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Abstract 
Local search algorithms have been very successful 
for solving constraint satisfaction problems (CSP). 
However, a major weakness has been that local 
search is unable to detect unsolvability and is thus 
not suitable for tightly and overconstrained prob­
lems. We present a hybrid solving scheme where 
we combine a local search algorithm - the break­
out algorithm, with a systematic search algorithm 
- backtracking. The breakout algorithm is used 
for identifying hard or unsolvable subproblems and 
the backtracking algorithm proves the solvability 
of these subproblems. The resulting hybrid algo­
rithm is complete and is tested on randomly gen­
erated graph 3-colouring problems. The algorithm 
performs extremely well for all areas of the phase 
transition and outperforms the individual methods 
by several orders of magnitude. 

1 Introduction 
The breakout algorithm is an efficient, local search algorithm 
for solving Constraint Satisfaction Problems (CSPs). The 
roots of the algorithm go back to [Minton et a/., 1992] and 
to [Morris, 1993]. [Minton et al.,1992], developed, a local 
search algorithm, called min-conflict heuristic, which itera-
tively repairs a given assignment until all conflicts are elimi­
nated. One drawback of the method is that it can get caught 
in local, non solution minima. Morris eliminated this draw­
back by extending the algorithm with a breakout method, 
which allows to escape from local, non solution-minima. The 
strengths of the breakout algorithm are simplicity, robustness, 
low memory requirement and high efficiency for solving un­
der constrained problems. [Minton era/., 1992] demonstrated 
the performance superiority of the min-conflict heuristic by 
solving large-scale scheduling problems; it performed by or­
ders of magnitude better than traditional backtracking tech­
niques. However, the major weak point of the algorithm is its 
incompleteness. 

In this paper we present a hybrid algorithm that is complete 
where we combine a local search algorithm, the breakout 
algorithm, with a complete search algorithm, backtracking. 
The combination of the two algorithms compensates each 
others weakness to deal with under and tightly constrained 

problems. We discover that the algorithm combination also 
leads to synergies. The weight information from the breakout 
algorithm can locate and order hard or unsolvable subprob­
lems and guide backtracking by a fail-first variable order. In 
addition, we introduce a weight sum constraint that can be 
used to identify unsolvable subproblems of a certain size. 

2 The Scheme 
When a problem contains an unsolvable subproblem, we ob­
serve that the average constraint weight of a constraint be­
longing to an unsolvable subproblem is higher than the aver­
age constraint weight of the problem. In addition, the smaller 
the unsolvable subproblem, the higher the average constraint 
weight. This observation is supported by Lemma 1: 

Lemma 1; After increasing the weights n times, the sum of 
the constraint weights u)pk of an unsolvable subproblem Pk 
with k constraints must be greater than or equal to n + k. 

Proof: If a subproblem is unsolvable, then in every break­
out step, one or more of the subproblem constraints is always 
violated, thus every time the algorithm is caught in a local non 
solution minimum, one or more of the corresponding weights 
must be increased. The lower bound of wpk can be derived 
by assuming that in every breakout step only one constraint is 
violated. 

By applying Lemma 1 we can define a weight sum con­
straint, which is extremely useful for tracing unsolvable sub-
problems of different sizes. 

Definition 1 (Weight sum constraint for an unsolvable 
subproblem P*): According to Lemma 1, in an unsolvable 
subproblem P^ consisting of k constraints after n breakout 
steps, the following condition 

is satisfied, where Ci are all the constraints of the constraint 
set Cpk of the subproblem Pk. 

The weight sum constraint is a powerful tool for pruning 
the search for unsolvable subproblems. For example, if we 
search for an unsolvable subproblem of size 3, we only have 
to consider the constraints whose weight sum is greater n + 3. 

We also observe that the average constraint weight of an 
unsolvable subproblem of size k is higher than that of an un­
solvable subproblem of size k + s (s > 0). This is due to 
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Figure 1: The weight graph of an unsolvable graph colouring 
problem after 100 breakout steps, containing two unsolvable 
subproblems of size 3 (cl,c7,c8) and 6 (c2,c3,c4,c9,cl0,cl 1). 

the fact that violations cycle over the constraint graph and 
the less constraints are available, the greater the average con­
straint weight value. This is demonstrated in Figure 1, con­
taining two unsolvable subproblems of size 3 and 6. After 
n^lOO breakout steps, the average constraint weight of the 
subproblem of size 3 is approximately n/3 + 1 =34 and for 
the subproblem of size 6, it is n/6 + 1 =18. Sorting the vari­
ables according to increasing constraint weights, orders the 
subproblem of size 3 before the subproblem of size 4, and 
thus separates the two. 

These observations inspired us to use the constraint weight 
information for localizing potentially unsolvable subprob­
lems and to derive a fail-first variable ordering heuristic for 
backtracking. In this heuristic, variables are sorted so that the 
constraints with the highest weights are treated first. 

2.1 H y b r i d Solver B O B T 
We have implemented this scheme into a hybrid algorithm 
(BOBT), where we combine the breakout algorithm (BO) 
with backtracking (BT). In this algorithm, we first execute 
BO and terminate if no solution is available after a bounded 
number of breakout steps. Then we derive a fail-first vari­
able order from the constraint weights and the graph structure 
and start backtrack search. BT wil l then either prove that the 
problem is unsolvable, or return a solution. This method guar­
antees the completeness of the hybrid algorithm. In the case 
where we find an unsolvable subproblem, we terminate the al­
gorithm and give a failure explanation by returning the min­
imal unsolvable subproblem. The minimal unsolvable sub-
problem is computed from the unsolvable subproblem using 
the technique described in [Faltings, 2002]. 

3 Experiments and Results 
For testing the scheme, we generated a large set of 10,000 
random graph 3-colouring problems according to the method 
described in [Davenport et.al. 1995]. The generated problem 
graphs consisted of 30 variables with a connectivity of 2-6. 
The ratio of solvable to unsolvable problems is 1:1. Figure 
2 shows the results of the experiments. We show the num­
ber of constraint checks for the three algorithms, BO, BT and 
BOBT on a logarithmic scale over the graph connectivity. For 
unsolvable problems, we bound the maximum number of it­
erations for the BO to 4.37 • 105. 

Figure 2: Number of constraint checks on a logarithmic 
scale for solving 10,000 random generated, 30 node graph 
3-colouring problems, solved with BO, BT and BOBT. 

4 Conclusion 
The main contribution of this paper is the presented hybrid 
scheme that combines the breakout algorithm with a system­
atic search method, backtracking, and results in a new algo­
rithm that is complete. In the scheme we use the constraint 
weight information of the breakout algorithm to identify hard 
and unsolvable subproblems of increasing sizes and derive in 
combination with the graph structure a fail-first variable or­
der for a backtracking algorithm. With our results we prove, 
that the new hybrid search scheme performs extremely well. 
BOBT needs orders of magnitude less constraint checks than 
BO and BT. In the future we plan to extend the scheme by 
identifying the ordered set of all unsolvable sub problems in 
order to perform a spectral analysis that gives us the distribu­
tion of unsolvable subproblems for random graph colouring 
problems. 
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