
EVOC: A Music Generating System using Genetic Algorithms

Timothy Weale and Jennifer Seitzer
Universi ty of Dayton
Dayton, Ohio, USA

{ t imothy, weale, Jennifer.seitzer} @notes. udayton.edu

Abstract
In this work, we present a Genetic A lgor i thm
(GA) system "Evolu t ionary Counterpoint"
(EVOC) that generates contrapuntal music.
Counterpoint is the construct ion of a musical
piece by superimposing mul t ip le melodies, ind i ­
rectly fo rming an under ly ing harmonic structure.
Here, we include a descript ion of the underly ing
a lgor i thm, fitness funct ion, and overal l system
modules.

1 In t roduc t ion
Counterpoint is the art of combin ing indiv idual me­

lodic voices to form a harmonious whole fGreenberg,
1997]. Contrapuntal music composi t ion can be thought
of as a vast search for the perfect combinat ion of melo­
dies. Given the exhaustive nature of the problem, genetic
algori thms are ideal to faci l i tate the pursuit. In this work ,
we employ genetic algori thms to this end, and describe
our implementat ion.

One aspect of counterpoint study involves taking a
given musical l ine and creating an accompanying l ine.
To do this correct ly, the composer uses a set of guide­
lines (rules) for composi t ion. These can be as simple as
'no dissonant sounds' to as complex as 'perfect intervals
must be approached f rom opposite voices and one voice
must step.' Using these sets of rules and a given melodic
l ine known as a cantus f i rmus, one develops accompany­
ing lines that adhere to every guidel ine. The guidelines
are of utmost importance to our system because our f i t ­
ness funct ion is based on them. In our work , we have
made the problem more manageable by using Species I
counterpoint, the most structural ly pr imi t ive fo rm of

counterpoint.

2 Music as a Constra in t Problem
Constraint programming is concerned wi th using con­

straints to solve problems. Music composi t ion of a coun­
terpoint nature can be seen as a specialized constraint
satisfaction problem (CSP). Any CSP has the fo l low ing
characteristics: a set of variables, a domain for the var i ­
ables, and a set of constraints on the domain [Bartak,
1999]. Every note in a given cantus f i rmus line gives the
composer at least one variable to satisfy. Every variable
(note) is defined wi th in the domain of every possible mu­
sical tone. F inal ly , the set of counterpoint guidelines
gives us the constraints on the domain. The task of the
composer (our system, E V O C) is to come up wi th a cor­
rect set of pitches along wi th its t im ing schedule. The
version of counterpoint rules we are current ly applying is
l imi ted to Species I in two voices (Figure 2), where given
an upper melody as input, the system composes the bass
l ine. We employ the counterpoint rules found in a t yp i ­
cal music theory setting [Magnuson] some of which are
shown in Figure 1.

3 Ma in A l go r i t hm
begin EVOC-A lgo r i t hm()

i n p u t : cantus f i rmus l ine
ou tpu t : Species I melody l ine

Randomly generate 8 in i t ia l melodies (parents)
repeat

1. create 32 of fspr ing using crossover on parents
2. randomly mutate of fspr ing
3. apply fitness funct ion to of fspr ing
4. select new parents f rom of fspr ing

u n t i l fitness funct ion returns 0

POSTER PAPERS 1383

Sample Principles of Species I Counterpoint

1. Leaps of a third, fourth, f ifth and ascending mi­
nor sixths arc available.

2. A distance of no greater than a sixth may be
covered in one direction (with the exception of
anoctave leap).

3. Only two leaps in one direction may be used
consecutively.

4. Do not repeat notes consecutively.
Figure I

4 System EVOC
The EVOC system consists of two independent pro­

gram modules each invoked by the Visual Basic inter­
face. Module One reads in the input MIDI file and
transforms it into an intermediate text format. Module
Two uses this to run the genetic algorithm and generate a
counterpoint line. A graphical representation of the logi­
cal organization can be found in Figure 3.

The Visual Basic interface provides a simple, easy way
to invoke the other two modules. After loading the inter­
face, the user defines the name of the MIDI file with the
given melody line. Using this file name, the additional
two modules are invoked.

The MIDI input module is a C++ program that reads in
a MIDI file and outputs it as an intermediate file. The
melody (as represented by a MID I file track) is read from
the file using file-processing routines implemented in
Sapp's IMPROV suite 12002]. From there, the lines are
converted to an internal representation, from which the
intermediate file is created.

The final module runs the genetic algorithm. This part
reads the intermediate file, initializes the algorithm, and
employs the main algorithm detailed in Section 3. This
algorithm iterates until the fitness function returns zero
indicating that a correct melody has been generated. The
output of this final module is the generated contrapuntal
melody.

4.1 P R O L O G Fitness Func t i on
In any GA system, the fitness function indicates which

members of a generation survive. For our fitness func­
tion, we wrote a theorem prover that embodies the his­
torical Species I counterpoint guidelines. By comparing
any given genotype melody with the guidelines, we as­
sign a valuation of validity to the genotype. During se­

lection, the highest rated melodies persist to the next
generation.

The evaluation function first constructs a list of note()
values. These notes have the form: note(MIDI_value,
MIDl_name, measure). With these note lists, the
PROLOG evaluation is done using multiple scans, with
two primary areas of investigation: melodic adherence
and harmonic adherence. Compositional errors occur
when the constraints of the program (the species counter-
point rules) are broken. When such an error is encoun­
tered, an appropriate penalty is assessed against the par­
ticular genotype valuation. Serious infractions (e.g., par­
allel fifths) suffer a -500 penalty, while non-serious vio­
lations (e.g., counterbalance issues) may only suffer a
-100 penalty.

5 Conclusion
To date, we have an operational system that can gener­

ate valid counterpoint lines in Species I. The output is
correct and perfectly valid as a functional counterpoint
line. We are currently working on improving the rule
base as well as the user interface for EVOC.

In this poster, we presented a genetic algorithm and a
theorem proving deductive fitness function for the
searching and generation of musical counterpoint. It em­
ploys a theorem prover as a fitness function that houses
fundamental guidelines used by musicians composing
these pieces.

References
[Bartak, 1999] Bartak, Roman. Constraint Programming:
In Pursuit of the Holy Grail. Proceedings of Week of
Doctoral Students (WDS99), Part IV, MatFyz Press, Pra­
gue, June 1999, pp. 555-564

[Greenberg, 1997] Bernard S. Greenberg; Bach FAQ
Site, 1997 (date veri­
fied i 1/1/2002)

[Magnuson] Magnuson, Phillip. Species Counterpoint.

[Sapp, 2002] Sapp,
http://improv.sapp.org.

Craig S. Improv.

ISchottstaedt, 1989] Schottstaedt, W. Automatic Coun­
terpoint. Current Directions in Computer Music. MIT
Press, Cambridge.

1384 POSTER PAPERS

