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Abstract 

We investigate interchangeability of values in 
CSPs, based on an approach where a single value in 
the domain of a variable can be treated as a combi­
nation of "sub-values". An algorithm for removing 
overlapping sub-values is presented. The resulting 
CSPs take less time to find all solutions and yield a 
more compactly-representable, but equivalent, so­
lution set. Experimental results show that, espe-
cially in loose problems with large numbers of solu­
tions, dramatic savings in search cost are achieved. 

1 Introduction 
While most CSP algorithm research is based on the assump­
tion that only one solution to a CSP need be found, the cen­
tral idea in this paper is motivated by a requirement of certain 
interactive constraint-based applications: sometimes, before 
making his next interactive decision, the user needs to know 
all solutions to a sub-CSP. Thus, we need an approach which 
wil l reduce the search cost of finding all solutions to a (sub-
)CSP and which wil l enable a more compact representation 
of the complete solution set. Neighbourhood Interchange-
ability (NI) [Freuder, 1991] of domain values suggests itself, 
since merging NI values in a variable domain reduces both 
thrashing during search and the complexity of enumerating 
the solution set. Without loss of generality, we restrict our 
attention here to binary CSPs, where the constraints involve 
two variables. 

Our idea is based on a new approach to NI . Normally, each 
domain value is treated as atomic. Our idea is to "split the 
atom" - a domain value can be split into several "sub-values" 
so that interchangeable fragments from other values can then 
be merged to avoid duplicate search effort during the solving 
process. 

When the values in a domain have been split into frag­
ments, interchangeable fragments of different values can be 
merged. Figure (i) depicts a constraint network while (ii) 
shows the microstructure. Figure (iii) shows the result of 
splitting and merging value fragments, resulting in smaller 
domains for X and Y. 

The approach subsumes NI , as can be seen in X where 
b and c, which are NI , are merged; similarly, d and g in Y 

are merged because they, also, are NI . That the approach sur­
passes NI can be seen by considering values e and / in Y. 
Values e and / are not NI because, while both e and / sup­
port (6, h) and (c, h), / also supports (6, i) and (c, i). How­
ever, we can split / into two fragments, one of which supports 
(6, h) and (c, h), while the other supports (6, i) and (c, i). The 
first fragment can be merged with e and the second can re­
main isolated. 

2 Background and Definitions 
We will use a cross-product representation (CPR) [Hubbe and 
Freuder, 1992] to denote sets of solutions to the star-graph 
CSPs that we must consider when transforming variable do­
mains. For example, consider the star-graph centred at Y in 
Figure (ii). The set of solutions to this star-graph in which the 
centre variable, Y, has the value can be represented by the 
following CPR:  

We define an operator, called "commerge" (commonality 
extraction and merge), on two CPR sets as follows. The op­
erator extracts, from the two CPR sets, those solutions which 
have common values for the leaf variables and merges the 
values for the centre variable. To compute the commerge 
of two CPR sets, the sets of values for the leaf variables are 
combined using normal set intersection but the sets of values 
for the centre variable are combined using normal set union. 
We denote the commerge operator as Thus, for example, 

We define the "communion" of two CPRs as follows. Two 
CPRs can be communioned only if the CPRs differ from each 
other in at most one of the cross-multiplied sets, which cannot 
be the set for the centre variable. In the communion, all the 
common cross-multiplied sets are unchanged, but the differ­
ing leaf sets are subjected to ordinary set union. We denote 
the communion operator as For example, the two CPRs 

can be communioned be­
cause they differ only in the right-most subsets which do not 
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correspond to the centre variable; the communion of these 
two CPRs is  

We also define a new form of subtraction, the "comminus" 
of two CPRs, as follows. One CPR can be comminused from 
another only if they have a common set for the centre variable. 
Given that provision, the comminus of two CPRs, denoted 
by is the same as subtraction. Note that the operator can 
result in a set of CPRs. Consider, for example, the result of 
subtracting (which contains only one solution 
to a star-graph) from (which contains four 
solutions). The difference between these two CPRs contains 
three solutions: In CPR form, this set of 
three solutions needs two CPRs. That is, 

3 Transforming CSPs 
The procedure for transforming the domain of a single vari-
able is stated in pseudocode below. 

The size of r e s u l t could be very large if there are 
many fragments of CPRs, making it unlikely that the result­
ing CPRs can be compressed so that the resulting domain 
is smaller than the original. Therefore we impose an upper 
bound on the size of if exceeds the up­
per bound, transformation of the variable's domain is aborted. 
This cutoff heuristic reduces the transformation time, making 
the algorithm practical even though the worst-case time com­
plexity is exponential. 

The overall transformation process involves transforming 
each variable domain, one by one, in some order. The or­
der in which variables are processed affects the result. As a 
heuristic, we have chosen never to accept the result of trans­
forming a variable's domain if the result of the transformation 
is that the number of members in the domain is increased, and 
choose the variable whose transformation leads to the maxi­
mum domain size reduction. 

3.1 Convergence 
We only need to transform the domain of each variable once 
due to the following theorem: 

Theorem 1 If, after the domain of variable V\ has been 
transformed, the domain of a neighbouring variable, V2, is 
also transformed, any subsequent attempt to transform the 
domain ofV1 will result in no change. 

4 Experimental Results 
We tested the algorithm over randomly generated CSPs with 
eight variables and six values in each domain, varying den­
sity from 0.1 to 0.9 with 0.05 increment step, while tightness 
ranges from 0.1 to 0.8 with the same increment. For each 
parameter point, the number of constraint checks required 
to compute all solutions and the number of representations 
needed to express these solutions are evaluated, averaged over 
100 problem instances. The solver is based on MAC-3 with 
dom/deg variable ordering. The upper bound of the r e s u l t 
is ten times the size of the variable's domain. 

For the random problem generator, we use model B where 
density and tightness are fraction instead of probability. Since 
the transformation process requires arc-consistent CSPs, wc 
also ensure that every problem is arc-consistent by linking 
each value to at least one value for every constraint in order 
to guarantee support. 

The results are shown in the above graph. While the trans­
formation cannot guarantee to reduce the number of con­
straint checks needed to compute all solutions to a CSP, it can 
produce huge savings. From the graph, we can see the method 
works best for problems with low density or low tightness, as 
either case wil l lead to a lot of CPR combination. In these 
cases the work needed for transformed CSPs is less than 1% 
of the work needed for untransformed CSPs. In those prob­
lems where the transformation does not produce large sav­
ings, its effect is usually harmless. Indeed, in the worst case 
we have seen in the experimental data, which occurred only 
at a few data points, the number of extra constraint checks for 
a transformed CSP is around 1 % more than for the untrans­
formed CSP. 
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