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Abstract 

We present a new general framework for online 
probabilistic plan recognition called the Abstract 
Hidden Markov Memory Model (AHMEM). The 
new model is an extension of the existing Abstract 
Hidden Markov Model to allow the policy to have 
internal memory which can be updated in a Markov 
fashion. We show that the A H M E M can repre­
sent a richer class of probabilistic plans, and at the 
same time derive an efficient algorithm for plan 
recognition in the A H M E M based on the Rao-
Blackwellised Particle Filter approximate inference 
method. 

1 Introduction 
The ability to perform plan recognition can be very useful in 
a wide range of applications such as monitoring and surveil­
lance, decision supports, and team work. However the plan 
recognizing agent's task is usually complicated by the uncer­
tainty in the plan refinement process, in the outcomes of ac­
tions, and in the agent's observations of the plan. Dealing 
with these issues in plan recognition is a challenging task, es­
pecially when the recognition has to be done online so that 
the observer can react to the actor's plan in real-time. 

The uncertainty problem has been addressed by the sem­
inal work [Charniak and Goldman, 19931 which phrases 
the plan recognition problem as the inference problem in 
a Bayesian network representing the process of executing 
the actor's plan. More recent work has considered dy­
namic models for performing plan recognition online [Py-
nadath and Wellman, 1995; 2000; Goldmand et a/., 1999; 
Huber et ai, 1994; Albrecht et a/., 1998]. While this offers a 
coherent way of modelling and dealing with various sources 
of uncertainty in the plan execution model, the computational 
complexity and scalability of inference is the main issue, es­
pecially for dynamic models. 

Inference in dynamic models such as the Dynamic 
Bayesian Networks (DBN) [Nicholson and Brady, 1994] is 
more difficult than in a static model. Inference in a static 
network utilizes the sparse structure of the graphical model 
to make it tractable. In the dynamic case, the DBN belief 
state that we need to maintain usually does not preserve the 
conditional independence properties of the single time-slice 

network, making exact inference intractable even when the 
DBN has a sparse structure. Thus, online plan recognition 
algorithms based on exact inference will run into problems 
when the belief state becomes too large, and will be unable to 
scale up to larger or more detailed plan hierarchies. 

In our previous work, we have proposed a framework for 
online probabilistic plan recognition based on the Abstract 
Hidden Markov Models (AHMM) [Bui et a/., 2002]. The 
AHMM is a stochastic model for representing the execution 
of a hierarchy of contingent plans (termed policies). Scal­
ability in policy recognition in the A H M M is achieved by 
using an approximate inference scheme known as the Rao-
Blackwellised Particle Filter (RBPF) [Doucet et al 20001. 
It has been shown that this algorithm scales well w.r.t. the 
number of levels in the plan hierarchy. 

Despite its computational attractiveness, the current 
AHMM is limited in its expressiveness, in particular, its in­
ability to represent an uninterrupted sequence of plans and 
actions. This is due to the fact that each policy in the AHMM 
is purely reactive on the current state and has no memory. 
This type of memoryless policies cannot represent an unin­
terrupted sequence of sub-plans since they have no way of 
remembering the sub-plan in the sequence that is currently 
being executed. In other words, the decision to choose the 
next sub-plan can only be dependent on the current state, and 
not on the sub-plans that have been chosen in the past. Other 
models for plan recognition such that the Probabilistic State 
Dependent Grammar (PSDG) [Pynadath and Wellman, 2000; 
Pynadath, 1999] are more expressive and do not have this 
limitation. Unfortunately, the existing exact inference method 
for the PSDG in [Pynadath, 1999] has been found to be flawed 
and inadequate [Bui, 2002]. 

The main motivation in this paper is to extend the existing 
AHMM framework to allow for policies with memories to be 
considered. We propose an extension of the AHMM called 
the Abstract Hidden Markov mEmory Model (AHMEM). 
The expressiveness of the new model encompasses that of the 
PSDG [Pynadath and Wellman, 2000], thus the new model 
removes the current restriction of the AHMM. More impor­
tantly, we show that the RBPF approximate inference method 
used for the AHMM can be extended to the more general 
A H M E M as well, ensuring that the new generalized model 
remains computationally attractive. To the best of our knowl­
edge, we are the first to provide a scalable inference method 
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for this general type of hierarchical probabilistic plan hierar­
chy. 

The paper is structured as follows. Section 2 provides 
a more detailed discussion of the AHMM, PSDG and re­
lated models for online probabilistic plan recognition. The 
A H M E M is introduced in section 3 and the algorithms for 
plan recognition are presented in section 4. Experimental re­
sults with a prototype system are provided in section 5. Fi­
nally, we conclude and discuss directions for future work in 
section 6. 

2 Related Models for Online Probabilistic 
Plan Recognition 

In the AHMM [Bui et al, 2000; 2002], an agent's probabilis­
tic plan is modeled by an abstract Markov policy (AMP). An 
AMP is an extension of a policy in Markov Decision Pro­
cesses (MDP) defined within a subset of the environment state 
space so that it can select other more refined AMPs and so 
on to form a hierarchy of policies. The AMP is thus simi­
lar to a contingent plan that prescribes which sub-plan should 
be invoked at each applicable state of the world. The noisy 
observation about the environment state can be modelled by 
making the state "hidden", similar to the hidden state in the 
Hidden Markov Models [Rabiner, 1989]. The stochastic pro­
cess resulting from the execution of an AMP is termed the Ab­
stract Hidden Markov Model. Intuitively, the AHMM models 
how an AMP causes the adoption of other policies and ac­
tions at different levels of abstraction, which in turn generate 
a sequence of states and observations. In the plan recogni­
tion task, an observer is given an AHMM corresponding to 
the actor's plan hierarchy, and is asked to infer about the cur­
rent policy being executed by the actor at all levels of the 
hierarchy, taking into account the sequence of observations 
currently available. This problem is termed policy recogni­
tion [Bui et al, 2002]. 

Scalability of policy recognition in the AHMM is 
achieved by using a hybrid inference method, a variant 
of the Rao-Blackwellised particle filter (RBPF) [Doucet 
et al, 2000]. When applied to DBN inference, Rao-
Blackwellisation [Casella and Robert, 1996] splits the net­
work into two sets of variables: the set of variables that need 
to be sampled (termed the Rao-Blackwellising (RB) vari­
ables), and the set of remaining variables whose belief state 
conditioned on the RB variables need to be maintained via 
exact inference (termed the Rao-Blackwellised (RB) belief 
state). The RBPF thus allows us to combine sampling-based 
approximate inference with exact inference to achieve effi­
ciency and improve accuracy. 

The Probabilistic State-Dependent Grammar (PSDG) [Py-
nadath, 1999; Pynadath and Wellman, 2000] can be described 
as the Probabilistic Context Free Grammar (PCFG) [Jelinek 
et al, 1992], augmented with a state space, and a state transi­
tion probability table for each terminal symbol of the PCFG. 
In addition, the probability of each production rule is made 
state dependent. As a result, the terminal symbol now acts 
like primitive actions and the non-terminal symbol chooses 
its expansion depending on the current state. The A H M M 
is equivalent to a special class of PSDG where only produc­

tion rules of the form X YX and A" are allowed. 
The first rule models the adoption of a lower level policy Y 
by a higher level policy A', while the second rule models the 
termination of the policy X. The PSDG model considered 
by Pynadath and Wellman allows for more general rules of 
the form X i.e., the recursion symbol must 
be located at the end of the expansion. Thus in a PSDG, a 
policy might be expanded into a sequence of policies at the 
lower level which wil l be executed one after another before 
control is returned to the higher level policy. 

Although more expressive than the AHMM, the existing 
computational method for inference with the PSDG remains 
inadequate. Pynadath proposed an exact method for updat­
ing the belief state of the PSDG in a "compact" closed form. 
The proposed algorithm seemingly gets around the exponen­
tial blow up in the size of the belief state. Unfortunately, the 
derivation of the algorithm is based on a flawed assumption 
that the higher levels in the belief state are independent of the 
lower levels given the current level. For more details about 
the flaw in the inference algorithm for PSDG, interested read­
ers are referred to [Bui, 20021. 

The AHMM, PSDG, and the proposed A H M E M are re­
lated to the Hierarchical Abstract Machines (HAM) [Parr, 
1998] used in abstract probabilistic planning. In this model, 
the policy is represented by a stochastic finite automaton, 
which can call other automata at the lower level. Despite their 
representational similarity, the computational techniques for 
A H M E M and related models are intended for plan recogni­
tion whereas the HAM model is used for speeding up the pro­
cess of finding an optimal policy for MDP. 

If we ignore the state dependency, the DBN structure of the 
A H M E M and PSDG is similar to the structure of the Hierar­
chical Hidden Markov Model (HHMM) [Fine et al, 1998; 
Murphy and Pashkin, 2001]. However, while the HHMM is 
a type of Probabilistic Context Free Grammar (PCFG), the 
A H M E M and PSDG are not due to the state dependency in 
the model. 

3 The Abstract Hidden Markov Memory 
Models 

This section introduces the Abstract Hidden Markov Mem­
ory Models (AHMEM), an extension of the AHMM where 
the policy can have internal memory. Our main aim is to 
construct a general model for plan recognition whose expres­
siveness encompasses that of the current AHMM and PSDG 
models, while retaining the computational attractiveness of 
the AHMM framework. We first define the A H M E M in sub-
section 3.1. The DBN structure of the new model is given in 
subsection 3.2. 

3.1 The Mode l 

Consider an MDP-like model with S representing the states 
of the environment, and A representing the set of primitive 
actions available to the agent. Each action a € A is defined 
by its transition probability from the current state s to the next 
state s': oa(s,s'). The set of abstract policies will include 
every primitive actions. Furthermore, the AHMM [Bui et al, 
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2000] defines higher level abstract policies on top of a set of 
policies as follows: 

An AMP as defined above is purely reactive, in the sense 
that it selects the next policy at the lower level based only on 
the current state s. This restricts the set of behaviours that 
an AMP can represent. For example, it will not be able to 
represent a plan consisting of a few sub-plans, one followed 
by another regardless of the state sequence. To represent this 
kind of plans, the agent needs to have some form of inter­
nal memory to remember the current stage of execution. Let 
M be a set of possible internal memory states. We first ex­
tend the definition of our policy to include a memory variable 
which takes on values in M and is updated after each stage of 
execution of the policy.1 

Definition 2 (Abstract Markov Policy with Memory 
(AMPE)). Let II be a set of AMPEs, an AMPE * over II is 
defined as a tuple where: 

is the set of applicable states. 

is the set of destination states. 

(0,1] is the terminating proba-
is the probability that the policy 

would stop if the current state is d and the current mem­
ory value is 777. 

is the policy selection prob­
ability, a (.s, m,) is the probability that selects the 
policy  at the state s and memory value  

[0,1] is the initial distribution of 
memory values. is the probability that the ini­
tial memory is m if * commences at state s. 

is the memory transi­
tion probability. is the probability that the 
next memory value is m' given that the current memory 
value is m and the current state is .s. 

Subsequently, we will drop the subscript if there is no 
confusion about the policy in the context. Note that all the 
states in D \ S are called terminal states and thus  

Also, the policy selection, memory 
initial and transition probability have to be proper probability 

'One can argue that wc can always incorporate the memory vari­
able in the environment state, and hence we gain no extra represen­
tational power just by introducing the memory variables. However, 
incorporating the memory variables in the state variable would blow 
up the size of the state space and thus defeat our purpose of keeping 
the model computationally feasible. 

distributions, i.e.  
l,and 1. 

When an AMPE is executed from a state .s, it first 
initialises its memory value m according to the distribution 

Then a policy at the lower level will be selected 
according to the distribution This policy will 
be executed until it terminates at some state At the new 
state .s', the policy itself will terminate with probability 

If it does not terminate, the memory variable will 
be given a new value m' according to the transition probabil­
ity Then a new policy at the lower level is 
selected with probability and so on. 

Using the AMPEs, we can construct a hierarchy of abstract 
policies in the same way as in the AHMM. We start with a set 
of primitive actions = A, and for k = 1 , . . . , K build a set 
of new AMPEs on top of Then, if a top-level policy 

is executed, it invokes a sequence of level-(K-l) policies, 
each of which invokes a sequence of leveI-(K-2) policies and 
so on. A level-1 policy will invoke a sequence of primitive 
actions which leads to a sequence of states. We can then in­
troduce the hidden states and model the noisy observation of 
the state by an observation model The 
dynamic process of executing a top-level AMPE is termed the 
Abstract Hidden Markov mEmory Model (AHMEM). 

Some special cases of the A H M E M are worth mention­
ing here. First, the AHMM itself is a special AHMEM. The 
memoryless policies of the AHMM are equivalent to AM­
PEs where the dependency on the memory variable is ignored 
(e.g. when M is a singleton set). The class of PSDG con­
sidered in [Pynadath, 1999] can also be easily converted to 
an A H M E M . The terminal symbols in the PSDG are equiv­
alent to the primitive actions. Each non-terminal symbol is 
equivalent to a memoryless policy. In addition, each sequence 

encountered on the RHS of a production 
is equivalent to a 

policy whose memory m taking on the values 1 , . . . ,n. Y 
then simply selects the (memoryless) policy  

Note that in the A H M E M definition, we assume a balanced 
policy hierarchy for the ease of presentation (all the actions 
must appear at the same bottom level). However, we can also 
specify an unbalanced hierarchy by introducing some dummy 
policies which arc equivalent to primitive actions at the higher 
levels in the hierarchy. 

3.2 DBN Representation of the A H M E M 
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Policy Termination and Selection 
The policy termination and selection model for the A H M E M 
is essentially the same as in the AHMM, except for the depen­
dency on the value of the current memory variable We 
note that the same context specific independence [Boutilier et 
a/., 1996] properties of the AHMM still hold. For example, if 

= F then = F and becomes independent of the 
remaining parents of this variable. Now consider the variable 

= F then and is independent of the 
remaining parents; otherwise,  

and is independent of  

Memory Update 
Consider the variable There are two parents of this node 
that act like context variables: and If = F, 
the policy at the lower level has not terminated and memory 
is not updated at this time. Thus, and be­
comes independent of all the remaining parents. If = T 

3.3 Independence Properties in the A H M E M 
Even though AMPEs are more expressive than memoryless 
policies, they remain "autonomous", in the sense that the 
higher layers have no influence over the state of an AMPE 
during its execution. The only way the higher layers can influ­
ence the current state of an AMPE is through the conditions 

at the start: either through the starting state or the starting 
time. Thus, the conditional independence theorem for poli­
cies in the AHMM still holds in this more general setting. 
We state the theorem for the A H M E M below. The proof for 
the AHMM [Bui et ai, 2002] can be directly extended to this 
general case using the context specific independence proper­
ties described in the previous subsection. 

Let Note that k n o w i n g i s equivalent to 
knowing precisely when each of the policies starts and ends. 
Therefore, given the starting time and state of every 
current policy are known. The following corollary is thus a 
direct consequence of theorem 1. 
Corollary 1. Let Ct represent the conditional joint distribu­
tion Then Ct has the following 
Bayesian network factorization: 

Ct thus also has the following undirected network repre­
sentation. We first form the set of cliques:  

Note that the set of 
cliques CO-K form a chain of cliques in this order, therefore we 
term Ct the policy-clique chain. This extends the concept of 
the policy chain in the memoryless case of the AHMM [Bui 
et al, 2000]. Ct can be factored into the product of poten-

network factorization, the potentials are said to be in canoni­
cal form. Any potential representation of the clique chain can 
be canonicalized by first perform message passing (exact in­
ference) to compute the marginal at each clique. The canoni­
cal form can then be computed directly from these marginals. 
Later on we wil l use the undirected representation of Ct for 
exact inference, and the canonical form (directed representa­
tion) of Ct for obtaining samples from the joint distribution 
using simple forward sampling. 

4 Approximate Inference for A H M E M 
In this section, we look at the online inference prob­
lem in the A H M E M . Assume that at time f, we have 
a sequence of observations about the environment state 

= We need to compute the be­
lief state of the DBN which is the joint distribution of 
all the current variables given this observation sequence: 

, From this, we can answer 
various queries about the current status of the plan execution. 
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For example, the marginal probability of tells us about 
the current policy the actor is executing at some level k; the 
probability P r t e l l s us about the current stage of ex­
ecution of a policy the probability Pr tells us if 

will end after the current time, etc. 
Since there is no compact closed form representation 

for the above belief state, exact inference in the structure 
of the A H M E M is intractable when K is large. How­
ever, theorem 1 suggests that we can apply the Rao-
Blackwellised Particle Filter (RBPF) to this problem in a sim­
ilar way as in the AHMM [Bui et al., 2002], i.e. by us­
ing rt as the Rao-Blackwellising (RB) variables. The Rao-
Blackwellised (RB) belief state is then similar to the origi­
nal belief state of the A H M E M , except that now are 
known: = Pr Note that 
the RB belief state can be obtained directly from the 
policy-clique chain Ct by adding in the network represent­
ing the conditional distribution of ot and , — 
Pr Pr(oi|st)Ct(seeFig.2). 

Two main steps in the RBPF procedure are: (1) updating 
the RB belief state using exact inference, and (2) sampling 
the RB variable rt from the current RB belief state. 

4.1 Updating the RB Belief State 
Fig. 2 shows the modified 2-time-slice DBN when the RB 
variables are known We note that all the 
nodes from above level / remain unchanged, while all the 
links across time slices from level / and below can be re­
moved. This greatly simplifies the network structure, allow­
ing the updating operations to be performed efficiently. 

Since the Bt can be obtained directly from Ct, all we have 
to do is to compute from Ct. The procedure for updating 
as usual has two stages: (1) absorbing the new evidence, i.e. 
from Ct, we need to compute — Pr  
and (2) projecting to the new time slice, i.e. from we 
need to compute Ct+\. 

In principle, we apply a simplified version of the junction-
tree algorithm Uensen, 1996] on the undirected network rep­
resentation of Ct to perform the update step. This is in fact 
a generalization of the arc-reversal procedure which operates 
on directed network representation of the policy chain in the 
AHMM [Bui et al, 2002]. The algorithm for updating the 
RB belief state is given in Fig. 3. The absorbing step involves 
simply incorporating the evidence likelihood into the poten­
tials of Ct to obtain the potentials for Ct+. The projecting 
step involves first adding time-slice t + 1 to Ct+ (see Fig. 2), 
then marginalizing the now redundant variables 
in the old time slice. The marginalization is done by perform­
ing message passing between the cliques of the 2-time-slice 
network shown in Fig. 2. 

Since the potentials of Ct from level / + 2 to level K' stay 
unchanged, the complexity of the algorithm is 0(1) where / is 
the highest level of termination. Furthermore, if one of these 
potentials is in canonical form, it remains in canonical form 
after the updating procedure. 

4.2 RBPF for A H M E M 
The full RBPF algorithm for policy recognition in the 
A H M E M is provided in Fig 4. The general structure is the 

Figure 2: Two time slices of the RB belief state 

same as the RBPF procedure for AHMM [Bui et al, 2002]. 
At each time step t, the algorithm maintains a set of N sam­
ples, each consists of a value for st~i and / / _ i , and a para­
metric representation of Ct The differences are in the details 
of how to obtain new samples and update the RB belief state. 

To obtain each new sample (st,lt), we first need to canoni-
calize the potentials of Ct. However, assuming that Ct-\ is in 
canonical form, we only have to canonicalize the potentials 
of Ct between level 0 and level I + 1 with complexity O(1). 
Thus the complexity of the sampling step is O(Nl). Since 
the complexity of the updating step is also O(Nl), the overall 
complexity of the algorithm at each time step is O(Nl). Fur­
thermore, the distribution for I usually decays exponentially, 
thus the average complexity is only O(N). 

If at some time t, an estimation e.g. Pr 
required, we need to compute h = for each sam­
ple. This involves performing message passing for the entire 
chain Ct. Thus the complexity for this time step is 0(NK). 
Other types of queries are also possible, as long as the proba­
bility required can be computed from the RB belief state. For 
example, we can ask the question: if the actor is currently 
executing what is the current stage of execution of this 
policy? To answer this query, we need to compute the con­
ditional probability This can easily be 
achieved by replacing the ft function in the algorithm with 

5 Experimental Results 
We have implemented the above algorithm in a surveillance 
domain to demonstrate its working in a practical application. 
The environment consists of a spatial area which has two sep­
arate rooms and a corridor monitored by a set of 5 cameras 
(Fig. 5). The monitored area is divided into a grid of cells, 
and the cell coordinates constitute the overall state space 5. 
The coordinates returned by the cameras are modelled as the 
noisy observations of the true coordinates of the tracked per­
son, and over time, provide the sequence of observations o\ ;t. 
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Figure 3: Updating Ct Figure 4: RBPF for AHMEM 

At the top-level, each policy models a type of activity per­
formed by the person. For example, print is a policy that 
involves a sequence of going to the computer and the printer, 
possibly going to the paper store if the printer is out of paper, 
and exiting. Note that this policy cannot be represented in the 
AHMM framework. In the AHMEM, this can be represented 
by a policy whose memory transition model is given in Fig. 6. 
The policies at the lower level, such as going to a computer, 
model the person's trajectories toward a set of special land­
marks in the environment. These policies are constructed as 
memoryless policies in the same way as in the AHMM [Bui 
etal, 2002]. 

The result of querying the top-level policy for the trajec­
tory in Fig. 5 is given in Fig. 7. The system correctly identi­
fies the most probable policy as print. The result of querying 
the memory variable of this policy is given in Fig. 8. The sys­
tem correctly identifies the sequence of lower-level policies 
invoked by the print policy. These results are obtained by 
running the RBPF algorithm with 3000 samples. The aver­
age processing time for each observation is approximately 0.9 
seconds on a 1.7GHz desktop machine. For a more detailed 
description of this surveillance system, readers are referred 
to [Nguyen et al., 2003]. 

6 Conclusion 
In conclusion, we have presented the Abstract Hidden 
Markov Memory Models (AHMEM), a general framework 
for representing and recognizing probabilistic plans online. 
The new framework extends the AHMM by allowing the poli­
cies to have internal memories which are updated in a Markov 
fashion. This allows the AHMEM to represent a richer set 
of hierarchical probabilistic plans, including those belonging 
to the class of PSDG previously considered. Furthermore, 

Figure 5: The environment and a person's trajectory 

Figure 6: Memory transition of the policy "print" 
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Time (seconds) 

Figure 7: Querying the top level policies 

Time (seconds) 

Figure 8: The progress of executing the policy "print' 

we have shown that the Rao-Blackwellised Particle Filter 
(RBPF) approximate inference method used for the AHMM 
can be extended to the A H M E M , resulting in efficient and 
scalable procedures for plan recognition in this general set­
ting. Our work demonstrates the advantage of phrasing prob­
abilistic plan recognition as inference in DBN so that suitable 
approximate methods can be employed to cope with the com­
plexity issue. A similar approach can be applied to more gen­
eral models to consider more complex plan constructs such 
as multi-agent plans, interleaving plans etc. 
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