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Abstract 

In this paper, we present an abstract framework 
for learning a finite domain constraint solver mod­
eled by a set of operators enforcing a consistency. 
The behavior of the consistency to be learned is 
taken as the set of examples on which the learn­
ing process is applied. The best possible expres­
sion of this operator in a given language is then 
searched. We instantiate this framework to the 
learning of bound-consistency in the indexical lan­
guage of Gnu-Prolog. 

1 Introduction 
Constraint Satisfaction Problems (or CSPs) have been widely 
recognized as a powerful tool to model, formulate and solve 
artificial intelligence problems as well as industrial ones. A 
common framework to address this task is the combination of 
search and filtering by a local consistency. Enforcing a local 
consistency is usually done by the scheduling of monotonic 
and contracting operators up to reach their greatest common 
fix point. The consistency is obtained as the common closure 
of the set of operators. This closure is efficiently computed by 
a chaotic iteration of the operators [Apt, 1999]. But usually, 
the task of finding efficient operators which actually define a 
consistency is considered as one of the smartest skills of the 
solver's implementor. The essence of the learning framework 
consists in considering the behavior of the operator enforcing 
the desired consistency as a set of examples in order to find an 
adequate representation of this operator in a given language. 

2 Theoretical framework 

Operators which satisfy the first three conditions are called 
pre-consistencies for c. As an example of consistency, if we 
suppose that each variable domain Dx is ordered by a total 
ordering and for A Dx, we denote by [A] the set {a  

then the bound-consistency 
is defined by 

with Tx the projection of T on A\ 
Let csc be the consistency to be learned. Our aim is to 

build a consistency / which behaves like csc as much as pos­
sible. Thus / must be contracting, monotonic, correct w.r.t 

and singleton complete w.r.t 
for any singletonic search state s). How­

ever, singleton completeness is difficult to get and even not 
always possible to express in a given language. In order to 
transform a pre-consistency into a consistency, let us define a 
consistency idc such that is an empty state 
if s is a non-solution singletonic state, and = s other­
wise. Thus / and o / are consistencies for c if / is 
a pre-consistency for c. Therefore by adding in the set of 
operators, processed by a chaotic iteration mechanism [Apt, 
19991, we only need to build pre-consistencies for c. On the 
other hand, the correctness condition must be ensured for ev­
ery s Sw which is generally huge. We show that: 

Proposition I If f is a monotonic and contracting operator 
such that f(s) = sfor every singletonic state s which repre­
sents a solution of c, then f is a pre-consistency for c. 

Therefore, by considering monotonic operators, we can re­
duce the search space to a sample set E which is a subset of 
Sw and which contains all singletonic search states. Let C 
be the language in which operators are expressed and / be an 
operator in this language. In order to find the best possible ex­
pression, we shall be able to compare two consistencies. This 
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is usually done with a distance. Let d be such a distance be­
tween two consistencies. The learning problem is formulated 
as follows: 

where Sw, E contains all singletonic search states of 
Sw and / is a monotonic operator. Following the machine 
learning vocabulary, represents the example space and 
the hypothesis space. 

3 Learning indexicals 
To instantiate our theoretical framework, we have to define 
strong language biases in order to limit the combinatorial ex­
plosion. 

The first question is the language in which operators are ex­
pressed. The language of indexicals [van Hentenryck et al, 
1991J is chosen, motivated by the ease of integration of the 
user-defined indexicals in Gnu-Prolog [Diaz and Codognet, 
2001]. In this language, an operator is written X in r, 
where X represents the domain of the variable X and r is an 
expression representing a subset of Dx. If we denote x the 
unary constraint representing A'\s domain, then the indexical 
represents the operator  

Then comes the choice of consistency. We learn the bound-
consistency, since it allows to limit the example space to in­
tervals instead of arbitrary subsets. 

For each variable we learn a reduction indexical and de­
fine an indexical for The reduction indexical for X is of 
the form X in minX . . maxX where minX, maxX are in 
some fixed forms. In practice, we use linear, piecewise lin­
ear and rational forms. In order to the reduction indexical to 
be monotonic, the bound minX must be anti-monotonic and 
maxX monotonic. This can be ensured by syntactic condi­
tions on the sign of the coefficients for each expression. 

The indexicals for idc could be implemented in two ways: 
by using Gnu-Prolog indexicals for predefined constraints in 
which each instance of m i n and max is simply replaced by 
v a l , or by a direct code using v a l and C operators. 

As distance between two consistencies, we use the global 
error on the example space E. By considering that / must be 
correct w.r.t csc, this distance is 
Example For lack of space, we present here one example. 
An user defined global constraint is defined by the follow­
ing conjunction: X - Y > 3, A - Y < 30 ,3 * X - Y > 
50,5 * Y - X < 120, X < 45, Y > 5. When treated glob­
ally as a two dimensional polyhedra, these constraints yield 
less indexicals than the above decomposition. On the domain 
[0..49] x [0..49], our system generates the following opera­
tors: 

Reparation operators are implemented from Gnu-Prolog in­
dexicals. Here is the one for X': 

When trying all reductions on boxes included in [16,25] x 
[5,26], the learned operators ran in 290 ms, while the non-
decomposed constraints ran in 400 ms. A l l tests have been 
done on a Pentium4,2Ghz, 512MB running Linux. 

4 Conclusion 
Related w o r k Solver learning has been first introduced by 
[Apt and Monfroy, 1999] in which they automatically gener­
ate a set of rules f rom the tuples defining a constraint. The 
complexity of the rules generation l imits them to small finite 
domains such as boolean. 

The system PROPMlNER [Abdennadher and Rigott i , 2002; 
2003 J is devoted to the learning of Constraint Handling Rules 
[Fruwirth, 1998]. The produced solver is often very readable, 
especially when a small number of rules are produced. Whi le 
being less general in theory since we only deal wi th finite 
domains, our method works on domains and constraint arities 
much larger. 

In an earlier paper [Dao et al., 2002], we have presented 
an indexical learning process. We propose here two main im­
provements, besides a more general theoretical framework: 
the possibility of using only a sample of the example space 
whi le stil l ensuring the correctness of the learned solver and 
the reparation method. It fol lows that our system is able to 
handle larger constraint arity and larger domains and there­
fore yields a better solver. 

Summary We have presented a general, language-
independent framework for finite domain constraint solver 
learning and an instantiation to the learning of bound-
consistency wi th Gnu-Prolog indexicals. 
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