
Temporal Reasoning with Preferences and Uncertainty 

Abstract 
Temporal Constraint Satisfaction Problems allow 
for reasoning with events happening over time. 
Their expressiveness has been extended indepen­
dently in two directions: to account for uncontrol­
lable events, and, more recently, to account for soft 
temporal preferences. The motivation for both ex­
tensions is from real-life temporal problems; and 
indeed such problems may well necessitate both 
preferences and uncertainty. This paper proposes 
the study of temporal problems with both pref­
erences and uncertainty, and puts forward some 
methods for their resolution. 

1 Motivation and Background 
Research on temporal reasoning, once exposed to the difficul­
ties of real-life problems, can be found lacking both expres­
siveness and flexibility. Planning and scheduling for satel­
lite observations, for instance, involves not only quantitative 
temporal constraints between events and qualitative tempo­
ral ordering of events, but also soft temporal preferences and 
contingent events over which the agent has no control. For 
example, on one hand, slewing and scanning activities should 
not overlap, but may if necessary. On the other hand, the du­
ration of failure recovery procedures is not under the direct 
control of the satellite executive. To address the lack of ex­
pressiveness, preferences can be added to the framework; to 
address the lack of flexibility to contingency, handling of un­
certainty can be added. Some real-world problems, however, 
have need for both. It is this requirement that motivates us. 

In a temporal constraint problem, as defined in Dechter et 
al [1991], variables denote timepoints and constraints rep­
resent the possible temporal relations between them. Such 
constraints are quantitative, describing restrictions on either 
durations or distances of events, in terms of intervals over the 
timeline. In general such problems are NP-complete. How­
ever, if each temporal constraint has just one interval — hence 
the constraints have form where de­
note the timepoints — then we have a Simple Temporal Prob­
lem (STP) that can be solved in polynomial time. 
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To address the lack of expressiveness in standard STPs, the 
Simple Temporal Problems with Preferences (STPP) frame-
work merge STPs with semiring-based soft constraints [Rossi 
et al, 2002]. Soft temporal constraints are specified by 
means of a preference junction on the constraint interval, 

where A is a set of preference val­
ues. The set A is part of a semiring. In general, STPPs 
are NP-complete. However, if the preference functions are 
semi-convex (that is, they have at most one peak), the con­
straints are combined via an idempotent operation (like max 
or min), and the preference values are totally ordered, then 
finding an optimal solution of a STPP is a polynomial prob­
lem. Two solvers for STPPs with the features above are pre­
sented by Rossi et al. [2002]. The first, Path-solver, enforces 
path consistency in the constraint network, then takes the sub-
interval on each constraint corresponding to the best prefer­
ence level. This gives a standard STP, which is then solved 
for the first solution by backtrack-free search. The second 
solver, Chop-solver, is less general but more efficient. It finds 
the maximum level y at which the preference functions can 
be 'chopped', i.e. reduced to the set 
This set is a simple interval for each I. Hence we obtain a 
standard STP, STPy. By binary search, the solver finds the 
maximal y for which STPy is consistent. The solutions of 
this STP are the optimal solutions of the original STPP. 

To address the lack of flexibility in execution of standard 
STPs, Vidal and Fargier [1999] introduced Simple Temporal 
Problems under Uncertainty (STPUs). Here, again as in a 
STP, the activities have durations given by intervals. The 
timepoints, however, fall into two classes: requirement and 
contingent. The former, as in a STP, are decided by the agent, 
but the latter are decided by 'nature': the agent has no con­
trol over when the activity will end; he observes rather than 
executes. The only information known prior to observation is 
that nature wil l respect the interval on the duration. Control­
lability of a STPU is the analogue of consistency of a STP 
Controllable implies the agent has a means to execute the 
timepoints under his control, subject to all constraints. Three 
notions are proposed. A STPU is strongly controllable if 
there is a fixed execution strategy that works in all realisations 
(that is, an observation of all contingent timepoints). Check­
ing strong controllability is in P [Vidal and Fargier, 1999]. A 
STPU is dynamically controllable if there is a online execu­
tion strategy that depends only on observed timepoints in the 
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past and that can always be extended to a complete sched­
ule whatever may happen in the future. Checking dynamic 
controllability is also in P [Morris et al, 2001]. A STPU is 
weakly controllable if there exists at least one execution strat­
egy for every realisation. Checking weak controllability is 
co-NP [Vidal and Fargier, 1999]. The three notions are or­
dered by their strength; strong dynamic weak. 

In this paper we introduce a framework which allows one 
to handle both preferences and uncertainty in temporal prob­
lems. This is done by just merging the two pre-existing mod­
els of STPPs and STPUs. We also adopt the notion of con­
trollability, to be used instead of consistency because of the 
presence of uncertainty, and we adapt it to handle preferences. 
We then investigate the complexity of checking such notions 
of controllability, and we develop algorithms to perform such 
checks. The main results are for strong and weak controlla­
bility, which we show to maintain the same complexity as in 
STPUs under the same hypothesis that make STPPs polyno­
mia l ^ solvable. As future work, we plan to study dynamic 
controllability, and to implement our algorithms to compare 
their performance experimentally. 

2 Simple Temporal Problems with 
Preferences and Uncertainty (STPPU) 

A STPPU is a STPP with timepoints partitioned into two 
classes, requirement and contingent, just as in a STPU. Since 
some timepoints are not controllable by the agent, the no­
tion of consistency of a STP(P) is replaced by controllabil­
ity, just as in a STPU, with the three notions suitably ex­
tended. While all three notions of controllability used for 
STPUs can be adapted to STPPUs, for this short paper we 
wil l focus on just weak and strong controllability. A STPPU 
is optimally strongly controllable if there is a fixed execution 
strategy that works in all realisations and is optimal in each 
of them. Rather than optimality, one could be interested in 
just reaching a certain quality level: a STPPU is a-strongly 
controllable, where a is a preference level, if there is a fixed 
execution strategy that works in all realisations and is above 
a in each of them. A STPPU is optimally (resp. a-) weakly 
controllable if there exists at least one optimal (resp., above 
a) execution strategy for every realisation. 

3 Checking Optimal and a Strong 
Controllability 

It can be proved that checking either optimal or a strong 
controllability is in P. The method we propose relies on 
two known algorithms. The first is Path-solver, which en­
forces path consistency on a STPP. The second is Strong-
Controllabillty(STPU) [Vidal and Fargier, 1999], which checks 
if a STPU is strongly controllable. The main idea is to ap­
ply Strong-Controllability(STPU) to a special STPU, which 
we wil l call Popt, that can be constructed starting from the 
STPP P' obtained by applying Path-solver to a STPPU P. 
More precisely, the algorithm takes as input a STPPU P and 
performs the following steps: (1) forgetting the uncertainty, 
treat P as a STPP and apply Path-solver to it, obtaining the 
STPP P'\ (2) collapse the non-contingent intervals of P' to 

those parts which have the highest preference level, and then 
neglect the preferences, obtaining a STPU Popi; (3) apply 
Strong-Controllability to Popt. Theoretical results that we have 
proven, but omit for lack of space, show the correctness of the 
algorithm: (1) If a STPPU is optimally strong controllable, 
then the STPU obtained by neglecting preferences is strongly 
controllable; (2) A STPPU P is optimally strong controllable 
if and only if the STPU Popt is strongly controllable. 

We have also generated a different algorithm by combining 
Strong-Controllability with Chop-solver. This algorithm is less 
general but more efficient. Both algorithms we propose are 
polynomial, with a time complexity 0(n3 x Rx / ) , where n 
is the problem size, R is the range of the largest interval, and 
/ is the number of preference levels. 

For a-strong controllability, we rely on theoretical results 
similar to those above, and we propose two algorithms. Given 
a, the first one checks a-SC by: cutting the intervals to those 
parts whose preference is above a, and applying strong con­
trollability checking to the resulting STPU. The time com­
plexity is 0(n3 x R). The second algorithm finds the highest 
a at which P is a-SC, by performing a binary search for the 
highest a, checking strong controllability at each step. Its 
time complexity is 0(p x n3 x R), where p is proportional to 
the precision we want in returning the result. 

4 Checking Optimal and a Weak 
Controllability 

Optimal weak controllability of a STPPU is equivalent to 
weak controllability of the corresponding preference-stripped 
STPU. Thus we can use the existing STPU algorithms for 
checking weak controllability. For checking a-weak con­
trollability, we propose two approaches. The first chops the 
STPPU at level a by considering only those parts of its inter­
vals which have preference level above a (semi-convcxivity 
guarantees that the result is always a single interval), and then 
applies Weak-Controllability to the STPU so obtained. The 
second approach generates the realisations that arise by con­
sidering the contingent intervals reduced to just their upper or 
lower bound (other realisations need not be considered) [Vi­
dal and Fargier, 1999]), and checks the consistency of all such 
realisations. Both algorithms are exponential in the number 
of contingent constraints. 
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