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1 Introduction 
The Quasigroup Completion Problem (QCP) is a very chal­
lenging benchmark among combinatorial problems, and a fo­
cus of much recent interest in the area of constraint program­
ming. It has numerous practical applications [Gomes et al, 
2002]; it has been put forward as a benchmark which can 
bridge the gap between purely random instances and highly 
structured problems [Gomes et al, 2002]; and its structure as 
a multiple permutation problem [Walsh, 2001] is common to 
many other important problems in constraint satisfaction. 

I Gomes et al, 2002] reports that QCPs of order 40 could 
not be solved by pure constraint programming approaches, 
but could sometimes be solved by hybrid approaches com­
bining constraint programming with mixed integer program­
ming techniques from operations research. In this paper, we 
show that the pure constraint satisfaction approach can solve 
many problems of order 45 in the transition phase, which cor­
responds to the peak of difficulty. Our solution combines 
a number of known ideas -the use of redundant modeling 
[Cheng et al, 1996] with primal and dual models of the prob­
lem connected by channeling constraints [Walsh, 2001 ]- with 
some novel aspects, as well as a new and very effective value 
ordering heuristic. 

2 Models for QCPs 
A quasigroup is an ordered pair (Q, ), where Q is a set and 
•is a binary operation on Q such that the equations a • x = b 
and y ■ a = b are uniquely solvable for every pair of elements 
a, b in Q [Gomes et al, 2002]. The order n of the quasigroup 
is the cardinality of the set Q. A quasigroup can be seen as 
an n x n multiplication table defining a Latin Square, which 
must be filled with "colors" so that the colors of each row are 
all distinct, and similarly for columns. A QCP is the problem 
of coloring a partially filled Latin square, which is known to 
be NP-Complete [Colbourn, 1984]. 

Each row and column of a Latin Square defines a permu­
tation problem, i.e. a constraint satisfaction problem with the 
same number of variables as values, where a solution is a 
permutation of the values [Walsh, 2001]. The QCP is a mul­
tiple permutation problem with 2n intersecting permutation 
constraints (n row permutation constraints and n column per­
mutation constraints). In order to represent those permutation 
problems we have implemented three models: 

• Primal Model: This model has a variable xi,j for each 
cell of the latin square, with i and j its coordinates. Their 
possible values are the colors of the cell. 

• Row Dual Model: This is the first dual model, it repre­
sents the colors in each row; the dual variable ri,k is the 
k-th color in the i-th row, and the values it can take are 
the columns where it can be placed. 

• Column Dual Model: This one models the colors in each 
column; the dual variable cj,k represents the k-th color 
in the j-th column, with rows as its possible values. 

The primal and dual not-equal constraints specify that the col­
ors in a row or column must all be different. While these are 
sufficient to capture the problem (and in fact redundantly so), 
it is known that these models can be improved by connecting 
them through channeling constraints: 

• Row Channeling Constraints: Constraints for the n row 
permutation constraints, linking the primal model with 
the row dual model:  

• Column Channeling Constraints: Corresponding to the 
n column permutation constraints, they link the primal 
and dual column models:  

• Triangular Channeling Constraints: These (novel) con­
straints link both dual models, closing a "triangle" 
among the three models:  

It's easy to show that the first two kinds of channeling con­
straint fully capture a QCP (see also [Walsh, 2001]), making 
the primal and dual constraints redundant. 

3 Value Ordering 
Key to our results is a new value ordering heuristic, which we 
might call the min-domain value selection heuristic. Once 
a primal or dual variable is selected, we need to choose a 
value for it. Since any such value corresponds to one spe­
cific variable from each of the two other models, we select 
the value whose corresponding two variables have a minimal 
"combined" domain. Specifically, say we have chosen X{j. 
Then we choose a color k from its currently active domain 
for which the sum of the current domain sizes of ri,k and CJ,K 

is minimal among the currently available colors for xi,j. 

4 Results 
We focused our experiments on solvable instances. To make 
our results comparable with those reported in [Gomes et al, 
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Figure 1: Mean solution time on QCPs of order 30, 35 and 40 
with (vol) and without value ordering (voO). 

2002], we used the same generator1, and considered only 
"balanced" instances, which are known to be the hardest. 
We used an (AC3-based) Generalized Arc Consistency 
algorithm based on van Beek's CPLAN implementation 
(http:ai.uwaterloo.ca/~vanbeek/software/software.html), 
with a few improvements. We considered various (complete) 
combinations of all the above mentioned constraints, and 
found that adding the primal and dual "not-equal" constraints 
never helped performance in the presence of row and column 
channeling constraints, and yielded even worse results in 
their absence. Most of the results discussed below therefore 
use a model with only row and column channeling con­
straints; they also use "MAC" (mantaining arc consistency 
[Bessiere, Regin, 19961). Since our preliminary tests showed 
that CBJ and nogood learning seem to never help in these 
problems, and are often a source of significant overhead, we 
discarded them. We also considered various variable selec­
tion heuristics. We found the min-domain heuristic, which 
selects a variable with smallest domain to be uniformly the 
best among the alternatives we tried, which included more 
sophisticated heuristics such as dom+degree, dom/degree, 
and variants of the above which took into account the (primal 
or dual) model to which variables belong, e.g. selecting only 
among primal variables, etc. 

With only row and column channeling constraints, our im­
plementation outperforms classical approaches, in that we 
can solve a considerable amount of instances of order 40 in a 
reasonable time. As mentioned above, this was very recently 
considered as out of reach for pure constraint programming 
approaches [Gomes et al, 2002], which ours is (in fact, we 
don't even use global or non-binary constraints). The results 
when this model was used with the min-domain value order­
ing heuristic were quite surprising, as it outperformed previ­
ous tests in three orders of magnitude in some cases. For ex­
ample, for the instance bqwh-35-405-5.pls (balanced instance 
of order 35 and 60% preassigned) it took 2905 sees without 
value ordering and only 0.40 sees with it. In Figure 1 we 
present a comparison of our results with and without value 

ordering for quasigroups of order 30,35 and 40, and 60% pre-
assignment, close to the phase transition [Gomes et al, 2002]. 

Encouraged by this performance, we generated some in­
stances of order 45 and 60% preassignment. Again the value 
ordering heuristic turns out to be so efficient that we were able 
to solve a great number of instances in a reasonable amount 
of time. The next table shows median and mean time in sec­
onds (the latter taken only over solved instances) and percent 
of solved instances, using value ordering for problems in the 
transition phase. 

[ order mean median % solved timeout 
30 148.84 174.11 68% 1000 
35 533.43 163.48 84% 3600 
40 690.85 842.11 68% 5000 
45 1090.10 2971.40 56% 6000 | 

'Generator Isencode, kindly provided by Carta Gomes. 

Finally, we are currently exploring the effect of adding "tri­
angular" channeling constraints; our preliminary results sug­
gest that they can improve performance by an additional 30-
35%, using in this case only forward checking (e.g. from 902 
to 666 seconds in one order 45/60% preassigned instance). 
The idea is that they provably allow forward checking to per­
form as much pruning as arc-consistency, while saving many 
useless checks; in fact, as many as 60% fewer checks, even 
though the savings in time are not as great due to effects we 
are currently exploring. 

5 Conclusions and Future Work 
We have shown that a pure CSP approach can handle quasi-
group completion problems significantly larger than was 
thought possible, using appropriate models and value order­
ing heuristics, and even in the absence of global alldiff con­
straints. Yet our results are preliminary, and no doubt it would 
be interesting to consider other value ordering heuristics and 
ways to make the triangular channeling constraints most ef­
fective. 
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