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Abstract 
In many applications of temporal reasoning we are in­
terested in reasoning incrementally In particular, given 
a CSP of temporal constrains and a new constraint, we 
want to maintain certain properties in the extended CSP 
(e.g., a solution), rather than recomputing them from 
scratch. The Point Algebra (PA) and the Interval Algebra 
(IA) are two well-known frameworks for qualitative tem­
poral reasoning. Most of the existing algorithms for PA 
and the known tractable fragments of IA, such as ORD-
Horn, has been designed for "static" reasoning. In this 
paper we study the incremental version of some funda­
mental problems of temporal reasoning, proposing new 
algorithms that amortize their complexity when process­
ing a sequence of input constraints. After analyzing the 
role of path-consistency for incremental satisfiability, we 
propose algorithms for maintaining a solution of a CSP 
over either PA or ORD-Horn, and the minimal labels of a 
CSP over PA. Our algorithms improve the complexity of 
using existing techniques by a factor of 
where n is the number of variables involved in the CSP. 

1 Introduction 
Constraint-based qualitative temporal reasoning is a widely 
studied area of AI in which the most prominent approaches 
are Allen's Interval Algebra (IA) [1983] and Vilain and 
Kautz's Point Algebra (PA) [1986]. Given a CSP of tempo­
ral constraints, fundamental reasoning problems are deciding 
satisfiability of the CSP, finding a solution, and computing its 
"minimal labels". These problems arc NP-hard for the full 
IA, while they are polynomial for PA and for several frag­
ments of IA, such as Nebel & Burckert [19951 ORD-Horn 
subalgebra, which is the unique maximal tractable subclass 
of IA containing all the basic relations. 

In many applications of temporal reasoning we are in­
terested in "dynamic" or on-line reasoning. For instance, 
given an initial (possibly empty) CSP of temporal constraints, 
whenever a new constraint is asserted, we want to in maintain 
a solution of the CSP, rather than recomputing it from scratch 
using a "static" algorithm. 

The design of algorithms for dynamic polynomial prob­
lems is an important research field in operation research and 
theoretical computer science (e.g., [Ausiello et ai, 1991]). 
A dynamic problem can be either semi-dynamic or fully-
dynamic. In the semi-dynamic version we deal with informa­
tion that is incrementally given (or decrementally retracted). 

In the fully-dynamic version, we deal with both assertions 
and retractions. Typically, the worst-case performance of an 
algorithm for a dynamic problem is specified in terms of its 
amortized complexity for a single operation (assertion or re­
traction), that can be defined as the average runtime per oper­
ation over a worst-case sequence of operations [Tarjan, 1985]. 

The large majority of the algorithms that have been devel­
oped for reasoning within tractable classes of qualitative tem­
poral constraints are static. In this paper we investigate the 
incremental version of some reasoning problems for PA and 
ORD-Horn, discussing the behavior of existing techniques 
and proposing new ones. Given a sequence s of input 
constraints involving n variables, our incremental algorithms 
improve the total runtime required for processing s using ex­
isting techniques by a factor of  

In Section 2 we give the necessary background on PA and 
I A. In Section 3, after analyzing the use of a path-consistency 
algorithm for incremental satisfiability checking, we propose 
new incremental algorithms for finding a solution of a CSP 
over either PA or ORD-Horn, and for computing the minimal 
labels of a CSP over PA. Finally, in Section 4 we briefly dis­
cuss the fully-dynamic version of the problems considered, 
and we mention further results and future work. 

2 Background on PA and IA 
Vilain and Kautz's Point Algebra [1986] consists of three 
basic relations between time points all possible 
unions of them where ? is the universal rela­
tion), and of the empty relations Allen's Interval Algebra 
[1983] consists of thirteen basic relations between temporal 
intervals, all possible unions of these relations, and the empty 
relation. PA and IA are closed under the operations union 
intersection difference converse and composi­
tion (o). The first four operations are defined in the standard 
way. The composition for two relations can be derived from 
the transitivity tables of the basic relations in PA and IA. 

A qualitative temporal constraint satisfaction problem (or 
briefly temporal CSP) in our context is a set of constraints 
of the kind xRu, where x and y are cither point variables or 
interval variables, and R is either a PA-relation (if x and y 
are point variables) or an IA-relation (otherwise). 

Given a temporal CSP over either PA or IA, a funda­
mental reasoning problem is deciding the satisfiability of  

is satisfiable if and only if there exists a solution for i.e., 
an assignment of temporal values to the variables of (ratio­
nal numbers for point variables, pairs of rational numbers for 
interval variables) such that all the constraints in 0 are satis-
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fied. The problem of deciding the satisfiability of will be 
called PSAT, if is over PA, and ISAT if is over IA. The 
problem of finding a solution for wil l be called PSOL, if 
is over PA, and ISOL otherwise. 

A related reasoning problem is finding a scenario that re­
fines a given temporal CSP A scenario of a CSP is a satisfi-
able refinement of where the constraints between all pairs 
of variables are basic relations. A CSP is a refinement of 

if and only if and involve the same variables, and 
for every pair of variables (x,y) such that and 

Any scenario of a satisfiable temporal 
CSP over PA (IA) identifies a total order of the point (in­
terval endpoint) variables of the CSP that is consistent with 
the constraints of the scenario, and in which point (interval 
endpoint) variables that must have the same interpretation are 
mapped to the same position. Clearly, from a we can derive 
a solution for the CSP by just assigning to the points (end-
points) of a numbers consistent with their relative order.2 

Any temporal CSP involving n variables can be pro­
cessed using a cubic time algorithm that refines to an equiv­
alent path consistent CSP [Montanari, 1974]. A CSP is path 
consistent if for every subset of constraints involving three 
variables i, j, and k, the relation between i and A; is 
stronger or equal than (i.e., is a subset of) the composition 
of and  

A temporal CSP is minimal if, for every pair of variables 
i, j, the relation between i and k is the strongest relations 
between i and k that is entailed by the CSP, i.e., for each basic 

relation in there exists a scenario for the CSP in which 
Rij is refined to f We call the problem of computing the 
minimal CSP PMIN for PA, and IMIN for IA. 

From a computational point of view, PA and IA have dif­
ferent properties. The reasoning problems introduced above 
are polynomial for PA, while they are NP-hard for IA [Vi-
lain and Kautz, 1986]. In particular, PSAT and PSOL can be 
solved in time using van Beek's method [1992], while 
PMIN requires time Ivan Beek, 1992; Gerevini and 
Schubert, 1995]. These techniques use a graph-based repre­
sentation of the CSP that in [Gerevini and Schubert, 1995] is 
called temporally labeled graph (TL-graph). A TL-graph is a 
graph with a set of labeled edges, where each edge connects 
a pair of distinct vertices v, w representing the point variables 
of the temporal CSP. The edges are either directed and la­
beled or or undirected and labeled (=-constraints are 
represented by a pair of -constraints), van Beek's method 
for finding a scenario for a satisfiable CSP of PA-constrains is 
based on first identifying the strongly connected components 
(SCC) of the TL-graph representing the CSP [Cormen et a/., 
1990] using only its -edges. Each SCC is then collapsed 
into a single vertex representing an equivalent class of vari­
ables that must be interpreted with the same temporal value. 
If we omit the -edges from the resultant graph, we obtain 
a directed acyclic graph that we call the induced precedence 

Without loss of generality we assume that, if no information 
between x and y is provided, R is the universal relation, and that 
for every pair of variables (x, y) such that  

2E.g., we assign an integer i to the points in the first position of o, 
i + 1 to the points in the second position, etc. If we have a solution, 
we can derive a total order (and hence a scenario) in a trivial way. 

graph of the CSP. From a topological sort of the vertices of 
this graph we can easily derive a scenario for the CSP.3 

Enforcing path-consistency to a temporal CSP requires 
cubic time and is sufficient to decide PSAT fLadkin and 
Maddux, 1988], but it does not solve PMIN. In order to 
solve PMIN for a CSP over PA, in addition to enforce path-
consistency to it, we need to identify particular 4-variable 
constraint subsets of the path consistent CSP containing a 

-constraint that should be refined to Such subsets 
are called forbidden subgraphs in Ivan Beek, 1992] and 
diamonds in [Gerevini and Schubert, 1995]. 

Regarding IA, several tractable fragments have been iden­
tified. The Simple Interval Algebra (SIA) [van Beek, 1992; 
Ladkin and Maddux, 1988] is formed by the IA-relations that 
can be translated into a conjunction of PA-constraints be­
tween interval endpoints. Al l reasoning problems for a CSP 

over SIA can be solved by applying the corresponding al­
gorithms to the PA-translation of The most interesting 
tractable fragment of IA is Nebel and Biirckert's ORD-Horn 
class [1995]. ORD-Horn subsumes SIA and is the unique 
maximal tractable sub-algebra of IA containing all the basic 
relations. Each constraint C over ORD-Horn can be trans­
lated into a set of disjunctions of PA-constraints of the form 
P = q. P q or p q, where p and q are endpoints of in­
tervals in C, and at most one literal is of type " = " or 
Given a temporal CSP over ORD-Horn, will denote 
the CSP of PA-constraints formed by the unary disjunctions 
(PA-constraints) in the point translation of all interval con­
straints in  

Like PSAT, ISAT for ORD-Horn can be decided in cubic 
time by using a path-consistency algorithm. ISOL for ORD-
Horn can be solved in square time, if the input CSP is known 
to be path consistent[Gerevini and Cristani, 1997], in cubic 
time otherwise [Ligozat, 1996]. 

In the rest of the paper, the incremental version of the rea­
soning problems for a temporal CSP is indicated by adding 
the prefix " I " to the name of the corresponding static problem, 
e.g., the incremental version of PSOL is I-PSOL. Without 
loss of generality, we assume that the initial temporal CSP al­
ready involves all variables, possibly constrained only by the 
universal relation. Moreover, our amortized complexity anal­
ysis is based on input sequences of length quadratic in the 
number of the variables. These assumptions are discussed in 
an extended version of the paper [Gerevini, 2003]. 

3 Incremental Tractable Reasoning 
3.1 Path-consistency for I-PSAT and I-ISAT 
Although van Beek's method for solving PSAT requires only 
quadratic time, when we consider the incremental version 
of this problem (I-PSAT), enforcing path-consistency turns 
out to be more efficient than a simple iterative application 
of van Beek's (static) algorithm. In fact, we can use a path-
consistency algorithm like the one given in Figure 1 (PC), 
which was proposed in [Allen, 1983] and slightly reformu­
lated and improved in [Vilain and Kautz, 1986; Bessiere, 
1996], to incrementally process a sequence of PA-

3A topological sort for a DAG is a linear order a of its vertices 
such that if v is a successor of w in the graph, then v precedes win a. 
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7UPDATE-TSORT is similar to a technique used by Marchetti el 
ai [1993] in the context of an algorithm for detecting cycles in a 
DAG. 

Figure 4: Example of revision of the topological sort T when 
a set E of variables become equal by adding x y to  

= Directed solid arcs represent edges in the prece-
dence graph of before and after collapsing the variables in E to 
x. Dashed arrows indicate the shift performed by steps 14-15 of 
INCREMENTAL-PA-SOL. 

be anticipated. In particular, if a variable is not added to L, 
we can shift it backward a number of positions equal to the 
number of items currently in L (which is given by the value of 
shift). This is done by steps 3-8 of the subroutine, while steps 
9-10 move forward the variables in L to the positions of T 
that were occupied by the variables shifted backward. Notice 
that when U P D A T E - T S O R T ( T , X , ; U ) terminates, the relative 
order of the variables that entered into L, as wel l as of those 
that were shifted backward, are not changed in the revised 
topological sort. Figure 3 shows a simple example. 

If xRy induces new equalities (E is not empty), then the 
variables in E, together wi th those possibly represented by 
them, form an equivalence class. Step 9 collapses the ver­
tices in the precedence graph G of corresponding to the 
variables in E into a single representative vertex ;r, transfer­
r ing to x all incoming and outgoing edges of the collapsed 
vertices. In order to update T, we need now to reorder the 
variables f rom that have not been 
collapsed. These variables are topologically ordered using 
G by step 11, and assigned to T in positions f rom to 

Then, steps 13 and 14 shrinks T by shifting 
backward the variables appearing after x in T, starting f rom 
position and wi th a shift equal to the num­
ber of variables (vertices) el iminated f rom 
Figure 4 gives an example i l lustrating steps 9-15. 

Theorem 2 INCREMENTAL-PA-SOL solves I -PSOL in 
0(n3) total time, where n is the number of temporal vari­
ables. 
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Figure 5: Types -diamonds that can be generated in by the 
new constraint x < y. Directed (undirected) edges represent 
constraints In the minimal CSP of for cases 

should be <, for cases (3)-(4) should be  

Proof (sketch). Correctness of the algorithm follows from 
Theorem 1 and the discussion in the description of the algo­
rithm. By Theorem 1 step 1 requires total time. The 
other most costly steps are 9, 11 requiring time. They 
are performed at most times for any input sequence.  

3.3 An Algorithm for I-PMIN 
The simple use of van Beek's (static) algorithm for PMIN af­
ter each constraint assertion to solve I-PMIN requires 
total time. In this section we propose an algorithm for solv­
ing I-PMIN, I N C R E M E N T A L - P A - M I N , requiring total 
time. This is the best possible worst-case complexity bound. 

In order to maintain a CSP over PA minimal when a new 
PA-constraint is given, in addition to enforce path-
consistency, we need to identify and remove all possibly 

-diamonds that are generated (see Figure 5). Since 
diamonds consist only of constraints of type and clearly 
a new constraint can generate additional -diamonds only if 

where is the relation between x 
and y in the minimal CSP of  

Let be minimal CSP of ∑ i _ i , and ∑i of the path con­
sistent CSP of (and 

then the new constraint and its propagation can gen­
erate new -constraints in It is easy to see that any new 
possible -diamonds in must involve one of these new 
constraints. Hence, in order to make minimal, it suffices 
to identify and eliminate all diamonds involving one of these 
constraints. Figure 5 shows the only four possible types of 
diamonds that can be generated in by the new constraint 

Note that cases (1) and (2) are symmetric and can be 
reduced to the same case (analogously for (3) and (4)). 

If (and then the propagation of  
cannot give rise to new -constraints, and hence in order to 
make minimal, it suffices to identify and eliminate all new 
diamonds involving  

Our algorithm for solving I-PMIN is given in Figure 6. It 
uses a modification of IPC, called 1PC-2, which like IPC-I 
is a revision of IPC to keep track of certain constraints gen­
erated by the propagation of xRy. IPC-2 adds all pairs of 
variables whose relation has been refined to to a list 
L. L is a global variable that is initialized by steps 1-2 of 
INCREMENTAL-PA-MIN to the list containing either (x,y), 
(y, x) or no pair. A pair of variables is added to L by the 
subroutine REVISE-2 of IPC-2, a modification of REVISE in 
which after step 4 we perform the following additional steps 
to update L: 

Theorem 3 I N C R E M E N T A L - P A - M I N solves I-PMIN in 
0(n4) total time, where n is the number of temporal vari­
ables. 
Proof (sketch). Since the algorithm eliminates all new 
diamonds, correctness follows from Theorem 1 and fact that 
any path consistent CSP over PA with no -diamond is mini­
mal [Gerevini and Schubert, 1995] Complexity follows from 
Theorem 1 and the fact that the total number of pairs that can 
enter into L is O(n2).  

3.4 An A lgo r i t hm for I- ISOL over O R D - H o r n 

Gerevini and Cristani [1997] showed that ISOL for a path 
consistent CSP over ORD-Horn can be solved in 
time by using a solution for the -translation of Figure 7 
gives an algorithm solving I-ISOL for which exploits this 
property and uses I N C R E M E N T A L - P A - S O L . Our algorithm 
requires total time, while the application from sketch 
of a known static algorithm each time a new constraint is as­
serted requires total time. This cost can be reduced 
to 0(n4) total time by using IPC combined with Gerevini & 
Cristani's algorithm, which is still one order worse than the 
complexity of the algorithm presented here. 

Our algorithm uses a modification of IPC, called IPC-3, 
which again is a revision of IPC to keep track of certain con­
straints generated by the propagation of the new input con­
straint Given the path consistent C S P o f the  
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complexity only for any subsequence of constraint assertions. 
E.g., consider an instance of the fully-dynamic version of 
PMIN in which we have k retractions during an input se­
quence of assertions. When we process a retraction, 
we can recompute from scratch the minimal labels, while as­
sertions are processed using our algorithm. The total time 
complexity is then which is still more efficient than 
applying van Beek's static a l g o r i t h m t i m e s .  

While in this paper we have not addressed I-IMIN for 
ORD-Horn, very recently we have proved that this problem 
can be solved in total time. Future work includes in­
cremental algorithms for other tractable classes [Krokhin et 
al, to appear] and a deeper study of fully-dynamic problems. 
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