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1 Introduction 
Constraint programming is a promising technique for solving 
many difficult combinatorial problems. Since real-life con­
straints can be difficult to describe in symbolic expressions, 
or provide very weak propagation from their symbolic repre­
sentation, they are sometimes represented in the form of the 
sets of solutions or sets of nogoods. This adhoc represen­
tation provides strong propagation through domain (general­
ized arc) consistency techniques. However, the adhoc repre­
sentation is expensive in terms of memory and computation, 
when the adhoc constraint is large. 

So there is interest in determining less expensive meth­
ods for building propagators for adhoc constraints [Friihwirth, 
1998; Apt and Monfroy, 1999; Abdennadher and Rigotti, 
2000; Bartak, 2001; Dao et al., 2002]. 

In this paper, we propose a new language-independent rep­
resentation for adhoc constraints, the box constraint collec-
tion. The idea is to break up an adhoc constraint into pieces 
and cover these pieces using box constraints as tiles. This can 
be done automatically with a greedy algorithm. With the aid 
of constructive disjunction and a suitable choice of constraint 
templates in the collection, our new representation achieves 
domain consistency. 

2 Propagation Based Constraint Solving 
In this section we give our terminology for constraint satis­
faction problems, and propagation based constraint solving. 

An integer valuation is a mapping of variables to integer 
values, written , We extend the 
valuation to map expressions and constraints involving the 
variables in the natural way. We sometimes treat a valuation 

as the constraint  
Let vars be the ftmction that returns the set 

of (free) variables appearing in a constraint or valuation. 
A domain D is a complete mapping from a fixed (count­

able) set of variables to finite sets of integers. A domain 
D\ is stronger than a domain written if 

for all variables x. 
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In an abuse of notation, we define a valuation to be an 
element of a (non-false) domain D, written D, if   

for all  
We are also interested in the notion of an initial domain, 

denoted by The initial domain gives the initial values 
possible for each variable. 

A constraint c over variables written as 
restricts the values that each variable x,- can 

take simultaneously. An adhoc constraint is 
defined extensionally as a set of valuations over the vari­
ables We say is a solution of c. For any 
valuation on variables w i t h w e c a l l a 
nogood ofc. 

Often we define constraints intensionally using some well 
understood mathematical syntax. For an intensionally defined 

A constraint satisfaction problem (CSP) [Tsang, 1993], 
consists of a set of constraints over a set of vari­
ables where each variable Xi can only take values 
from its domain a set of integers. Solving a CSP 
requires finding a value for each variable from its domain so 
that no constraint is violated, i.e. all constraints are satisfied. 

A propagator f is a monotonically decreasing function 
from domains to domains. The generalized arc consistent 
propagator for a constraint c is defined as  

where x otherwise 
dom A propagation solver for propa­
gators F repeatedly applies propagators to a domain 
D until no further change in D results. 

3 Box Constraint Collections 
Adhoc constraints are usually implemented as tabled con­
straints by listing all the solutions or nogoods, incurring space 
and time overhead. Often we represent a constraint in an ad­
hoc manner because it is difficult (or unwieldy) to describe 
it using a symbolic expression. However, it may be easier 
to find symbolic expressions if we examine part of the so­
lution space. Therefore, we propose representing an adhoc 
constraint cadhoc with a set of simple constraints in DNF. 

A box is an n-dimensional hyper-cube, 
where is a (closed) interval of integers ai and bi. If 
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Lemma 1 Let 

and suppose each constraint c,- is implemented by a gener-
alized arc consistent propagator, then using constructive dis­
junction on this representation achieves generalized arc con­
sistency for cadhoc. 

Figure 1: An adhoc constraint ctri made of two triangles 

Example 1 A box constraint collection representation of the 
constraint ctri shown in Figure 1 is 

Due to space limitation, we cannot show how box con­
straint collections can be compiled into indexicals directly 
and efficiently. 

4 Experiments 
We compare the propagation efficiency among box (indexi-
cal BCCs for boxes only), tri - box (indexical BCCs for trian­
gles and boxes) and rel (the built-in r e l a t i o n / 3 for binary 
adhoc constraints) on randomly generated cubic inequalities 

domly chosen between [—9..9]. The domain size is 100. For 
each variable X and Y, we repeat M times picking a subset 

Dinit(x) where = W, and adding the constraints 
for each These constraint additions are then re­

moved and the next set S picked. We do our implementation 
with SICStus Prolog 3.9.1 on a Sun Blade 1000 workstation. 

Table 1 summarizes some results. N is the number of 
solutions. B and T are the number of boxes and triangles. 
tri-box generates no boxes (B = 0) in all 3 instances, gen 
is the generation time, rel and prop (for box and tri-box) 
are the time they spend on the propagation test M = 5000 
and W — 30. tri-box is the fastest because it compactly rep­
resents the non-linear constraints with 1 or 2 triangles, box, 
although is faster than re/, it takes a long time to generate be­
cause every box covers only a few solutions, and many boxes 
are needed. 

N rel box tri-box N rel 
B gen prop T gen prop 

5601 
7187 
2050 

33.78 
23.58 
11.59 

87 19.17 14.07 
57 20.97 10.92 
40 3.43 5.11 

2 2.25 6.04 
1 3.05 3.95 
2 0.95 4.70 

Table 1: Performance comparisons on non-linear constraints 

5 Conclusion 
We have proposed a new language-independent representa­
tion, box constraint collection, for adhoc constraints. With 
constructive disjunction, our new representation achieves 
generalized arc consistency, if all constraints inside the col­
lection do. 

Future work includes improving the current greedy BCC 
generation algorithm, and optimizing the indexicals of a box 
constraint collection. 
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