
Efficient Representation of Adhoc Constraints *

Kenil C.K. Cheng and Jimmy H.M. Lee Peter J. Stuckey
Dept of Comp. Sci. & Eng. Dept. of Comp. Sci. & Soft. Eng.

The Chinese University of Hong Kong, Hong Kong University of Melbourne, Australia
{ckcheng, j lee}@cse.cuhk.edu.hk p j s@cs .mu .oz .au

1 Introduction
Constraint programming is a promising technique for solving
many difficult combinatorial problems. Since real-life con­
straints can be difficult to describe in symbolic expressions,
or provide very weak propagation from their symbolic repre­
sentation, they are sometimes represented in the form of the
sets of solutions or sets of nogoods. This adhoc represen­
tation provides strong propagation through domain (general­
ized arc) consistency techniques. However, the adhoc repre­
sentation is expensive in terms of memory and computation,
when the adhoc constraint is large.

So there is interest in determining less expensive meth­
ods for building propagators for adhoc constraints [Friihwirth,
1998; Apt and Monfroy, 1999; Abdennadher and Rigotti,
2000; Bartak, 2001; Dao et al., 2002].

In this paper, we propose a new language-independent rep­
resentation for adhoc constraints, the box constraint collec-
tion. The idea is to break up an adhoc constraint into pieces
and cover these pieces using box constraints as tiles. This can
be done automatically with a greedy algorithm. With the aid
of constructive disjunction and a suitable choice of constraint
templates in the collection, our new representation achieves
domain consistency.

2 Propagation Based Constraint Solving
In this section we give our terminology for constraint satis­
faction problems, and propagation based constraint solving.

An integer valuation is a mapping of variables to integer
values, written , We extend the
valuation to map expressions and constraints involving the
variables in the natural way. We sometimes treat a valuation

as the constraint
Let vars be the ftmction that returns the set

of (free) variables appearing in a constraint or valuation.
A domain D is a complete mapping from a fixed (count­

able) set of variables to finite sets of integers. A domain
D\ is stronger than a domain written if

for all variables x.

*We thank the anonymous referees for their constructive com­
ments. The work described in this paper was substantially supported
by a grant from the Research Grants Council of the Hong Kong Spe­
cial Administrative Region (Project no.

In an abuse of notation, we define a valuation to be an
element of a (non-false) domain D, written D, if

for all
We are also interested in the notion of an initial domain,

denoted by The initial domain gives the initial values
possible for each variable.

A constraint c over variables written as
restricts the values that each variable x,- can

take simultaneously. An adhoc constraint is
defined extensionally as a set of valuations over the vari­
ables We say is a solution of c. For any
valuation on variables w i t h w e c a l l a
nogood ofc.

Often we define constraints intensionally using some well
understood mathematical syntax. For an intensionally defined

A constraint satisfaction problem (CSP) [Tsang, 1993],
consists of a set of constraints over a set of vari­
ables where each variable Xi can only take values
from its domain a set of integers. Solving a CSP
requires finding a value for each variable from its domain so
that no constraint is violated, i.e. all constraints are satisfied.

A propagator f is a monotonically decreasing function
from domains to domains. The generalized arc consistent
propagator for a constraint c is defined as

where x otherwise
dom A propagation solver for propa­
gators F repeatedly applies propagators to a domain
D until no further change in D results.

3 Box Constraint Collections
Adhoc constraints are usually implemented as tabled con­
straints by listing all the solutions or nogoods, incurring space
and time overhead. Often we represent a constraint in an ad­
hoc manner because it is difficult (or unwieldy) to describe
it using a symbolic expression. However, it may be easier
to find symbolic expressions if we examine part of the so­
lution space. Therefore, we propose representing an adhoc
constraint cadhoc with a set of simple constraints in DNF.

A box is an n-dimensional hyper-cube,
where is a (closed) interval of integers ai and bi. If

1368 POSTER PAPERS

Lemma 1 Let

and suppose each constraint c,- is implemented by a gener-
alized arc consistent propagator, then using constructive dis­
junction on this representation achieves generalized arc con­
sistency for cadhoc.

Figure 1: An adhoc constraint ctri made of two triangles

Example 1 A box constraint collection representation of the
constraint ctri shown in Figure 1 is

Due to space limitation, we cannot show how box con­
straint collections can be compiled into indexicals directly
and efficiently.

4 Experiments
We compare the propagation efficiency among box (indexi-
cal BCCs for boxes only), tri - box (indexical BCCs for trian­
gles and boxes) and rel (the built-in r e l a t i o n / 3 for binary
adhoc constraints) on randomly generated cubic inequalities

domly chosen between [—9..9]. The domain size is 100. For
each variable X and Y, we repeat M times picking a subset

Dinit(x) where = W, and adding the constraints
for each These constraint additions are then re­

moved and the next set S picked. We do our implementation
with SICStus Prolog 3.9.1 on a Sun Blade 1000 workstation.

Table 1 summarizes some results. N is the number of
solutions. B and T are the number of boxes and triangles.
tri-box generates no boxes (B = 0) in all 3 instances, gen
is the generation time, rel and prop (for box and tri-box)
are the time they spend on the propagation test M = 5000
and W — 30. tri-box is the fastest because it compactly rep­
resents the non-linear constraints with 1 or 2 triangles, box,
although is faster than re/, it takes a long time to generate be­
cause every box covers only a few solutions, and many boxes
are needed.

N rel box tri-box N rel
B gen prop T gen prop

5601
7187
2050

33.78
23.58
11.59

87 19.17 14.07
57 20.97 10.92
40 3.43 5.11

2 2.25 6.04
1 3.05 3.95
2 0.95 4.70

Table 1: Performance comparisons on non-linear constraints

5 Conclusion
We have proposed a new language-independent representa­
tion, box constraint collection, for adhoc constraints. With
constructive disjunction, our new representation achieves
generalized arc consistency, if all constraints inside the col­
lection do.

Future work includes improving the current greedy BCC
generation algorithm, and optimizing the indexicals of a box
constraint collection.

References
[Abdennadher and Rigotti, 2000] S. Abdennadher and

C. Rigotti. Automatic generation of propagation rules for
finite domains. In CP00, pages 18-34,2000.

[Apt and Monfroy, 1999] K.R. Apt and E. Monfroy. Auto­
matic generation of constraint propagation algorithms for
small finite domains. In CP99, pages 58-72, 1999.

[Bartak, 2001] R. Bartak. Filtering algorithms for tabular
constraints. In C1CLOPS2001, pages 168-182, 2001.

[Dao et al.,2002] T.B.H. Dao, A. Lallouet, A. Legtchenko,
and L. Martin. Indexical-based solver learning. In CP02,
pages 541-555, September 2002.

[Fruhwirth, 1998] T. Fruhwirth. Theory and practice of con­
straint handling rules. Journal of Logic Programming,
37(l-3):95-138, October 1998.

[Tsang, 1993] E. Tsang. Foundations of Constraint Satisfac­
tion. Academic Press, 1993.

POSTER PAPERS 1369

