Efficient Representation of Adhoc Constraints *

Kenil C.K. Cheng and Jimmy H.M. Lee
Dept of Comp. Sci. & Eng.

Peter J. Stuckey
Dept. of Comp. Sci. & Soft. Eng.

The Chinese University of Hong Kong, Hong Kong University of Melbourne, Australia

{ckcheng,jlee}@cse.cuhk.edu.hk

1 Introduction

Constraint programming is a promising technique for solving
many difficult combinatorial problems. Since real-life con-
straints can be difficult to describe in symbolic expressions,
or provide very weak propagation from their symbolic repre-
sentation, they are sometimes represented in the form of the
sets of solutions or sets of nogoods. This adhoc represen-
tation provides strong propagation through domain (general-
ized arc) consistency techniques. However, the adhoc repre-
sentation is expensive in terms of memory and computation,
when the adhoc constraint is large.

So there is interest in determining less expensive meth-
ods for building propagators for adhoc constraints [Friihwirth,
1998; Apt and Monfroy, 1999; Abdennadher and Rigotti,
2000; Bartak, 2001; Dao et al., 2002].

In this paper, we propose a new language-independent rep-
resentation for adhoc constraints, the box constraint collec-
tion. The idea is to break up an adhoc constraint into pieces
and cover these pieces using box constraints as tiles. This can
be done automatically with a greedy algorithm. With the aid
of constructive disjunction and a suitable choice of constraint
templates in the collection, our new representation achieves
domain consistency.

2 Propagation Based Constraint Solving

In this section we give our terminology for constraint satis-
faction problems, and propagation based constraint solving.

An integer valuatiof is a mapping of variables to integer
values, written {z; — dj,...,Zn +* dn}, We extend the
valuation & to map expressions and constraints involving the
variables in the natural way. We sometimes treat a valuation
#={2; = di,...,zn = ds} astheconstraint ; = d; A
--- A zn = dn. Let vars be the ftmction that returns the set
of (free) variables appearing in a constraint or valuation.

A domain D is a complete mapping from a fixed (count-
able) set of variables V to finite sets of integers. A domain
D\ is stronger than a domain)y, written 4 C Dy, if
Di(z) C Daf2) for all variables x.

*We thank the anonymous referees for their constructive com-
ments. The work described in this paper was substantially supported
by a grant from the Research Grants Council of the Hong Kong Spe-
cial Administrative Region (Project no. CUHK4183/00E).

1368

pjs@cs.mu.oz.au

In an abuse of notation, we define a valuation # to be an
element of a (non-false) domain D, written # € D, iff{z;) €
D(z;) for all z; € vars(8).

We are also interested in the notion of an initial domain,
denoted by D;,.i1. The initial domain gives the initial values
possible for each variable.

A constraint ¢ over variables =xy,...,Ta, written as
e{z1,...,%x), restricts the values that each variable x- can
take simultaneously. An adhoc constraint c(zy,. .., zn) is
defined extensionally as a set of valuations # over the vari-
ables x1,...,2,. We say # € ¢ is a solution of c. For any
valuation # on variablesa;,...,2,, W i € cv e cafla
nogood ofc.

Often we define constraints intensionally using some well
understood mathematical syntax. For an intensionally defined
constraint ¢ we have that 8 € ¢ iff vars(8) = vars(c)AZ |
c. For example the constraint 1 = 22+ 1 where Dy,.ie(2) =
Dinie(z3) = {1,2,3} defines the set of solutions {{z; —
219 l], {21 = Jd,ry 2}}

A constraint satisfaction problem (CSP) [Tsang, 1993],
consists of a set of constraints 1, ..., rg over a set of vari-
ables z1, . . ., zn, Where each variable X; can only take values
from its domain fJini(2:), a set of integers. Solving a CSP
requires finding a value for each variable from its domain so
that no constraint is violated, i.e. all constraints are satisfied.

A propagator f is a monotonically decreasing function
from domains to domains. The generalized arc consistent
propagator for a constraint ¢ is defined as dom{c}(P)(z) =
{6{z) | # € DA® € c} where x € wars(c), otherwise
dom(c)(D)(z) = D(z). A propagation solver for propa-
gators F repeatedly applies propagators f € F to a domain
D until no further change in D results.

3 Box Constraint Collections

Adhoc constraints are usually implemented as tabled con-
straints by listing all the solutions or nogoods, incurring space
and time overhead. Often we represent a constraint in an ad-
hoc manner because it is difficult (or unwieldy) to describe
it using a symbolic expression. However, it may be easier
to find symbolic expressions if we examine part of the so-
lution space. Therefore, we propose representing an adhoc
constraint caqnoc With a set of simple constraints in DNF.

A B =], [ai..b] is an n-dimensional hyper-cube,
where [a;..4;] is a (closed) interval of integers a; and b;. If

POSTER PAPERS

e(zy,...,zn) is a constraint on variables z,,...,z,, then
A;,'=1 a;; < z; < biy A e(xy,...,2,) is a box constraint,
which we write as B = ¢. We restrict the form of constraints
¢(z1,...,2n)} to certain templates. A box constraint collec-
tion (BCC) is simply a disjunction of box constraints.

The idea is thus to use box constraints in a collection as
“tiles” to cover the solution space of an adhoc constraint. The
temptlate defining ¢ in a box constraint B = ¢ determines the
shape of the tile. Triangles and rectangular boxes are good
tile shapes for filling grids. If ¢ is ¢rue, then B = c is simply
the box B. If ¢ is of the form 377 _; a;2; < aq, then we call
B = catriangle.

Lemma 1 Let
Padhoe(F1,. . En) = V B; = cilz1,...,Tn)
i=1

and suppose each constraint c- is implemented by a gener-
alized arc consistent propagator, then using constructive dis-
junction on this representation achieves generalized arc con-
sistency for Cagnoc-

Y
1

2
3
4
5

1 2 3 4 § X

Figure 1: An adhoc constraint c,; made of two triangles

Example 1 A box constraint collection representation of the
constraint ¢ shown in Figure 1 is

[1.3]x[l.8)]=>X+Y >4v[3.5]x[3.5]=>X+V <8
D

Due to space limitation, we cannot show how box con-
straint collections can be compiled into indexicals directly
and efficiently.

4 Experiments

We compare the propagation efficiency among box (indexi-
cal BCCs for boxes only), tri - box (indexical BCCs for trian-
gles and boxes) and rel (the built-inrelation/3 forbinary

adhoc constraint%\ on rangomlv oenera;ed cubi%ineouali,‘ties
of the form d1 X° + do X°Y + dag XY + de¥Y® + ds X* 4
ds XY +d7Y 2 +dg X +dgY < dy. The coefficients are ran-
domly chosen between [—9..9]. The domain size is 100. For
each variable X and Y, we repeat M times picking a subset
S C .Diyit(x) where |§] = W, and adding the constraints
z # v foreach v € S. These constraint additions are then re-
moved and the next set S picked. We do our implementation
with SICStus Prolog 3.9.1 on a Sun Blade 1000 workstation.

POSTER PAPERS

Table 1 summarizes some results. N is the number of
solutions. B and T are the number of boxes and triangles.
tri-box generates no boxes (B = 0) in all 3 instances, gen
is the generation time, rel and prop (for box and ftri-box)
are the time they spend on the propagation test M = 5000
and W — 30. tri-box is the fastest because it compactly rep-
resents the non-linear constraints with 1 or 2 triangles, box,
although is faster than re/, it takes a long time to generate be-
cause every box covers only a few solutions, and many boxes
are needed.

N rel box tri-box
B gen prop | T gen prop
5601 | 33.78 | 87 19.17 14.07 | 2 225 6.04
7187 | 23.58 | 57 2097 1092 | 1 3.05 3.95
2050 | 1159 | 40 343 511 | 2 0.95 4.70

Table 1: Performance comparisons on non-linear constraints

5 Conclusion

We have proposed a new language-independent representa-
tion, box constraint collection, for adhoc constraints. With
constructive disjunction, our new representation achieves
generalized arc consistency, if all constraints inside the col-
lection do.

Future work includes improving the current greedy BCC
generation algorithm, and optimizing the indexicals of a box
constraint collection.

References

[Abdennadher and Rigotti, 2000] S. Abdennadher and
C. Rigotti. Automatic generation of propagation rules for
finite domains. In CP0O, pages 18-34,2000.

[Apt and Monfroy, 1999] K.R. Apt and E. Monfroy. Auto-
matic generation of constraint propagation algorithms for
small finite domains. In CP99, pages 58-72, 1999.

[Bartak, 2001] R. Bartak. Filtering algorithms for tabular
constraints. In C1CLOPS2001, pages 168-182, 2001.

[Dao et al.,2002] T.B.H. Dao, A. Lallouet, A. Legtchenko,
and L. Martin. Indexical-based solver learning. In CP02,
pages 541-555, September 2002.

[Fruhwirth, 1998] T. Fruhwirth. Theory and practice of con-
straint handling rules. Journal of Logic Programming,
37(1-3):95-138, October 1998.

[Tsang, 1993] E. Tsang. Foundations of Constraint Satisfac-
tion. Academic Press, 1993.

1369

