
Applying interchangeability techniques to the distributed breakout algorithm 

Adrian Petcu and Boi Faltings 
{adrian.petcu, boi.faltings}@epfl.ch 

Artificial Intelligence Laboratory 
Swiss Federal Institute of Technology 

IN (Ecublens), CH-1015 Lausanne, Switzerland 

Abstract 

This paper presents two methods for improving the 
performance of the Distributed Breakout Algorithm 
using the notion of interchangeability. In particular, 
we use neighborhood partial and full interchange-
ability techniques to keep conflicts localized and 
avoid spreading them to neighboring areas. 
Our experiments on distributed sensor networks 
show that such techniques can significantly reduce 
the number of cycles required to solve the prob­
lems (therefore also reduce communication and 
time requirements), especially on difficult prob­
lems. Moreover, the improved algorithms are able 
to solve a higher proportion of the test problems. 

1 Introduction 
Distributed Constraint Satisfaction (DisCSP) is a powerful 
paradigm applicable for a wide range of coordination and 
problem solving tasks in distributed artificial intelligence. 

Among the distributed algorithms that were developed for 
this kind of problems ([Yokoo et al., 1998]), the Distributed 
Breakout Algorithm (DBA) received quite some interest (e.g. 
[Zhang et al.y 2002]) because of a number of properties that 
this algorithm exhibits (simple, efficient, low overhead, linear 
memory requirements, good anytime characteristics). 

DBA is an extension of the original centralized Breakout 
Algorithm ([Morris, 1993]). This algorithm is a local search 
method, with an innovative technique for escaping from local 
minima: the constraints have weights, which are dynamically 
increased to force the agents to adjust their values while in a 
local minimum. During the execution of the algorithm, each 
agent proposes improvements to the current state by changing 
it's variable value such that the cost of violated constraints is 
decreased as much as possible. 

While having the interesting properties that we enumerated 
above, local search algorithms also have a common problem: 
choosing indiscriminately between the possible values of the 
local variable (only considering the cost of the immediate 
constraint violations) can lead to "chain-reactions" (one con­
flict originating in one part of the constraint graph needlessly 
propagates throughout the whole graph, only to (hopefully) 
be resolved in a completely different part of the graph). 

We analyzed these phenomena, and drew the conclusion 
that using interchangeability techniques, one can determine 
what values from the local domain wil l not cause such conflict 
propagations, and use one of those values as the next variable 
assignment. In this way, we look for a "local resolution" to all 
conflicts, in the sense that we keep them contained as much 
as possible, and only involve "external parties" when there is 
no other way. 

We discovered that techniques based on interchangeability 
[Freuder , 1991] (both neighborhood partial and/w// inter­
changeability [Choueiry et al, 1998]) can improve the per­
formance of this algorithm. 

2 Preamble 
Problem description and formalization 

The distributed sensor network problem ([Gomes et al, 
2002]) consists of a sensor field composed of n sensors, and 
m targets to be tracked. Each sensor has its own visibility 
range. The sensors can communicate among themselves, but 
not necessarily every sensor with every other sensor. 

Some restrictions apply: 3 sensors have to be assigned to 
each target, and they must be able to communicate among 
themselves; each sensor can only track one target at a time. 

In our approach, one agent corresponds to a target; each 
agent has 3 local variables (the sensors to be assigned to each 
target), and the domain of each variable is the set of sensors 
that can track the respective target. 

There are two types of constraints: intra-agent constraints 
(the variables belonging to one agent must be assigned to dif­
ferent sensors, and the sensors assigned to one agent must 
have a communication link between themselves), and inter-
agent constraints (no 2 variables from any 2 agents can be 
assigned the same value - a sensor can track a single target) 

Interchangeability background 
The concept of interchangeability informally means equiv­

alence between values of a CSP variable: 

• Neighborhood Interchangeability: 2 values a and b of a 
variable Vi are A7 if they are equivalent for every con­
straint involving Vi; 

• Neighborhood Partial Interchangeability: a weaker 
form of N I , defined for a subset of values from the lo­
cal domain with respect to a set of neighbors, where the 

POSTER PAPERS 1381 



Figure 1: Percentage of solved problems 

Figure 2: Average no. of rounds spent on each problem size 

impact of the change of the local variable is l imited to 
the reference set of neighbors. 

3 Algorithms 
Due to lack of space, we w i l l present here only a high-level 
overview of the algorithms that we developed. 

N I - D B A : the idea is that if we find the Nl-sets for the local 
variables, we can safely assign values f rom those sets, being 
certain this won' t cause any conflicts wi th the neighboring 
agents. The Nl-sets are determined during the pre-processing 
phase, based on the domains of the neighbors, and are used 
at runtime like this: if an agent has a conflict w i th a neighbor, 
it w i l l search for an improvement in it 's local domain giving 
preference to the values from the Nl-set. This avoids any fu ­
ture conflicts wi th any neighbor. 

NP I -DBA : the NPl-sets are computed at runtime, w.r.t. the 
set of the neighbors that we already have conflicts wi th. When 
searching for a local improvement, we give preference to the 
values from the NPI-sets, thus not risking to cause future con­
flicts with neighbors that are not already involved, therefore 
keeping conflicts contained. 

4 Evaluation 
We made our evaluations in these settings: a sensor field wi th 
400 sensors in total, and randomly generated solvable prob­
lems wi th 40, 60, 80, 100, 110,115, 120, 125 and 130 simul­
taneous targets(meaning three times as many variables). 

We collected these results: problem solved/not solved (a 
problem is declared unsolved after the number of cycles 
reaches a threshold of 50000 cycles), and solving effort (time 
spent and number of cycles required). 

For small numbers of targets, all the algorithms performed 
wel l ; the differences increased wi th the problem difficulty, 
and peaked at 130 targets (most diff icult problems), where 
NPI -DBA solved more than 70% of the problems, whereas 
Standard-DBA solved less than 50% (see Figure 1) Both the 
average number of rounds and the solving time for standard 
D B A are bigger than those for NPI -DBA, and close to the 
ones of N l -DBA . We see in Figure 2 that for diff icult prob­
lems, the number of required rounds for NPI -DBA is about 
40% smaller than the one of Standard DBA. A similar dia­
gram for the time is available, but not included here. 

We developed a visual interface that allows us to monitor 
the solving process, thus giv ing us clear indications that using 
the strategies based on NI /NPI greatly inhibits the propaga­
tion of conflicts around the constraint graph. 

The initialization of the variables was random, as in Stan­
dard DBA, in order to keep the algorithms comparable, and 
see the improvements that the search strategy brings. Ini t ial­
ization wi th values f rom the Nl-sets yields even larger im­
provements, leading us to believe that both the " in formed" 
initialization of the variables and the subsequent search strat­
egy play a role in the performance of the algorithm. 

Overall, our results have shown that NPI -DBA is much bet­
ter than N I -DBA . This is due to the fact that in dense prob­
lems, there is usually l i tt le or no NI at a l l , whereas NPI , being 
a weaker form of Nl is sti l l computable. 

5 Conclusions and future work 
The techniques presented here can be easily generalized be­
yond inequality constraints and resource allocation problems. 

NPI -DBA clearly outperforms standard DBA for difficult 
problems, and N I - D B A shows comparable performance. Fur­
ther speedups can be obtained wi th " in fo rmed" initializations, 
based on the Nl data available after the preprocessing phase. 

Further improvements could also be obtained by allow­
ing mult iple simultaneous changes of the local variables at 
each step, and by trying a hierarchical approach, where cer­
tain agents are delegated as " local authorities" for solving a 
particularly diff icult local problem. It would be interesting to 
study in more detail the scalability of these algorithms. 

References 
[Freuder, 1991] Eugene C. Freuder 'Eliminating interchangeable 

values in CSPs' In Proc. of AAAI 1991 
[Zhang et al, 2002] Weixiong Zhang and Lars Wittenburg Dis­

tributed Breakout Revisited. In Proc. of AAAI 2002 
[Gomes et al, 2002] Carla Gomes, Cesar Fernandez, Ramon Bc-

jar Communication and Computation in DisCSP Algorithms. In 
Proc. of CP-2002, Ithaca, New York, USA 

[Choueiry et al., 1998] Berthe Choueiry and G. Noubir: On the 
Computation of Local lnterchangeability in Discrete Constraint 
Satisfaction Problems. In Proc. of AAAI-98. 

[Morris , 1993] Morris, P. The breakout method for escaping from 
local minima. In Proceedings of the Eleventh National Confer­
ence on Artificial Intelligence, 40-45 

[Yokoo et al., 1998] Makoto Yokoo The Distributed Constraint 
Satisfaction Problem: Formalization and Algorithms. IEEE 
Trans, on Knowledge and Data Engineering 

1382 POSTER PAPERS 


