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Abstract 
Automating the scheduling of sport leagues has re­
ceived considerable attention in recent years. This 
paper considers the traveling tournament problem 
(TTP) proposed in [8; 4] to abstract the salient 
features of major league baseball (MLB) in the 
United States. It proposes a simulated annealing 
algorithm (TTSA) for the TTP that produces sig­
nificant improvements over previous approaches. 

Introduction The scheduling of sport leagues has become 
an important class of combinatorial optimization applications 
in recent years since they represent significant sources of rev­
enue and generate extremely challenging optimization prob­
lems. This paper considers the travelling tournament problem 
(TIP) proposed in [4] to abstract the salient features of Ma­
jor League Baseball (MLB) in the United States. The key 
to the MLB schedule is a conflict between minimizing travel 
distances and feasibility constraints on the home/away pat­
terns. Travel distances are a major issue in MLB because 
of the number of teams and the fact that teams go on "road 
trips" to visit several opponents before returning home. The 
feasibility constraints in the MLB restricts the number of suc­
cessive games that can be played at home or away. 

The TTP is an abstraction of the MLB intended to stimu­
late research in sport scheduling. A solution to the TTP is a 
double round-robin tournament which satisfies sophisticated 
feasibility constraints (e.g., no more than three away games in 
a row) and minimizes the total travel distances of the teams. 
[4] argues that, without an approach to the TTP, it is unlikely 
that suitable schedules can be obtained for the MLB. The TTP 
has raised significant interest in recent years since the chal­
lenge instances were proposed. [4] describes both constraint 
and integer programming approaches to the TTP which gen­
erate high-quality solutions. [1] explores a Lagrangian relax­
ation approach (together with constraint programming tech­
niques) which improves some of the results. Other lower and 
upper bounds are given in [8], although the details of how 
they are obtained does not seem to be available. 

Problem Description The problem was introduced by Eas-
ton, Nemhauser and Trick [8; 4], which contains many inter­
esting discussion on sport scheduling. An input consists of n 

teams (n even) and an n x n symmetric matrix d,, such that 
dij represents the distance between the homes of teams T\ 
and TJ. A solution is a schedule in which each team plays 
with each other twice, once in each team's home. Such a 
schedule is called a double round-robin tournament. It should 
be clear that a double round-robin tournament has 2n - 2 
rounds. For a given schedule 5, the cost of a team as the total 
distance that it has to travel starting from its home, playing 
the scheduled games in 5, and returning back home. The cost 
of a solution is defined as the sum of the cost of every team. 

The goal is to find a schedule with minimum cost satisfy­
ing the following two constraints: (1) At most Constraints: 
No more than three consecutive home or away games are 
allowed for any team. (2) Norepeat Constraints: A game 
of at home cannot be followed by a game of at 
home. As a consequence, a double round-robin schedule 
is feasible if it satisfies the atmost and norepeat constraints 
and is infeasible otherwise. A schedule is conveniently 
represented by a table indicating the opponents of the 
teams. Each line corresponds to a team and each column 
corresponds to a round. The opponent of team at round 
is given by the absolute value of element (i, k). If (I, k) is 
positive, the game takes place at home, otherwise at TVs 
opponent home. Consider for instance the schedule S for 6 
teams (and thus 10 rounds). 

T\R 1 2 3 4 5 6 7 8 9 10 
1 6 -2 4 3 -5 -4 -3 5 2 -6 

2 5 1 -3 -6 4 3 6 -4 -1 -5 
3 -4 5 2 -1 6 -2 1 -6 -5 4 
4 3 6 -1 -5 -2 1 5 2 -6 -3 
5 _2 -3 6 4 1 -6 -4 -1 3 2 
6 -1 -4 -5 2 -3 5 -2 3 4 1 

Schedule S specifies that team has the following schedule. 
It successively plays against teams at home, away, 
at home, at home, away, away, away, at home, 

at home, away. The travel cost of team T\ is 

Observe that long stretches of games at home do not con­
tribute to the travel cost but are limited by the atmost con­
straints. This kind of tension is precisely why this problem is 
hard to solve in practice. 
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The Local Search This paper proposes an advanced sim­
ulated annealing algorithm (TTSA) for the TTP. As usual, 
the algorithm starts from an initial configuration. Its basic 
step moves from the current configuration c to a configu­
ration in the neighborhood of c. TTSA is based on four 
main design decisions. (1) Constraints are separated into two 
groups: hard constraints, which are always satisfied by the 
configurations, and soft constraints, which may or may not 
be violated. The hard constraints are the round-robin con­
straints, while the soft constraints are the no-repeat and at-
most constraints. In other words, all configurations in the 
search represents a double round-robin tournament, which 
may or may not violate the no-repeat and atmost constraints. 
Exploring the infeasible region seems to be particularly im­
portant for this problem. Obviously, to drive the search to­
ward feasible solutions, TTSA modifies the original objec­
tive function to include a penalty term. (2) TTSA is based 
on a large neighborhood of size where n is the num­
ber of teams. Some of these moves can be regarded as a 
form of ejection chains which is often used in tabu search [6; 
7]. (3) TTSA dynamically adjusts the objective function to 
balance the time spent in the feasible and infeasible regions. 
This adjustments resembles the strategic oscillation idea 15] 
successfully in tabu search to sohe generalized assignment 
problems [3], although the details differ since simulated an­
nealing is used as the meta-heuristics. (4) TTSA also uses re­
heats (e.g., [21) to escape local minima at low temperatures. 
The "reheats" increase the temperature again and divide the 
search in several phases. 

The Neighborhood The neighborhood consists of four dif­
ferent moves. Among them, partial swaps of rounds and 
teams are critical to find high-quality solutions. Consider the 
move PartialSwapRounds(S, Tt,rk, r1). This move considers 
team Ti and swaps its games at rounds rk and r1. Then the 
rest of the schedule for rounds rk and r1 is updated (in a de­
terministic way) to produce a double round-robin tournament. 
Consider the schedule S 

[ T\R 1 2 3 4 5 6 7 8 9 10 

1 1 6 -2 2 3 -5 -4 -3 5 4 -6 
2 5 1 -1 -5 4 3 6 -4 -6: -3 
3 -4 5 4 -1 6 -2 1 -6 -5 2 
4 3 6 -3 -6 -2 1 5 2 -1 -5 
5 -2 -3 6 2 1 -6 -4 -1 3 4 
6 -1 -4 -5 4 -3 5 -2 3 2 1 

and the move PartialSwapRounds(S,T2,r2,rg). Obviously 
swapping the game in rounds r2 and r9 would not lead to 
a round-robin tournament. It is also necessary to swap the 
games of team 1,4, and 6 in order to obtain: 

T\R 1 2 3 4 5 6 7 8 9 10 

1 6 4 2 3 -5 -4 -3 5 -2 -6 
2 5 -6 -1 -5 4 3 6 -4 -3 
3 -4 5 4 -1 6 -2 1 -6 -5 2 
4 3 -3 -6 -2 1 5 2 6 

2 

5 -2 -3 6 2 1 -6 -4 -1 3 

2 

6 -1 2 -5 4 -3 5 -2 3 -4 
t i l 

1 

n Old Best min(D) max(D) mean(D) std(D) 

8 39721 39721 39721 39721 0 
10 61608 59583 59806 59605.96 53.36 
12 118955 112800 114946 113853.00 467.91 
14 205894 190368 195456 192931.86 1188.08 
16 281660 267194 280925 275015.88 2488.02 

Table 1: Solution Quality of TTSA on the TTP 

This move can thus be regarded as a form of ejection chain [6; 
7]. Finding which games to swap is not difficult: it suffices 
to find the connected component which contains the games 
of Ti in rounds and in the graph where the vertices are 
the teams and where an edge contains two teams if they play 
against each other in rounds and All the teams in this 
component must have their games swapped. Note that there 
are such moves. 

Experiments TTSA was applied to the National League 
benchmark described in 14; 8]. Over the course of this re­
search, TTSA was able to match the best solutions for NL4, 
NL6, and NL8, and to improve the solutions for NL10, NL12, 
NL14, and NL16 significantly. The best existing solutions 
were those in [8] and were the best to our knowledge at the 
time of writing. The last update was on November 1, 2002. 
TTSA is the first algorithm to go lower than 200,000 for 14 
teams and 280,000 for 16 teams. The results arc summa­
rized Table 1. Observe that even our worst results on these 
instances improve the previous best solutions. 
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