
Modular self-organization for a long-living autonomous agent

Bruno SCHERRER
scherrer@loria.fr

LORIA, BP 239
54506 Vandceuvre-les-Nancy

France

Abstract

The aim of this paper is to provide a sound frame­
work for addressing a difficult problem: the auto­
matic construction of an autonomous agent's mod­
ular architecture. We briefly present two appar­
ently uncorrelated frameworks: Autonomous plan­
ning through Markov Decision Processes and Ker­
nel Clustering. Our fundamental idea is that the
former addresses autonomy whereas the latter al­
lows to tackle self-organizing issues. Relying
on both frameworks, we show that modular self-
organization can be formalized as a clustering prob­
lem in the space of MDPs. We derive a modular
self-organizing algorithm in which an autonomous
agent learns to efficiently spread n planning prob­
lems over m initially blank modules with rn < n.

Introduction
This paper addresses the problem of building a long-living
autonomous agent; by long-living, we mean that this agent
has a large number of relatively complex and varying tasks
to perform. Biology suggests some ideas about the way an­
imals deal with a variety of tasks: brains are made of spe­
cialized and complementary areas/modules; skills arc spread
over modules. On the one hand, distributing functions and
representations has immediate advantages: parallel process­
ing implies reaction speed-up; a relative independence be­
tween modules gives more robustness. Both properties might
clearly increase the agent's efficiency. On the other hand, the
fact of distributing a system raises a fundamental issue: how
does the organization process of the modules happen during
the life-time ?

There has been much research about the design of modu­
lar intelligent architectures (e.g. [Theocharous et al, 2000J
[Hauskrechtef a/., 1998] [Kaelbling, 1993]). It is neverthe­
less very often the (human) designer who decides the way
modules are connected to each other and how they behave
with respect to the others. Few works study the construc­
tion of these modules. To our knowledge, there are no ef­
fective works about modular self-organisation except for re­
active tasks (stimulus-response associations) (e.g. [Jacobs et
al., 1991] [Digney, 1996]).

This paper proposes an algorithm by which the organiza­
tion of an agent in functional modules is automatically com­
puted. The most significant aspect of our work is that the
number m of modules is fewer than the number n of tasks to
be performed. Therefore, the approach we propose involves
a high-level clustering process, in which the n tasks need to
be "properly" spread over the m modules.

Section 1 introduces what we consider as the theoretical
foundation for modelling a mono-task autonomous agent:
Markov Decision Processes. Section 2 presents the Kernel
Clustering approach: we consider this approach as a theoret­
ical basis for addressing self-organization. Finally, Section 3
combines both domains in order to propose a modular self-
organizing algorithm.

1 Modelling A Mono-Task Autonomous Agent
Markov Decision processes [Puterman, 1994] provide the
theoretical foundations of challenging problems such as plan­
ning under uncertainty and reinforcement learning [Sutton
and Barto, 1998]. They stand for a fundamental model for se­
quential decision making and they have been applied to many
real worls problems [Sutton, 1997]. This section describes
this formalism and presents a general scheme for approach­
ing difficult problems (that is problems in large domains).

A Markov Decision Process (MDP) is a controlled stochas­
tic process satisfying the Markov property with rewards (nu­
merical values) assigned to state-control pairs. Formally, an
MDP is a four-tuple (S, A, T, R) where S is the state space,
A is the action space, T is the transition function and R. is the
reward function. T is the state-transition probability distribu­
tion conditioned by the control:

(0
is the instantaneous reward for taking action

A in state S.
The usual MDP problem consists in finding an optimal pol­

icy, that is a mapping : S A from states to actions, that
maximises the following performance criterion, also called
value function of policy TT:

(2)

1440 POSTER PAPERS

It is shown that there exists a unique optimal value function
V* ; once V* is computed, an optimal policy can immediately
be derived (e.g. see [Puterman, 1994]).

In brief, solving an MDP problem amounts to computing
the optimal value function. Well-known algorithms for doing
so are Value Iteration and Policy Iteration (see [Puterman,
1994]). Their temporal complexity dramatically grows with
the number of states [Littman et al, 1995], so they can only
be applied in small domains.

In large domains, it is impossible to solve an MDP ex­
actly, so one usually adresses a complexity/quality compro-
mis through an approximation scheme. Ideally, an approxi­
mation scheme for MDPs should consist of a set of tractable
algorithms for

• computing an approximate optimal value function

• evaluating (an upper bound of) the approximation error

• improving the quality of approximation (by reducing the
approximation error) while constraining the complexity.

The first two points are the fundamental theoretical bases for
sound approximation. The third one is often interpreted as
a learning process and corresponds to what most Machine
Learning researchers study. For convenience, we respectively
call these three procedures Appproximate(), Error () and
Learn(). Then, the practical use of an approximate scheme
can be sketched by algorithm 1. One successively applies the

Lcarn() procedure in order to minimize the approximation
error; when this is done, one can compute a good approxi­
mate optimal value function.

2 Kernel Clustering
Before addressing the problem of modular self-organization,
we need to present the Kernel Clustering paradigm. In [Di-
day, 1973], the author introduces the Kernel Clustering ap­
proach as an abstract generalization of vector quantization.
Indeed, the author argues that, in general, a clustering prob­
lem is based on three elements:

• a set of data points taken from a data space A"

• a set of kernels taken from a kernel space

• A distance measure between any data
point and any kernel. The smaller the distance d(x, L) ,
the more L is representative of the point x.

Given a set of kernels a data point x is naturally
associated to its most representative kernel L{x), i.e. the one
that is the closest according to distance d:

(3)

Conversely, a set of kernels naturally induces a
partition of the data set into m classes
each class corresponding to a kernel:

(4)

Given a data space, a data set, a kernel space and a distance
d(), the goal of the Kernel Clustering problem is to find the
set of kernels that minimizes the distortion D
for the data set which is defined as follows:

(5)

A general procedure for suboptimally solving this problem
is known as the Dynamic Cluster algorithm [Diday, 19731,
which we present in an online version in algorithm 2. It is

a very intuitive process: for each piece of data x, one finds
its most representative kernel L, and one updates L so that
it gets even more representative of x. Little by little, one
might expect that such a procedure will minimize the global
distortion and eventually give a good clustering.

3 Modular Self-Organization
This final section shows how the Kernel Clustering paradigm
can be used to formalize a modular self-organization prob­
lem in the MDP framework, the algorithmic solution of which
will be given by the on-line Dynamic Cluster procedure (al­
gorithm 2).

If one carefully compares the general learning scheme we
have described in order to address a large state space MDP
(algorithm 1) and the on-line Dynamic Cluster procedure (al­
gorithm 2), one can see that the former is a specific case of
the latter. More precisely, algorithm 1 solves a simple Kernel
Clustering problem where

• the data space is the space of all possible MDPs and the
data set is a unique task corresponding to an MDP M

POSTER PAPERS 1441

• the kernel space is the space of all possible approxima­
tions and there is one and only one kernel:

• the distance d is the Error() function.

It is then straightforward to extend this simple clustering
problem to a more general one (with n tasks/data points and
m approximate models/kernels). Given a set of m approxi­
mate models }, an MDP is naturally associ­
ated to the approximate model that makes the small­
est error:

(6)

As before, a set of approximate models nat­
urally induces a partition of any set of n MDPs
into m classes each class corresponding to an
approximate model:

(7)

The transpositon of the on-line Dynamic Cluster Algorithm
into the MDP framework (algorithm 3) therefore allows to
find a set of m approximate models that globally minimize
the approximation error for n MDPs:

order to efficiently solve n tasks, or, as we might say, it self-
organizes the m modules in order to improve the resolution
of the n tasks.

Conclusion
In this paper, we have described a general scheme for ad­
dressing large state space Markov Decision Processes. We
have then showed how such an approach could be extended
to an interesting problem: modular self-organization. Indeed,
we have formalized modular self-organization as a clustering

problem in the space of MDPs. A natural algorithmic solu­
tion to this clustering problem (algorithm 3) uses an on-line
version of the Dynamic Cluster algorithm (algorithm 2). Due
to lack of space, we could not show any experimental evalu­
ation; interested readers will find some in [Scherrer, 2003bl
and [Scherrer, 2003a].

References
[Diday, 1973J E. Diday. The dynamic clusters method

and optimization in non hierarchical-clustering. In
SpringerVerlag, editor, 5th Conference on optimization
technique, Lecture Notes in Computer Science 3, pages
241-258,1973.

[Digney, 1996] B. Digney. Emergent hierarchical control
structures: Learning reactive hierarchical relationships in
reinforcement environments, 1996.

[Hauskrecht et al., 1998] M. Hauskrecht, N. Meuleau, L. P.
Kaelbling, T. Dean, and C. Boutilier. Hierarchical solu­
tion of Markov Decision Processes using macro-actions.
In Uncertainty in Artificial Intelligence, pages 220-229,
1998.

[Jacobs et al, 1991] R. Jacobs, M. Jordan, and A. Barto.
Task decomposition through competition in a modular
connectionist architecture: The what and where vision
tasks. Cognitive Science, 15:219-250, 1991.

[Kaelbling, 1993] L. P. Kaelbling. Hierarchical learning in
stochastic domains: Preliminary results. In International
Conference on Machine Learning, pages 167-173, 1993.

[Littmanefa/., 1995] M. L. Littman, T. L. Dean, and L. P.
Kaelbling. On the complexity of solving Markov decision
problems. In Proceedings of the Eleventh Annual Con­
ference on Uncertainty in Artificial Intelligence (UAI-95),
pages 394-402, Montreal, Quebec, Canada, 1995.

[Puterman, 1994] M. Puterman. Markov Decision Processes.
Wiley, New York, 1994.

[Scherrer, 2003a] B. Scherrer. Apprentissage de
representation et auto-organisation modulaire pour
un agent autonome. PhD thesis, Universite Henri Poincare
- Nancy 1, January 2003.

[Scherrer, 2003b] Bruno Scherrer. Modular Self-
Organization for a long-living autonomous agent.
Technical report, INR1A, April 2003.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Rein­
forcement Learning, An introduction. BradFord Book. The
MIT Press, 1998.

[Sutton, 1997] Richard S. Sutton. On the significance of
markov decision processes. In ICANN, pages 273-282,
1997.

lTheocharous et al.,2000] G. Theocharous, K. Rohani-
manesh, and S. Mahadevan. Learning and planning with
hierarchical stochastic models for robot navigation. In
ICML 2000 Workshop on Machine Learning of Spatial
Knowledge, Stanford University, July 2000.

1442 POSTER PAPERS

