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1 Introduction 
Finding a good model of a constraint satisfaction problem 
(CSP) is a challenging task. A modeller must specify a set of 
constraints that capture the definitions of the problem, and the 
model should also have strong propagation. In other words, 
the model should be able to quickly reduce the domains of 
the variables of the problem, and the implementation of these 
propagators should be efficient, and the search space should 
not be too large. 

A problem can be modelled differently from two view­
points using two different sets of variables. In redundant 
modelling [Cheng et al, 1999], we connect the two differ­
ent models with channelling constraints, which relates valu­
ations in the two different models stronger propagation be­
haviour can be observed. However, the additional variables 
and constraints impose extra computation overhead may out­
weigh the gain of reduction in search space. 

In this paper we consider redundant models connected by 
permutation channels, which commonly arise when the un­
derlying problem is some form of assignment problem. Since 
each model is complete and only admits the solutions of the 
problem, each model is logically redundant with respect to 
the other model plus the permutation channel. In order to 
keep the benefits of redundant modelling without paying all 
the costs, We give a theorem which allows us to determine 
when we can eliminate constraints in the mutually redundant 
models that do not give extra propagation. Due to space lim­
itations, we state the theorem without proof. 

2 Reasoning about Domain Propagation 
We consider integer constraint solving with constraint propa­
gation and tree search. 

An integer valuation is a mapping of variables to integer 
values, written Let vars be the 
function that returns the set of variables appearing in a con­
straint or valuation. A constraint c defines a set of valuations 
solns{c) each mapping the same set of variables vars(c). We 
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call solns(c) the solutions of c. A constraint c is logically re­
dundant with respect to a set of constraints C if  

A domain D is a complete mapping from a fixed (count­
able) set of variables to finite sets of integers. A false do-
main D is a domain with D(x) = for some x. A domain 

is stronger than a domain I)n, written 
is a false domain or for all variables x. The 
initial domain Dinit gives the initial values possible for each 
variable, allows us to restrict attention to domains D such that 
D Dinit. 

We adopt the notion of propagation solver and domain 
consistency1 from Schulte and Stuckey [2001]. A propaga­
tor f is a monotonically decreasing function from domains 
to domains. A propagation solver for a set of propagators 
F and current domain D, solv(F, D), repeatedly applies all 
the propagators in F starting from domain D until there is no 
further change in resulting domain. A domain D is domain 
consistent if D is the least domain containing all solutions of 
r in D. Define the domain consistency propagator dom(c) 
for a constraint c such that solv(dom(c), D) is always do­
main consistent for r. 

For all domains a set of propagator F2 is made 
propagation redundant by a set of propagators F\, written 

and is equivalent 
to Fu written F1~F2, if solv{Fi, D) = solv(F2,D). 

It is well known that in general the domain propagation of 
a conjunction of constraints is not equivalent to applying the 
domain propagators individually. But there are cases where 
propagation of a conjunction is equivalent to propagation on 
the individual conjuncts. 

Lemma 1 If c1 and c2 share at most one variable x, then 
{dom[c1), dom[c2)} {dom{c1Ar2)}. 

An atomic constraint is one of Xi = d or xi d where 
Xi £ V and d is an integer. An atomic constraint represents 
the basic changes in domain that occur during propagation. 

A propagation rule is of the form C c where C is a 
conjunction of atomic constraints, c is an atomic constraint 
and C c. Note our propagation rules are similar to the 
"membership rules" of Apt and Monfroy [2001] except we 
allow equations on the right hand side. 

A propagator / implements a propagation rule C c if for 
each D whenever D C, then r. 

'Equivalently, hyper-arc or generalized arc consistent. 
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We can characterize a propagator / in terms of the propaga­
tion rules that it implements. Let rules(f) be the set of rules 
implemented by /. Then prop(f) rulcs(f) are a set of 
propagation rules such that every r rulcs(f) is subsumed 
by a rule prop(f). 

3 Permutation Channels 
A common form of redundant modelling is when we con­
sider two viewpoints to a permutation problem. We can 
view the problem as finding a bipartite matching between 
two sets of objects of the same size. For notational conve­
nience, let the two viewpoints as having the set of variables 

and V = respectively. 
The permutation channel is defined by the conjunction 

of constraints The permuta-
tion channel propagator maintains domain consistency of 
each individual bi-implication, that is  

Smith [2000] first observes that the permutation channel 
makes each of the disequations between variables in either 
model propagation redundant. Walsh [2001 ] proves this holds 
for other notions of consistency. 

Lemma 2 (Walsh, 2001)  

Related to is the permutation channel function which 
is a bijection between atomic constraints in X to atomic con­
straints in Y, and  

We extend to map conjunctions of constraints in 
the obvious manner  

The fundamental theorem states that a constraint in Y is 
propagation redundant if there exist a constraint in X when 
conjuncts with logically imply every propagation rules 
implemented by the constraint in Y'. Since is bijective, the 
theorem is valid when X and Y are reversed. 

Example 4 Smith [2000] suggests two ways to model the 
Langford's problem as a permutation problem and how to 
combine them with the permutation channel. She points out 
that the so-called minimal combined model, which includes 
only X model and the permutation channel, gives as much 
pruning as the full combined model. This is proved in an ad 
hoc manner by Choi and Lee [2002]. We prove this formally 
using our generic approaches.2 

2The complete description of the two permutation models for the 
Langford's Problem can be found in [Choi and Lee, 2002]. 

4 Conclusion 
We have extend our approach to other types of channelling 
constraints and lead to significantly faster models that do 
not increase the search space. Although we have illustrated 
the use of the theorems herein by hand, the approach can 
clearly be automated. We can constructs the propagation rules 
automatically using the approach of Abdennadher and Rig-
otti [2002]. We are interested in extending the work to reason 
bounds propagation. Another direction is to study a weaker 
notion of propagation redundancy which allows removal of 
constraints without affecting the search space given a specific 
search heuristic. 
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