temporal CSP © over either PA or IA, a funda-
mental reasoning problem is deciding the satisfiability of @.
© is satisfiable if and only if there exists a solution for@, ie.,
an assignment of temporal values to the variables of @ (ratio-
nal numbers for point variables, pairs of rational numbers for
interval variables) such that all the constraints in 0 are satis-

1283

fied. The problem of deciding the satisfiability of @ will be
called PSAT, if € is over PA, and ISAT if & is over IA. The
problem of finding a solution for @ will be called PSOL, if &
is over PA, and ISOL otherwise.

A related reasoning problem is finding a scenario that re-
fines a given temporal CSP A scenario ofa CSP @ is a satisfi-
able refinement of @, where the constraints between all pairs
of variables are basic relations. A CSP &' is a refinement of
© if and only if & and @ involve the same variables, and
for every pair of variables (x,y) such that zR'y € ©' and
zRy € ©, R C R.! Any scenario of a satisfiable temporal
CSP over PA (lIA) identifies a total order er of the point (in-
terval endpoint) variables of the CSP that is consistent with
the constraints of the scenario, and in which point (interval
endpoint) variables that must have the same interpretation are
mapped to the same position. Clearly, from a we can derive
a solution for the CSP by just assigning to the points (end-
points) of a numbers consistent with their relative order.?

Any temporal CSP @ involving n variables can be pro-
cessed using a cubic time algorithm that refines @ to an equiv-
alent path consistent CSP [Montanari, 1974]. A CSP is path
consistent if for every subset of constraints involving three
variables i, j, and k, the relation B, between i and A; is
stronger or equal than (i.e., is a subset of) the composition
of R,‘J' and Rjk.

A temporal CSP is minimal if, for every pair of variables
i, j, the relation Ry between i and k is the strongest relations
between i and k that is entailed by the CSP, i.e., for each basic
ri; relation in R.—_,' there exists a scenario for the CSP in which
Rj is refined to f We call the problem of computing the
minimal CSP PMIN for PA, and IMIN for IA.

From a computational point of view, PA and IA have dif-
ferent properties. The reasoning problems introduced above
are polynomial for PA, while they are NP-hard for IA [Vi-
lain and Kautz, 1986]. In particular, PSAT and PSOL can be
solved in O(n?) time using van Beek's method [1992], while
PMIN requires O(n*) time Ivan Beek, 1992; Gerevini and
Schubert, 1995]. These techniques use a graph-based repre-
sentation of the CSP that in [Gerevini and Schubert, 1995] is
called temporally labeled graph (TL-graph). A TL-graph is a
graph with a set of labeled edges, where each edge connects
a pair of distinct vertices v, w representing the point variables
of the temporal CSP. The edges are either directed and la-
beled < or <, or undirected and labeled 7# (=-constraints are
represented by a pair of €-constraints), van Beek's method
for finding a scenario for a satisfiable CSP of PA-constrains is
based on first identifying the strongly connected components
(SCC) of the TL-graph representing the CSP [Cormen et a/.,
1990] using only its <-edges. Each SCC is then collapsed
into a single vertex representing an equivalent class of vari-
ables that must be interpreted with the same temporal value.
If we omit the #-edges from the resultant graph, we obtain
a directed acyclic graph that we call the induced precedence

Without loss of generality we assume that, if no information
between x and y is provided, R is the universal relation, and that
for every pair of variables (x, y) such that *tRy € 8, yR~z € 8.

2E.g., we assign an integer i to the points in the first position of o,
i+ 1 to the points in the second position, etc. If we have a solution,
we can derive a total order (and hence a scenario) in a trivial way.

1284

graph of the CSP. From a topological sort of the vertices of
this graph we can easily derive a scenario for the CSP.2

Enforcing path-consistency to a temporal CSP requires
cubic time and is sufficient to decide PSAT fLadkin and
Maddux, 1988], but it does not solve PMIN. In order to
solve PMIN for a CSP over PA, in addition to enforce path-
consistency to it, we need to identify particular 4-variable
constraint subsets of the path consistent CSP containing a
<-constraint that should be refined to *«". Such subsets
are called forbidden subgraphs in Ivan Beek, 1992] and #-
diamonds in [Gerevini and Schubert, 1995].

Regarding IA, several tractable fragments have been iden-
tified. The Simple Interval Algebra (SIA) [van Beek, 1992;
Ladkin and Maddux, 1988] is formed by the IA-relations that
can be translated into a conjunction of PA-constraints be-
tween interval endpoints. All reasoning problems for a CSP
£ over SIA can be solved by applying the corresponding al-
gorithms to the PA-translation of §3. The most interesting
tractable fragment of IA is Nebel and Biirckert's ORD-Horn
class [1995]. ORD-Horn subsumes SIA and is the unique
maximal tractable sub-algebra of IA containing all the basic
relations. Each constraint C over ORD-Horn can be trans-
lated into a set of disjunctions of PA-constraints of the form
P~q. P < qorp # g, where p and q are endpoints of in-
tervals in C, and at most one literal is of type "=" or “<™.
Given a temporal CSP § over ORD-Horn, m (§1) will denote
the CSP of PA-constraints formed by the unary disjunctions
(PA-constraints) in the point translation of all interval con-
straints in {2.

Like PSAT, ISAT for ORD-Horn can be decided in cubic
time by using a path-consistency algorithm. ISOL for ORD-
Horn can be solved in square time, if the input CSP is known
to be path consistent[Gerevini and Cristani, 1997], in cubic
time otherwise [Ligozat, 1996].

In the rest of the paper, the incremental version of the rea-
soning problems for a temporal CSP is indicated by adding
the prefix " | " to the name of the corresponding static problem,
e.g., the incremental version of PSOL is [-PSOL. Without
loss of generality, we assume that the initial temporal CSP al-
ready involves all variables, possibly constrained only by the
universal relation. Moreover, our amortized complexity anal-
ysis is based on input sequences of length quadratic in the
number of the variables. These assumptions are discussed in
an extended version of the paper [Gerevini, 2003].

3 Incremental Tractable Reasoning

3.1 Path-consistency for I-PSAT and [-ISAT

Although van Beek's method for solving PSAT requires only
quadratic time, when we consider the incremental version
of this problem (I-PSAT), enforcing path-consistency turns
out to be more efficient than a simple iterative application
of van Beek's (static) algorithm. In fact, we can use a path-
consistency algorithm like the one given in Figure 1 (PC),
which was proposed in [Allen, 1983] and slightly reformu-
lated and improved in [Vilain and Kautz, 1986; Bessiere,
1996], to incrementally process a sequence of O(ng) PA-

3A topological sort for a DAG is a linear order a of its vertices
such that if v is a successor of w in the graph, then v precedes win a.

TEMPORAL REASONING

Algorithm; PC
Input. the matrix representation M of a (emporal CSP over either
PA or 1A,
Ouipur: fail, if enforcing path-consistency 1o the input CSP
generates the empty relation; the matrix represcntation of a
path consistent CSP equivalent to the input CSP, otherwise.
Q ={(i,j)|i < j}
while (@ # $ do
select and delete an element from Q;
fork #ik # jdo
if REVISE(4, j, k) then
if M|i, k] = @ then return fail
else add (i, k) to the end of);
if REVISE(k,i, 5} then
. if M1k, j] = @ then return fail
10. else add (k, 7) to the end of §;
11, veturn M.

VNSNS~

Subroutine: REVISE(i, k, i)

. 8:= Mi,k]o M{k,j];

. if MTi, j] C S then return false

. MJi, 5] =M, 3 0 8; MG, i) = MG, 5]
return true;

ok L b —

Figure 1. A path-consistency algorithm for qualitative temporal
constraints as formulated in [Bessidre, 1996].

constraints in O(n*} total time (i.e., the amortized time com-
plexity per inpul constraint is linear). This is better than reap-
plying van Beek's aLgorithm after each constraint assertion,
which requires O(n®) total time. Similarly, for any frag-
ment of IA for which enforcing path-consistency is suffi-
cient to decide satisfiability, we can use PC 10 solve I-ISAT
in O(n*) total time, instead of O(n®). More precisely, let
{C1,Cy, ..,Ci) be the sequence of the input constraints,
g an initial (possibly empty) satisfiable temporal CSP, and
08, = O U {C; | j < i} (¢ > 0).* To decide the satisfiability
of each &;, we consider three cases:

(1) if the relation R of C; = zRy is weaker than the relation
R’ of the corresponding constraint in ©;_, then clearly
€); is satisfiable, and no further processing is needed,

(2) if R n R is the empty relation, then ©; is unsatisfiable
and we return fail;

(3) if none of the previous cases holds, then, first we revise
the relation between « and y to R’ N R (and between y
and 7 to B~ N R™), and then we run PC on the resul-
tant revised CSP with step 1 modified so that @ initially
contains only the item (z, y).

We call this simple method incremental path-consistency
(IPC). This technique has the following important property,
that will be exploited by the algorithms in the next sections.®

Theorem 1 IPC solves 1-PSAT and 1-1SAT for ORD-Horn
in O(n?) total time, where 1 is the number of temporal vari-
ables.

“Qp may already contain up to O{n?) constraints different from
the universal relation, For CSPs over PA k < 6-(n® —n)/2, becanse
we assume that there is no duplication in the input sequence, and
there are at most 6 different input PA-constraints between any pair
of variables (the empty and the universal relations are not valid input
relations). Similarly, for CSPs over IA k < (213 = 2} (n? = n}/2.

3For lack of space we omit proof details, which are available in
[Gerevini, 2003].

TEMPORAL REASONING

. I M[i, k] or M [k, j] is the universal retation then return false;

Proof. Since a pair {z, y} enters into Q only when the rela-
tions between x and y is revised, and each relation & can be
revised at most twice, if B € PA, or at most 12 times, if R €
1A, it follows that the total time complexity is O(n*). 0

It is worth noting that, as pointed out by Bessiére [Per-
sonal Communication, 1997), the O{n?*) time complexity of
Ligozat's algorithm {1996] for finding a scenario of a path
consistent CSP over ORD-Horn follows from Theorem 1.

3.2 An Algorithm for I-PSOL

For the incremental version of PSOL (I-PSOL) the simple
application from scratch of van Beek's static algorithm { 1992)
after each constraint assertion requires (2(n?) total time.?

In this section we propose an algorithm for solving 1-
PSOL in O(n) amortized time, i.e., the total time complexity
for processing a sequence on O(n?%) constraint assertions is
O(n®). The algorithm is based on maintaining a topological
sort S for the precedence graph of the input CSP in which the
censtraints are incrementally given. Let S;_; be a topological
sort for B, (X;_; is satisfiable). When we process a new
constraint £, we perform two main operations:

(i) we check whether Z; = Z;.; U {C,} is satisfiable;
(1) if L; is satisfiable, we update S;_; to derive S,.

As we have seen, (i} can be solved in O(n®) total time by
using IPC. Regarding (ii), there are two related difficultics to
address: C; induces an edge (or precedence constraint) in the
precedence graph that invalidates &,_;; if the relation of C,
is *=" or “<", new equalities may be generated (i.e., in the
TL-graph representation a new SCC may be generated, and
the precedence graph should be revised accordingly). The
algorithm INCREMENTAL-PA-SOL given in Figure 2 accom-
plishes (i) and (ii) taking these cases into account. The rest of
this section is devoted to the description of the algorithm,

The current path consistent CSP is represented by a matrix
M, while the current topological sort is represented by an ar-
ray T such that 7'[j] = v if and only if v is the j-th element
of the sort. Ord(v) denotes the position of v in the topolog-
ical sort {i.e., the index of v in T'). INCREMENTAL-PA-SoOL
uses a modification of IPC, called IPC-1, in which each vari-
able has a flag (EQ}) which is set to false before running
INCREMENTAL-PA-SOL. The EQ-flag of a variable v is re-
vised to true if the relation of the new inpul constraint is
“="and v is one of ils variables, or if during the propagation
of the new input constraint, the relation between v and any
other variable is revised to “=", The second case is handled
in IPC-1 by using an extension of the subroutine REVISE in
which, if M{i, 7] is revised to “=", then EQ[{] and EQ[j] are
set to true. Clearly, this modification does not increase the
complexity of the incremental path-consistency method.

If the relation of the new PA-constraint zRy is in {<, <},
then Ry may induce a precedence constraint z < y for
S; that is not satisfied in S;_,. (Similarly for R € {>,>}
inducing ¥y < z.) This is the case when X, is satisfiable,
Ord(z) > Ord(y) (or Ord(y) > Ord{x)), and 2 Ry induces
no new equality in I, (i.c., the set E of step 3 is empty).

A temporal CSP over PA may involve O(n?) constraints with
relation different from 7", and each of these can be revised at most
twice by additional input constraints.

1285

Algorithm: INCREMENTAL-PA-SOL

fnput: the matrix representation M of the path consistent CSP of
X115 atopoloagical urder T for the precedence graph G of
Ei—1: ancw PA-constraint z RBy.

Ouipur: A solution for B; = E,., U {z Ry}, if &, is satisfable,
fail otherwisc.

M :=IPC-1(M,zRy);
it M = fail then return fail;
E := set of the point variables such that EQ[z] = true
(E is a global variable used also in UPDATE-TSORTY,
if £ is cmpty then
il £ € {<, <} und Ord(z) > Ord(y) then
UPDATE-TSORT(T =.,});
if R € {>, >} and Ord(y) > Ord(z} then
UPDATE-TSORT{T ,5.)
else collapse the vertices of G in E to T,
10. S={v|vg E—{z} A Ord(y) < Ord(v) < Ord(z)}:
11. L :=list of the variables in S topologicully sorted using (7;
12, for j = Ord(y) to Ord{x} ~ |S| + 1do

W -

DNk

13.) Tlj] := Pop{L); Ord(T{j]} = j;
14, forj :=0rd(x)—|E|+2t0 V{G) do
15. T =T|j + |El - 1); Ord[T]j]] =5

16. return an assighment to the variables in 2, consistent with T,

Subroutine: UrDATE-TSORT(T,x, y)
{The topological sort T for .- is updated using the new prece-
dence constraint x < , and it becomes a tepological sort for X,.)

shift :=1;
L := a list containing only y;
for i ;= Ord(y) + 1 to Ord(x) do
if My, T]] € {<, <]} then
add 4] to the end of L;
shift .= shift + 1,
else Ord(T[i]) ;= ~ shift;
T'[i — shifi] .= Ti]:
for i := Ord{z}—shifi+1 to Ord(z) do
10, z=Pop{L). T(i] = z; Ord(z) = 4;
Figure 2: Algorithm for I-PSOL. V{G) denotes the current num-

ber of vertices in the precedence graph G. Pop{ L) returns the first
element of L and removes it from L.

S NS s W

Under these conditions, the new constraint requires to update
&i-1, which is accomplished by steps 4-8. Specifically, il
the induced precedence constraint is ¢ ~< ¥, we run the sub-
routine UPDATE-TSORT(T, =,), which revises the current
topological sort (T') in the following way.’

UPDATE-TSORT considers each temporal variable v such
that Ord{y) < Ord(v) < Ord(z). (Notice that the only part
of §; .1 than can be invalidated by = < y regards the variables
from T[Ord(y)] 10 T|Ord(z)].) If T, entails y < v, then
in &, i (and hence also x) must precede v, because in the
precedence graph there is a path from y () to v. Since by
step | of the main algorithm A{ is the path consistent CSP
of ¥,, these entailment can be checked in constant time by
simply looking up at the appropriate entries of M (step 4 of
the subroutine). The v-variabiles that must follow z are added
to the end of a list L that initially contains only y. Once all
variables in the relevant part of $;_, have been considered,
those that are in L should be postponed, while the others can

"UPDATE-TSORT is similar to a technique used by Marchetti e/
ai [1993] in the context of an algorithm for detecting cycles in a
DAG.

1286

/f‘ -
. /—-
T Y/ a b7 e d Nox
........ "- ‘qg—a———y » —.
E AN F) . - -
o L) N . P
" ~ -
. Y LY ”
L ™ -7 LY
P N '¢<
P P M
N L Y4
. M S
¥ N ~ LY
T hy P S NN,
+ -
......... — & N, S
b d x ¥ a ¢

Figure 3: Example of an update of the topological order T with
T < y using UPDATE-TSORT(x,y, T}. Directed solid arcs repre-
sent edpes in the precedence graph of ;. The variables preceding
x in the current topological sort, and that in the revised sort must
follow it, arc y, a und c. When step 10 is exccuted the values of shiff
and L are 3 and (y e ¢}, respectively.

T ¥ G/-md 4
Ord 8 aN_ 1o AN 12 11 A s e
a ;\d 'r' .
T NN £7
Ord & 9 n 1 12 13 14
Figure 4: Example of revision of the topological sort T when

a set E of variables become equal by adding x < y to ¥,
(E = {z,y,b}). Directed solid arcs represent edges in the prece-
dence graph of E, before and after collapsing the variables in E to
x. Dashed arrows indicate the shift performed by steps 14-15 of
INCREMENTAL-PA-SOL.

be anticipated. In particular, if a variable is not added to L,
we can shift it backward a number of positions equal to the
number of items currently in L (which is given by the value of
shiff). This is done by steps 3-8 of the subroutine, while steps
9-10 move forward the variables in L to the positions of T
that were occupied by the variables shifted backward. Notice
thatwhenUPDATE-TSORT(T, X, ;U)terminates, therelative
order of the variables that entered into L, as well as of those
that were shifted backward, are not changed in the revised
topological sort. Figure 3 shows a simple example.

If xRy induces new equalities (E is not empty), then the
variables in E, together with those possibly represented by
them, form an equivalence class. Step 9 collapses the ver-
tices in the precedence graph G of Bi_1 corresponding to the
variables in E into a single representative vertex ;r, transfer-
ring to x all incoming and outgoing edges of the collapsed
vertices. In order to update T, we need now to reorder the
variables from T[Ord{y)] to T[(Ord{z)] that have not been
collapsed. These variables are topologically ordered using
G by step 11, and assigned to T in positions from Ord(y) to
Ord(x)—|E|+1. Then, steps 13 and 14 shrinks T by shifting
backward the variables appearing after x in T, starting from
position Ord(z) — | E| + 2 and with a shift equal to the num-
ber of variables (vertices) eliminated from & (i.e., |E| — 1).
Figure 4 gives an example illustrating steps 9-15.

Theorem 2 INCREMENTAL-PA-SOL solves [-PSOL in
0(n’) total time, where n is the number of temporal vari-
ables.

TEMPORAL REASONING

(n 2) N (4

Figure 5: Types #-diamonds that can be generated in £, by the
new constraint x < y. Directed (undirected) edges represent <-
constraints {;#-constraints). In the minimal CSP of £,, for cases
(1)+{2) Rz, should be <, for cases (3)-(4) fwy should be *<*.

Proof (sketch). Correctness of the algorithm follows from
Theorem 1 and the discussion in the description of the algo-
rithm. By Theorem 1 step 1 requires O(n?) total time. The
other most costly steps are 9, 11 requiring ({n*) time. They
are performed at most () times for any input sequence. O

3.3 An Algorithm for I-PMIN

The simple use of van Beek's (static) algorithm for PMIN af-
ter each constraint assertion to solve I-PMIN requires O(n®)
total time. In this section we propose an algorithm for solv-
ingI-PMIN, INCREMENTAL-PA-MIN, requirQ{n?) total
time. This is the best possible worst-case complexity bound.

In order to maintain a CSP over PA minimal when a new
PA-constraint Ry is given, in addition to enforce path-
consistency, we need to identify and remove all possibly
#-diamonds that are generated (see Figure 5). Since #-
diamonds consist only of constraints of type < and #, clearly
a new constraint can generate additional # -diamonds only if
RN R € {=,<,>,#}, where R’ is the relation between x
and y in the minimal CSP of £;_;.

Let f,-_l be minimal CSP of };_i, and }; ofthe path con-
sistent CSP of Z;_; U {zRy}. f RN R' € {=,<, 2>} (and
R C R", then the new constraint and its propagation can gen-
erate new <-constraints in ¥;. Itis easy to see that any new
possible #-diamonds in L; must involve one of these new <-
constraints. Hence, in order to make ¥, minimal, it suffices
to identify and eliminate all diamonds involving one of these
constraints. Figure 5 shows the only four possible types of #-
diamonds that can be generated in ¥; by the new constraint
< y. Note that cases (1) and (2) are symmetric and can be
reduced to the same case (analogously for (3) and (4)).

If ROR' =“3" (and R C R'), then the propagation of x Ry
cannotAglve rise to new # -constraints, and hence in order to
make ¥; minimal, it suffices to identify and eliminate all new
diamonds involving & # y.

Our algorithm for solving I-PMIN is given in Figure 6. It
uses a modification of IPC, called 1PC-2, which like IPC-I
is a revision of IPC to keep track of certain constraints gen-
erated by the propagation of xRy. IPC-2 adds all pairs of
variables whose relation has been refined to "< to a list
L. L is a global variable that is initialized by steps 1-2 of
INCREMENTAL-PA-MIN to the list containing either (x,y),
(v, x) or no pair. A pair of variables is added to L by the
subroutine REVISE-2 of IPC-2, a modification of REVISE in
which after step 4 we perform the following additional steps
to update L:

TEMPORAL REASONING

Algorithm: INCREMENTAL-PA-MIN

Input: the matrix representation M of the minimat CSP of X, _ ,;
a new PA-constraint zRy.

Output: The matrix representation of the minimul CSPfor &, =
Ei-1 U {zRy},if Z, is satishiable, fail otherwise.

= *<" C M(z,y] then L := ({z,y))else L = ();

2. M z,y|then L = ({y,z)}else L := ();
3.ERAM[="#" CM::y then N:=crue else N:=falae:
4 M =IPC- oy aany s

5. if M = fail then return fail;

6. for each (u,v) € Ldo

7. foreach w, z such that w # 2 and w, % # u,vdo

8. if Miu,w] = M[v, z] Mlw, 2] ="<" A My, w] ="#"
9. then M [u, z] :="<"; M[z,u] :=">",

10, if Mfw, u] = Mlw, z] Mz v] =" g AM[u,.‘: ="¢
11 then M[w,v] =="<" M[v,w] =

12.if & then

13 foreach w,z such that w # z and w, 2z # z, 3 do

14, i Mw, z} = Mw,y] = Mz, 2] = M[y,z) =<

15, then Mw, z] := <" Mz, w] = ">

16.return A,

Figure 6: Algorithm for solving I-PMIN. L is a global variable that
is modified by IPC-2 as described in the text.

5. if Mli, j]="<" thenadd (i,) to L

6. elseif M|[j,ij =“<” then add (j,1) to L
Step 4 of INCREMENTAL-PA-MIN runs IPC-2 to (a) decide
PSAT for %, (b} enforce path-consistency to M, and (c) up-
date L with the new implied <-constraints. If ¥, is satisfiable,
then steps 611 identify all new #-diamonds that are gener-
ated in M by the new constraint £ < y. These diamonds
are eliminated by revising to “<” or *>" the relation of the
“non-minimal” constraints (steps 9 & 11). Finally, steps 13-
15 eliminate all new #-diamonds involving = # y.

Theorem3 INCREMENTAL-PA-MIN solves I-PMIN in
0(n*) total time, where n is the number of temporal vari-
ables.

Proof (sketch). Since the algorithm eliminates all new -
diamonds, correctness follows from Theorem 1 and fact that
any path consistent CSP over PA with no #-diamond is mini-
mal [Gerevini and Schubert, 1995] Complexity follows from
Theorem 1 and the fact that the total number of pairs that can
enter into L is O(n?). D

3.4 An Algorithm for I-ISOL over ORD-Horn

Gerevini and Cristani [1997] showed that ISOL for a path
consistent CSP €1 over ORD-Horn can be solved in O(n?)
time by using a solution for the my -translation of {2. Figure 7
gives an algorithm solving I-ISOL for £ which exploits this
property and usesINCREMENTAL-PA-SOL. Ouralgorithm
requires O)(n®} total time, while the application from sketch
of a known static algorithm each time a new constraint is as-
serted requires O(n5) total time. This cost can be reduced
to 0(n*) total time by using IPC combined with Gerevini &
Cristani's algorithm, which is still one order worse than the
complexity of the algorithm presented here.

Our algorithm uses a modification of IPC, called IPC-3,
which again is a revision of IPC to keep track of certain con-
straints generated by the propagation of the new input con-
straint zRy. Given the path consistent C S{to f{l;_1, the

1287

Algorithm: INCREMENTAL-ORDHORN-SOL

Input: the matrices M and M’ representing the path consistent CSP
2 of ©;_1, and the path consistent CSP of m; {2}, respectively:
a topological order T for the precedence graph of 7, {2): a new
interval constraint z Ry.

Output: A solution for £3;, if 0, is satisfiable, £ail otherwise.

(RN Mz,y)) C M[x,y] then
P :=list formed by the constraints in m ({zRy}) else P = ();
M =TPC-3{M,xRy);
if M = fail then return fail;
for each pSq € Pdo
if (SN M'[p,q]) € M’[p,q] then initizlize the EQ-flags and
run steps 1-15 of INCREMENTAL-PA-SoL{M’', T, pSq):
return an assignment to the interval endpoints in £, consistent
with T".

Figure 7: An algorithm solving I-ISOL for ORD-Hom.

L S Ealtad e

1288

complexity only for any subsequence of constraint assertions.
E.g., consider an instance of the fully-dynamic version of
PMIN in which we have k retractions during an input se-
quence ofO(n.z) assertions. When we process a retraction,
we can recompute from scratch the minimal labels, while as-
sertions are processed using our algorithm. The total time
complexity is then O{kn*}, which is still more efficient than
applying van Beek's static O{n*) algoriQ(kn®)mes.
While in this paper we have not addressed I-IMIN for
ORD-Horn, very recently we have proved that this problem
can be solved in O(n®) total time. Future work includes in-
cremental algorithms for other tractable classes [Krokhin et
al, to appear] and a deeper study of fully-dynamic problems.

References

[Allen, 1983] J.F.Allen. Maintaining knowledge about tem-
poral intervals. Comm. of the ACM, 26(1):832-843,1983.

[Ausiello et ai, 1991] G. Ausiello, G. ltaliano, A.Marchetti-
Spaccamela, and U. Nanni. Incremental algorithms for
minimal length paths. J. of Algorithms, 12:615-638,1991.

[Bessiere, 1996] C. Bessiere. A simple way to improve path-
consistency in Interval Algebra networks. Proc. of AAAI-
96,375-380,1996.

[Cormen etal., 1990] T. Cormen, C. Leiserson, and R.
Rivest. Introduction to Algorithms. The MIT Press, 1990.

[Gerevini, 2003] A. Gerevini. Incremental Tractable Rea-
soning about Qualitative Temporal Constraints. Technical
Report, DEA, University of Brescia, Italy, 2003.

[Gerevini and Cristani, 1997] A. Gerevini and M. Cristani.
On finding solutions in temporal constraint networks.
Proc. of IJCAI-97, 1460-1465, 1997.

[Gerevini and Schubert, 1995] A. Gerevini and L. Schubert.
On computing the minimal labels in time point algebra net-
works. Computational Intelligence, 11(3):443-448, 1995.

[Krokhin et a/., to appear] A. Krokhin, P. Jeavons, and
P. Jonsson. The Tractable Subalgebras of Allen's Interval
Algebra. J. of ACM, to appear.

[Ladkin and Maddux, 1988] P. Ladkin, and R.Maddux. On
binary constraint networks. TR, Kestrel Institute, 1988.
[Ligozat, 1996] G. Ligozat. A new proof of tractability for
ORD-Horn relations. Proc. of AAAI-96, 715-720, 1996.
[Marchetti et a/., 1993] A. Marchetti-Spaccamela, U. Nanni,
and H. Rohert. On-line graph algorithms for incremental
compilation. LNCS 790, 113-151. Springer Verlag, 1993.

[Montanari, 1974] U. Montanari. Networks of constraints:
Fundamental properties and applications to picture pro-
cessing. Information Science, 7(3):95-132, 1974.

[Nebel and Burckert, 1995] B. Nebel and H. Burckert. Rea-
soning about temporal relations: A maximal tractable sub-
class of Allen's interval algebra. J. of ACM, 42(1), 1995.

[Tarjan, 1985] R.E. Tarjan. Amortized computational com-
plexity. SIAM J. of Alg. and Dis. Meth., 6:306-318, 1985.

[van Beek, 1992] P. van Beek. Reasoning about qualitative
temporal information. Artif Intell, 58, 297-321, 1992.

[Vilain and Kautz, 1986] M. Vilain and H.A. Kautz. Con-
straint propagation algorithms for temporal reasoning.
Proc. ofAAAI-86, 377-382,1986.

TEMPORAL REASONING

