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Abstract 

This paper presents a new scenario recognition 
algorithm for Video Interpretation. We represent 
a scenario model by specifying the characters 
involved in the scenario, the sub-scenarios com­
posing the scenario and the constraints combin­
ing the sub-scenarios. Various types of con­
straints can be used including spatio-temporal 
and logical constraints. In this paper, we focus 
on the performance of the recognition algorithm. 
Our goal is to propose an efficient algorithm for 
processing temporal constraints and combining 
several actors defined within the scenario. By ef­
ficient we mean that the recognition process is 
linear in function of the number of sub-scenarios 
and in most of the cases in function of the num­
ber of characters. To validate this algorithm in 
term of correctness, robustness and processing 
time in function of scenario and scene properties 
(e.g. number of persons in the scene), we have 
tested the algorithm on several videos of a bank 
branch and of an office, in on-line and off-line 
mode and on simulated data. We conclude by 
comparing our algorithm with the state of the art 
and showing how the definition of scenario 
models can influence the results of the real-time 
scenario recognition. 

1 In t roduc t ion 
A problem of current focus in cognitive vision is Auto­
matic Video Interpretation. The goal is to develop a sys­
tematic methodology for the design, implementation and 
integration of cognitive vision systems for recognizing 
scenarios involved in a scene depicted by a video se­
quence. An Automatic Video Interpretation System as 
described in Figure 1, takes as input (1) a priori knowl­
edge containing scenario models predefined by experts 
and the 3D geometric and semantic information of the 
observed environment and (2) video streams acquired by 
the camera(s). The output of the system is the set of rec­
ognized scenarios at each instant. In this paper, we focus 
on the module of scenario recognition. The scenario rec­
ognition module takes as input the a priori knowledge of 

the scene and a stream of individuals tracked by a vision 
module. 

To solve scenario recognition issues, we first propose a 
language to describe scenario models and second a tem­
poral constraint resolution approach to recognize in real-
time scenario occurrences. Our scenario representation is 
mainly based on the representation of [Vu et al, 2002] 
and inspired by the work of [Ghallab, 1996]. In this pa­
per, we focus on the optimization of the recognition 
method. We first enhance the processing of temporal op­
erators by pre-compiling scenario models to decompose 
them into simpler scenario models. By this way, the sce­
nario recognition algorithm uses a linear search com­
pared to an exponential search for non-compiled scenar­
ios. Secondly, we propose a novel algorithm to recognize 
composed scenarios that takes advantages of the actors of 
its sub-scenarios when they are recognized instead of 
trying all combinations of actors as this is often the cases 
for similar state of the art algorithms. 

We present in section 2 some related works. Our sce­
nario representation is described in section 3. The recog­
nition algorithm is detailed in section 4. We conclude our 
paper by showing experimental results to validate this 
new algorithm. 

A priori knowledge 

Figure 1. Overview of an Automatic Video Interpretation System. 
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2 Related works 
Since the years 90s, a problem of focus in cognitive vi­
sion has been Automatic Video Interpretation. There are 
now several research units and companies defining new 
approaches to design systems that can understand human 
activities in dynamic scenes. Three main categories of 
approaches are used to recognize temporal scenarios 
based on (1) a probabilistic/neural network combining 
potentially recognized scenarios, (2) a symbolic network 
that Stores Totally Recognized Scenarios (STRS) and (3) 
a symbolic network that Stores Partially Recognized Sce­
narios (SPRS). 

For the computer vision community, a natural ap­
proach consists in using a probabilistic/neural network 
[Oliver and Pentland, 2000]. The nodes of this network 
correspond usually to scenarios that are recognized at a 
given instant with a computed probability. For example, 
[Howell and Buxton, 2002] proposed an approach to rec­
ognize a scenario based on a neuronal network (time de­
lay Radial Basis Function). [Hongeng et al, 2000] pro­
posed a scenario recognition method that uses concur­
rence Bayesian threads to estimate the likelihood of po­
tential scenarios. Because video processing is very sensi­
tive to noisy images, these probabilistic methods are use­
ful to give an interpretation of the scene while taking into 
account the stochastic variations of the analysis. In our 
case, we use classical filtering techniques to get rid off 
these variations and to obtain coherent data that can be 
associated with symbolic values. 

For the artificial intelligent community, a natural way 
to recognize a scenario is to use a symbolic network 
which nodes correspond usually to the boolean recogni­
tion of scenarios. For example, [Rota and Thonnat, 2000] 
used a declarative representation of scenarios defined as 
a set of spatio-temporal and logical constraints. They 
used a traditional constraint resolution technique to rec­
ognize scenarios. To reduce the processing time for the 
recognition step, they proposed to check the consistency 
of the constraint network using the AC4 algorithm. More 
recently, [Gerber et ai, 2002] defined a method to recog­
nize a scenario based on a fuzzy temporal logic. In the 
same year, [Vu et al, 2002] present an approach to opti­
mize the temporal constraint resolution by ordering in 
time the sub-scenarios of the scenario to be recognized. 
The common characteristic of these approaches is to store 
all totally recognized scenarios (recognized in the past). 

Another approach consists in using a symbolic network 
and to store partially recognized scenarios (to be recog­
nized in the future). For example, [Ghallab, 1996] has 
used the terminology chronicle to express a temporal 
scenario. A chronicle is represented as a set of temporal 
constraints on time-stamped events. The recognition al­
gorithm keeps and updates partial recognition of scenar­
ios using the propagation of temporal constraints based 
on RETE algorithm. Their applications are dedicated to 
the control of turbines and telephonic networks. [Chleq 
and Thonnat, 1996] made an adaptation of temporal con­
straints propagation for video surveillance. In the same 
period, [Pinhanez and Bobick, 1997] have used Allen's 

interval algebra to represent scenarios and have presented 
a specific algorithm to reduce its complexity. 

A l l these techniques allow an efficient recognition of 
scenarios, but there are still some temporal constraints 
which cannot be processed. For example, most of these 
approaches require that the scenarios are bounded in time 
[Ghallab, 1996], or process temporal constraints and 
atemporal constraints in the same way [Rota and Thon-
nat, 2000]. 

We can distinguish two main categories of approaches 
to recognize a scenario based on a symbolic network: the 
STRS approaches recognize scenarios based on an analy­
sis of scenarios recognized in the past [Rota and Thonnat, 
2000; Vu et al, 2002], whereas the SPRS approaches rec­
ognize scenarios based on an analysis of scenarios that 
can be recognized in the future [Ghallab, 1996]. The 
STRS approaches recognize a scenario by searching in 
the set of previously recognized scenarios a set of sub-
scenarios matching the scenario model to be recognized. 
Thus, if the system fails to recognize a scenario, it wil l 
have to retry the same process (re-verify the same con­
straints) at the next instant, implying a costly processing 
time. A second problem is that STRS algorithms have to 
store and maintain all occurrences of previously recog­
nized scenarios. The SPRS approaches recognize a sce­
nario by predicting the expected scenarios to be recog­
nized at the next instants. Thus, the scenarios have to be 
bounded in time to avoid the never ending expected sce­
narios. A second problem is that SPRS algorithms have 
to store and maintain all occurrences of partially recog­
nized scenarios, implying a costly storing space. 

The method presented in this article is a STRS ap­
proach taking advantages of the SPRS approaches. The 
objective is to reduce the processing time (1) when 
searching in the past (list of previously recognized sce­
narios) for an occurrence of a given scenario model and 
(2) when trying to recognize a scenario involving several 
actors by avoiding checking all combinations of actors. 

3 Scenario Representat ion 
Our goal is to make explicit all the knowledge necessary 
for the system to be able to recognize scenarios occurring 
in the scene. The description of this knowledge has to be 
declarative and intuitive (in natural terms), so that the 
experts of the application domain can easily define and 
modify it. Thus, the recognition process uses only the 
knowledge represented by experts through scenario mod­
els. 

Let be the set of scenario models and be the set of 
scenario instances (recognized scenarios). For a scenario 
model and a scenario instance p , we note  

the scenario model of p and we note p(W) the set of 
recognized scenarios of the model A scenario is com­
posed of four parts: 
a) is the set of actor variables (characters) in­

volved in the scenario (p) corresponds to the ac­
tors. An actor can be a person tracked as a mobile ob­
ject by a vision module or a static object of the ob­
served environment like a chair. 
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is the set of sub scenarios that compose is 
an elementary scenario if if not, is called 
a composed scenario. Each sub-scenario is represented 
by a variable v. These variables are called temporal 
variables because their value is a recognized scenario 
def ined on a temporal interval. We note a scenario 
instance corresponding to the value of the temporal 
variable v, and the set of variables corresponding 
to the actors of  

is the set of sub-scenarios that should not occur 
dur ing the recognit ion of the scenario We call 
the f o r b i d d e n sub scenarios. is the set of fo r -
bidden actor variables involved in but not already 
defined in  

and are called the forbidden variables. 
is the set of cons t ra in ts of There are three 

types of constraints: 
- the set of t e m p o r a l constraints, noted on at least 

one variable of and not on any forbidden variable, 
- the set of a tempora l constraints, noted on only 

- the set of f o r b i d d e n constraints, noted on any 
forbidden variable. 
The three subsets and constitute a 

part i t ion of We use the operator "and" to l ink the 
constraints w i th in a set of constraints. To use the opera­
tor "or", we propose to define two simi lar scenario mod­
els wi th dif ferent constraints. An elementary scenario is 
only composed of a set of characters and atemporal con­
straints. 

Figure 2 represents a model of a composed scenario 
"Bank attack". This scenario involves two actors, a 
cashier and a robber. 

In our representation, any scenario involves at least 
one person, and is def ined on a t ime interval. An interval 
is represented by its starting and ending times noted 
start and end Def in ing the scenarios on a t ime 
interval is important for the experts to describe scenarios 
in a natural way. 

Figure 2. One example of "Bank attack" scenario is composed of 
four steps: (1) the cashier is at his/her position behind the counter, 
(2) the robber enters the bank and moves toward the front of the 
counter then (3) both of them arrive at the safe door and (4) no­
body else in the branch during the attack. The forbidden sub-
scenario (step 4) is not necessary to recognize this "Bank attack" 
scenario. We have included this constraint just to show the possi­
bility of modeling forbidden sub-scenarios. 

4 Scenar io R e c o g n i t i o n 
The scenario recognition process has to detect which sce­
nario is happening from a stream of observed persons 
tracked by a vision module at each instant. The recogni­
tion process takes also as input the a priori knowledge of 
the scene and the scenario models. As defined in the pre­
vious section, there are two types of scenarios: elemen­
tary and composed. 

4.1 Recogn i t ion of e lementary scenarios 
The algorithm to recognize an elementary scenario model 

consists in a loop of the selection of a set of actors 
then the verification of the corresponding atemporal con­
straints until all combinations of actors have been 
tested. Once a set of actors satisfies all constraints 

we say that the elementary scenario is recog­
nized and we generate an elementary scenario instance p 
attached with the corresponding scenario model, the set 
of actors and the recognition time t. The scenario in­
stance is then stored in the list of recognized scenarios. If 
at the previous instant, a scenario instance p' of same 
type (same model, same actors) was recognized on a time 
interval the two scenario instances are merged 
into a scenario instance that is recognized on the time 
interval  

The selection of actors leads the recognition algorithm 
to an exponential combination in function of the number 
of actor variables. However, in practice, there are few 
actor variables in elementary scenario models, so the rec­
ognition algorithm is still real-time. 

4.2 C o m p i l a t i o n of composed scenarios 
A composed scenario is a sequence of sub-scenarios or­
dered in time. Each sub-scenario corresponds to a tempo­
ral variable in the corresponding scenario model. The 
STRS algorithms of the state of the art perform at each 
instant an extensive search process among all possible 
scenarios and sub-scenarios leading to an exponential 
algorithm. For example, for a given scenario be­
fore before ); if a scenario instance pw3 of w3 has 
been recognized, it makes sense to try to recognize the 
main scenario ώ. Therefore, the STRS algorithms wil l try 
all combinations of scenario instances with 

We propose to decompose the scenario model into a 
set of simple scenario models containing at most two 
sub-scenarios. 

To compile a predefined composed scenario model co, 
we define three steps: (1) build a graph with the temporal 
variables (2) generate intermediate scenario models 
for co and (3) link the generated intermediate scenario 
models based on the constraints  

As proposed by [Ghallab, 1996], we first build a graph 
which nodes correspond to the temporal variables and 
which arcs correspond to the temporal constraints 
The arcs are oriented and are associated with a time in­
terval corresponding to the time delay between the end­
ing time of the two variables. For example, the constraint 
c, between v„ v, is associated with an interval [a, b] indi-

TEMPORAL REASONING 1297 



eating that v, can end in the interval [end(vi)+a, 
end(v,)+b]. The constraint before is associated with [ 1 , 
oo]. After building the graph (called initial graph) with all 
temporal constraints between temporal variables a((ώ), 
we compute the equivalent complete graph and we check 
the graph consistency. These two graphs are equivalent 
because the only difference between them is the redun­
dancy of some constraints. Then, we simplify the com­
plete graph by removing unnecessary arcs to obtain the 
least constrained graph. For any triangle ABC of the 
graph, an arc AC is redundant (unnecessary), if the arcs 
AB and BC imply a stronger constraint. The simplified 
graph is equivalent to the two other graphs. The initial 
and simplified graphs for the scenario "Bank attack" 
(Figure 2) are shown on Figure 3. Thanks to the simpli­
fied graph, all the temporal variables a(ώ) are ordered by 
their ending time. 

The resulting scenario model is equivalent to the 
initial scenario model This two scenarios have the 
same actor variables and equivalent set of constraints. 
The only difference is that the constraints of the scenario 
ώ are verified at several intermediate levels correspond­
ing to the intermediate scenario models as shown on 
Figure 4. Because any sequence of temporal variables 
can be ordered by their ending time, so any scenario 
model can be decomposed into intermediate scenarios 
containing only one or two temporal variables. 

The recognition of compiled scenario models is de­
scribed in the next section. The gain in processing time is 
due to the search algorithm: we just try several times to 
link two scenario instances instead of trying to link to­
gether a whole set of combinations of scenario instances. 

Figure 4. Three intermediate scenario models are generated for the 

compilation of the scenario model "Bank_attack", and the initial 

model is equivalent to "Bank_attack_3". 

4.3 Recogn i t ion of composed scenarios 
The recognition of a composed scenario model is trig­
gered by a scenario template, which has been generated 
when the last sub-scenario terminating has been 
recognized. The scenario template contains and the 
scenario instance pt with its list of actors a(p t) that par­
tially instanciates As is composed of two sub-
scenarios, or 
to be found. 

If such a scenario instance has been previously rec­
ognized in the past, then we are able to finish instanciat-
ing the remaining actors of Thus, just a few com­
binations of actors need to be checked avoiding an expo­
nential search. 

The last step of the algorithm consists in verifying 
whether all temporal and atemporal constraints 
and are satisfied with and If one forbidden 
constraint of cannot be satisfied then the scenario 
ώc is recognized and stored in the list of recognized sce­
narios. 
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Figure 3. To compile the scenario "Bank attack", we build: (a) the 
graph with all temporal constraints KT(Ώ), (b) the simplified graph 
with only the necessary constraints and (c) the generated interme­
diate scenario models. 



4 . 4 D i s c u s s i o n 

In the domain of temporal scenario recognit ion and 
among SPRS algor i thms, the chronicle recognit ion algo­
r i thm [Ghal lab, 1996] is one of the most popular. By 
stor ing part ia l ly recognized scenarios, it can speed up the 
whole recognit ion process. A part ia l ly recognized sce­
nario corresponds to a predict ion and enables to store al l 
previous computations that do not need to be recomputed 
at the fo l l ow ing instants. A main difference between the 
chronicle a lgor i thm and our a lgor i thm is that the chroni­
cle algor i thm has been developed to process scenarios 
def ined w i th only one "actor" and can only recognize 
events detected at one t ime point. Thus, this a lgor i thm is 
eff ic ient for the conf igurat ion "mono-actor". However, in 
the conf igurat ion "mul t i -actors" , the chronicle algor i thm 
has to duplicate the part ia l ly recognized scenarios for 
each combinat ion of actors not already instanciated. This 
can lead to an explosion of memory al location and to an 
exponential search. Our a lgor i thm is as eff icient for the 
conf igurat ion "mono-actor" because we store the recog­
nized scenarios which have been compi led. Moreover, it 
is eff icient for the conf igurat ion "mul t i -actors" because 
the recognized scenarios do not need to be duplicated 
even if some actors arc not instanciated. The worst case 
occurs wi th elementary scenarios because to recognize 
them at the current instant, al l combinations of actors 
need to be checked. In real wo r l d applications, elemen­
tary scenarios do not contain many actor variables (less 
than 3) mak ing the proposed algor i thm suff icient to ob­
tain an operational real t ime video interpretation system. 

5 Experiments and results 
To validate our recognit ion a lgor i thm, we f irst integrated 
the algor i thm wi th a vision module to obtain an opera­
t ional interpretation system and then we have realized 
four types of tests: (1) on recorded videos taken in a bank 
branch and in two metro stations (one in Belg ium and 
one in Spain) to ver i fy i f the a lgor i thm can correctly rec­
ognize the predefined scenario models, (2) on l ive videos 
acquired on- l ine f rom cameras installed in an off ice, in a 
metro station and in a bank branch to ver i fy if the algo­
r i thm can work robust ly on a long t ime mode, (3) on re­
corded videos taken in a bank branch and on simulated 
data to study how the complex i ty of the algor i thm de­
pends on the scenario models (i.e. number of sub-
scenarios and of actor variables) and (4) on simulated 
data to study how the complex i ty of the algor i thm de­
pends on the complex i ty of the scene (i.e. number of per­
sons in the scene). 

In the f i rst experiment, we ver i fy on recorded videos 
that the a lgor i thm correct ly recognizes several types of 
"Bank attack" scenarios and several types of "Vandal ism 
against a t icket machine" scenarios in a metro station. 
The vandalism scenario involves in general two ind iv idu­
als, one look ing around to check whether nobody is 
coming and the other one attempting several t imes to 
break the t icket machine. Table 1 shows that the prede­
f ined scenarios were correct ly recognized in most of the 

eases. The interpretation system fails to recognize some 
scenarios only in the cases when the vision module 
misses to detect the people in the scene. We have not 
detected any false alarm dur ing al l the experiment. The 
non-detection of false alarms can be explained by the fact 
that the scenarios are very constrained and there are un­
l ike ly to be recognized by error. 

In the second experiment, we instal led the interpreta­
t ion system in an off ice and in a bank and we connected 
the system to one or two on- l ine cameras to acquire d i ­
rect ly l ive videos. In this experiment, we used the bank 
scenarios and we s l ight ly mod i f ied them to use them in 
the off ice. We ran the system in the bank for few hours 
and continuously dur ing 4h in the off ice. As in the first 
experiment, the scenarios were most of the t ime correctly 
recognized, showing that the recognit ion algori thm can 
work rel iably and robust ly in real- t ime and in continuous 
mode. 

Number of 
tested 

sequences 

Average 
number of 

persons/frame 

Recognition 
rate (%) 

Number 
of false 
alarms 

Bank cam. 1 10 4 80 0 
Bank cam. 2 1 2 100 0 
Metro cam. 2 3 2 100 0 

Table 1. The recognition of temporal scenarios in videos of a bank 
branch and of a metro station. 

Figure 5. The processing time of the new algorithm is closely 
linear time in function of the number of sub-scenarios. 

Number of actor variables/model 

Figure 6. The processing time (a) of the old algorithm and (b) of 
the new algorithm depend on the number of actor variables of pre­
defined scenario models. 

In the th i rd experiment, we studied the processing t ime 
of the recognit ion a lgor i thm in funct ion of the scenario 
models. First, we studied the processing t ime of the algo­
r i thm focusing on the resolut ion of temporal constraints. 
In this experiment (shown on Figure 5), we tested eight 
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configurations of scenario models: the first configuration 
is made of scenarios containing 3 sub-scenarios and the 
last configuration is made of scenarios containing 10 sub-
scenarios. On the bank videos containing about 300 
frames, we found that the processing time of the classical 
STRS algorithm is exponential in function of the number 
of sub-scenarios, whereas the processing time of our al­
gorithm is closely linear in function of the number of 
sub-scenarios. 

Second, we studied the processing time of the algo­
rithm focusing on the number of actor variables of the 
scenario models. In this experiment (shown on Figure 6), 
we tested nine configurations of scenario models: the 
first configuration is made of scenarios involving 2 actor 
variables and the last configuration is made of scenarios 
involving 10 actor variables. To run the algorithm with 
enough actors, we simulated bank videos containing 35 
persons. On these videos, we found that the processing 
time of the classical STRS algorithm is exponential in 
function of the number of actor variables, whereas the 
processing time of our algorithm is closely linear in 
function of the number of actor variables. 

In the fourth experiment, we studied the processing 
time of the recognition algorithm in function of the 
scene. To have a continuous variation of the scene, we 
simulated the scene. We built a scene environment with 
eight zones of interest and ten pieces of equipment. We 
simulated the individuals evolving in the scene at each 
instant. In these simulated videos, the number of indi­
viduals changed from 30 up to 240. To verify if our algo­
rithm can recognize in real-time the predefined scenarios, 
we measured the maximal processing time per frame. We 
found that, the maximal processing time for each frame is 
100ms for a scene of 240 persons. We also found that the 
average processing time for each frame is closely linear 
in function of the number of persons. Figure 7 shows 
several tests of this experiment to illustrate how the proc­
essing time depends on the complexity of the scene. 

With the fourth experiment, we can conclude that our 
recognition algorithm can recognized in real-time the 
predefined scenarios if the number of persons/frame is 

CPU 700MHz, 320MB RAM. 

6 Conclusion 
In the literature, there are two categories of symbolic ap­
proaches to recognize temporal scenarios: the STRS algo­
rithms reasoning on the past and the SPRS algorithms rea­
soning on the future. First, we have shown that the STRS 
algorithms recognize usually a scenario by performing an 
exponential combination search. Then, we have explained 
that even if our proposed algorithm is a STRS algorithm, it 
checks temporal constraints nevertheless by performing a 
linear search thanks to a step of pre-compilation of scenar­
ios. Second, we have also shown that the SPRS algorithms 
have to try all combinations of actors to be able to recognize 
"multi-actors" scenarios. Thanks to the pre-compilation step 
this drawback for our algorithm is limited to elementary 

scenarios. Thus, processing time can still be an issue de­
pending on the complexity of scenarios. For these two rea­
sons, the proposed algorithm enables the integrated video 
interpretation system to be real-time. Up to our knowledge, 
this video interpretation system is the first operational sys­
tem able to recognize complex temporal scenarios. 

Our future work consists in taking care of the errors 
and the uncertainty of the vision module. The goal is to 
be able to continue the interpretation of the videos even 
when the vision module cannot cope with the real world 
complexity and then to be able to recognize more com­
plex scenarios. 

Figure 7. The (a) maximal and (b) average processing time/frame 
of the new algorithm depend on the number of detected persons. 
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