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Abstract 
Ensemble learning schemes such as AdaBoost and 
Bagging enhance the performance of a single clas­
sifier by combining predictions from multiple clas­
sifiers of the same type. The predictions from an 
ensemble of diverse classifiers can be combined 
in related ways, e.g. by voting or simply by se­
lecting the best classifier via cross-validation - a 
technique widely used in machine learning. How­
ever, since no ensemble scheme is always the best 
choice, a deeper insight into the structure of mean­
ingful approaches to combine predictions is needed 
to achieve further progress. In this paper we offer 
an operational reformulation of common ensemble 
learning schemes - Voting, Selection by Crossvali-
dation (X-Val), Grading and Bagging - as a Stacking 
scheme with appropriate parameter settings. Thus, 
from a theoretical point of view all these schemes 
can be reduced to Stacking with an appropriate 
combination method. This result is an important 
step towards a general theoretical framework for 
the field of ensemble learning. 

1 Introduct ion 
We apologize that space restrictions arc forcing us to be terse. 
For a more detailed version, see [Seewald, 2003]. We will 
first explain how Stacking works in order to lay the founda­
tions for our functional definitions of meta classifiers later on. 
Fig. 1 shows Stacking on a hypothetical dataset. 

During training, all base classifiers arc evaluated via cross-
validation on the original dataset. Each classifier's output is a 
class probability distribution for every example, see Fig. 1(b) 
The concatenated class probability distributions of all base 
classifiers, followed by the class value, forms the meta-level 
training set for Stacking's meta classifier, see Fig. 1(c) After 
training the meta classifier, the base classifiers are retrained 
on the complete training data. 

For testing, the base classifiers are queried for their class 
probability distributions. These form a meta-example for the 
meta classifier which outputs the final class prediction. 

2 Definitions 
An arbitrary training dataset with n examples and k classes, 
and a single test instance, is given. N arbitrary base classifiers 
have been cross-validated on this dataset, and afterwards re­
trained on the whole dataset. Al l base classifiers output class 
probability distributions, i.e. estimated probabilities for each 
class instead of deciding on a single class. 

Then, refers to the probability given by classifier i for 
class j on example number k during is the class prob­
ability distribution of classifier i on instance k. refers to 

Figure 1: Illustration of Stacking on a dataset with three classes 
(a, b and c), n examples and TV base classifiers. refers to the 
probability given by classifier i for class j on example number k. 

the class prob.dist. for classifier i on the unknown test in­
stance. A fixed arbitrary order on the class values and N base 
classifiers is assumed. Classk is the true class for instance k. 

is the attribute vector of instance k. n is the num­
ber of instances. Al l indices are zero-based, e.g. the instance 
id k satisfies the equation 0 k n — 1. 

As we mentioned, we assume that all ensemble learning 
schemes return class probability distributions. If predictions 
are needed, the position of the maximum class probability in 
the vector - i.e. the predicted class - is easily obtained via 
formula (2) Trivially, Stacking with predictions can also be 
simulated by this variant; simply by transforming the class 
distributions meta-dataset to predictions via (2) prior to ap­
plying the meta classifier. 

We can now characterize every ensemble learning scheme 
by what features it extracts from the meta-dataset during 
training and how these features define the mapping from 
meta-dataset to final class probability distribution. 

2.1 Voting 
Voting, a straight-forward extension of voting for distribution 
classifiers, is the simplest case. During training, no features 
are extracted from the meta-dataset. In fact Voting does not 
even need the internal crossvalidation. During testing, Voting 
determines the final class probability distribution as follows. 

(3) 
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Thus, it can be easily seen that the meta-classifier defined by 
just computing the mean probability distribution of the base 
classifiers - as above - simulates Voting with probability dis­
tributions. Voting with predictions can be mapped similarity. 
In this case, we use instead of in formula (3) is the 
vector of p., for all j, where 

(4) 

2.2 X-Val 
For X-Val, which chooses the best base classifier on each fold 
by an internal ten-fold CV, we first determine the accuracy 
per classifier, which can be computed directly from the meta-
level dataset, see (6) Then, we derive as feature the id of the 
classifier with the maximum accuracy. Thus, the value of 
bestC corresponds to our learned model. 

(5) 

(6) 

(7) 
2.3 Grading 
For Grading [Seewald and Furnkranz, 2001], the case is dif­
ficult. While we cannot simulate the original Grading, we 
wil l simulate a competitive variant equivalent to accuracy-
weighted voting. More details see [Seewald, 2003]. 

During training, the accuracies of base classifiers are ex­
tracted using formula (6) The accuracies of all our base clas­
sifiers correspond to our learned model. During testing, 
we build the combined class probability distribution similar 
to Voting using predictions but with an additional weight -
namely the accuracy we extracted earlier. 

(8) 

2.4 Bagging 
Bagging [Breiman, 1996] is another common ensemble tech­
nique. Here, the same type of classifier is repeatedly trained 
on new datasets, which have been generated from the orig­
inal dataset via random sampling with replacement. After­
wards, the component classifiers are combined via simple un­
weighted voting. 

Thus, we use same meta-classifier as for Voting with pre­
dictions. The number of base classifiers is equal to the iter­
ation parameter of bagging - each base classifier for Stack­
ing corresponds to one instantiation of the base learner for 
bagging. In order to simulate the random sampling from the 
training set, the base learner's training sets have to be modi­
fied before training, via formula (9) 

(9) 
During training, Formula (9) is used to create - for each base 
classifier separately - a training set of the same size as the 
original training set via random sampling from the original 
training set, exactly as in Bagging. These training sets are 
then used to train the base classifiers. This approach can also 
be seen as a probabilistic wrapper around each base classifier. 
No features are extracted from the meta-level dataset during 
training, as for Voting. 

During testing, each base classifier gives a prediction. 
These predictions are then voted to yield the final prediction, 
exactly as for Voting with predictions, i.e. (3) modified via 
(4) - for more details refer to subsection 2.1. Concluding, we 
have shown the equivalence of Bagging and Stacking. 

3 Discussion & Conclusion 
By definition StackingC [Seewald, 2002], can also be mapped 
onto Stacking via a special meta classifier. In fact, the avail­
able implementation is a specialized subclass of a common 
meta classifier, MLR. Another recent variant, sMM5 [Dzeroski 
and Zenko, 2002], is also implemented via a special meta 
classifier and thus amenable to the same kind of mapping. 
However, AdaBoost [Freund and Schapire, 1996] cannot be 
simulated by Stacking because of its sequential nature. 

While the given formal definitions of meta classifiers are 
mainly intended to enable further theoretical work, a direct 
implementation is also feasible. The cost penalty for the sim­
ulation is small, since training the meta classifiers usually 
contributes little to the total runtime. 

Concluding, we have shown that Stacking is equivalent to 
common ensemble learning schemes, namely Selection by 
Crossvalidation (X-Val), Voting of either class probability dis­
tributions or predictions, a competitive variant of Grading, 
and Bagging. Recent variants such as StackingC [Seewald, 
2002] and sMM5 [Dzeroski and Zenko, 2002] arc also equiv­
alent. Thus we conclude that our approach offers a unique 
viewpoint on Stacking which is an important step towards a 
theoretical framework for ensemble learning. 
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