
Multiple-Goal Reinforcement Learning with Modular Sarsa(O) 

Nathan Sprague 
Computer Science Department 

University of Rochester 
Rochester, NY 14627 

sprague@cs. rochester. edu 

Abstract 

We present a new algorithm, GM-Sarsa(O), for find­
ing approximate solutions to multiple-goal rein­
forcement learning problems that are modeled as 
composite Markov decision processes. According 
to our formulation different sub-goals are modeled 
as MDPs that are coupled by the requirement that 
they share actions. Existing reinforcement learning 
algorithms address similar problem formulations 
by first finding optimal policies for the component 
MDPs, and then merging these into a policy for the 
composite task. The problem with such methods is 
that policies that are optimized separately may or 
may not perform well when they are merged into a 
composite solution. Instead of searching for opti­
mal policies for the component MDPs in isolation, 
our approach finds good policies in the context of 
the composite task. 

keywords: reinforcement learning 

1 Introduction 
Traditional reinforcement learning algorithms can success­
fully solve small, single-goal tasks. The main challenge in 
the area of reinforcement learning is scaling up to larger and 
more complex problems. The scaling problem takes a num­
ber of forms. We may have a problem that has a very large 
state space, a problem that is best described as a set of hi­
erarchically organized goals and subgoals, or a problem that 
requires the learning agent to address several tasks at once. It 
is the last form of scaling that this paper is concerned with. 

The naive approach to learning to solve composite tasks is 
to create a state space that includes all of the information that 
is relevant to each sub-task. The agent would then learn in 
this joint space, receiving reward when any of the sub-goals 
are accomplished. The problem with this approach is that it 
suffers from the curse of dimensionality; as additional state 
dimensions are added for each new sub-task, the size of the 
joint state space grows exponentially. 

A more promising approach to this sort of multiple-goal 
problem is to use the well known Q-learning algorithm to 
train one learning module to handle each of the sub-goals. 
The internal Q-values of the different learning modules can 

Dana Ballard 
Computer Science Department 

University of Rochester 
Rochester, NY 14627 

dana@cs. rochester edu 

then be used to fairly distribute control among the mod­
ules. This approach has been independently explored in 
[Humphrys, 1996] and [Karlsson, 1997]. It is attractive in 
its simplicity, and it has shown good empirical performance 
in a number of domains. 

In this paper we wil l highlight a previously unrecognized 
problem with existing modular Q-learning algorithms. Exist­
ing algorithms learn component policies that may be highly 
sub-optimal in the context of the composite task, because they 
do not take into account the fact that the component mod­
ules are forced to share control. We wil l show how to fix 
this problem by replacing the Q-learning with the closely re­
lated Sarsa(O) learning rule. The resulting algorithm shows 
improved performance on a large sample problem. 

2 The problem formalized 

The underlying formalism for many reinforcement learning 
algorithms is the Markov decision process. An MDP, denoted 
M is described by a 4-tuple (5, A, T, R), where S is the state 
space, A is the action space, and T(s, a, s') is the transition 
function that indicates the probability of arriving in state s' 
when action a is taken in state s. The reward function R(s, a) 
denotes the expected one-step payoff for taking action a in 
state s. The goal of reinforcement learning algorithms is to 
discover an optimal policy 7r*(s) that maps states to actions 
so as to maximize discounted long term reward. 

Here we consider the problem of discovering a joint pol­
icy for a set of N MDP's Throughout we wil l use 
subscripts to distinguish the MDPs. These MDP's each have 
a distinct state space, but they share a common action space, 
and are required to execute the same action on each time step. 
This model is intended to map to the case of a single agent 
that is simultaneously faced with a set of different goals. 

The N component MDPs implicitly define a larger com­
posite MDP. Formally, the goal is to find the optimal policy 
for this composite MDP. The optimal composite policy is de­
fined as the policy that maximizes summed discounted reward 
across the component MDPs. 

The state space of the composite MDP is the cross prod­
uct of the state spaces of the component MDPs: S — S\ x 
£2 x ... x SN- The composite reward function is defined as: 
R(s, a) = In the case where the component 
MDPs are independent, the composite transition function can 

POSTER PAPERS 1445 



be written as: In the case 
where the component MDPs are not independent, the exact 
composite transition function wil l depend on on the particu­
lar dependencies between the models. 

In theory, there is no reason that the composite MDP could 
not be solved directly using the traditional Q-learning algo­
rithm. However, this is generally not practical because the 
size of the composite state space may grow exponentially 
with the number of component MDPs. 

3 Modular Q-Learning 
Humphrys and Karlsson [Humphrys, 1996; Karlsson, 1997] 
independently developed similar approaches to the problem 
of multiple-goal reinforcement learning. The idea is that a 
separate learning module is created for each component MDP. 
The agent takes actions in the environment, and each module 
i is trained with the standard Q-learning update rule: 

(1) 

Where i\ is the immediate reward, a is the learning rate 
parameter, and is a discount factor applied to future re­
wards. In single goal reinforcement learning problems, these 
Q-values are used only to rank order the actions in a given 
state. The key observation here is that the Q-values can also 
be used in multiple-goal problems to indicate the degree of 
preference that modules have for different actions. There are 
several possible ways these values can be used to select a 
compromise action to execute. The different approaches wil l 
be referred to as action selection mechanisms. 

Karlsson's suggestion, which he calls "greatest mass", is to 
generate an overall Q-value as a simple sum of the Q-values 
of the individual modules: Q(s,a) — The 
action with the maximum summed value is then chosen to 
execute. We wil l refer to this approach as GM-Q for greatest 
mass Q-learning. 

Humphrys considers the greatest mass approach, but raises 
the objection that the action with the highest sum may not 
be particularly good for any of the modules, with the result 
that no module is able to reach its goal. He explores several 
winner-take-all alternatives that constrain the chosen action 
to be optimal for at least one module. For a given state .s 
each of the N modules promotes its own action with a value 
Wl(sl). The module with the largest W value is then allowed 
to execute its preferred action. 

The simplest method for generating the W-values, which 
we wil l refer to as Top-Q, is to set Wt(st) = 
thus giving control to the module with the highest Q-value 
in the current state. This method suffers from the draw­
back that the module with the highest Q-value may have no 
preference over what action is chosen, while another module 
stands to lose a great deal if its action is not selected. The 
method sometimes exhibits reasonable performance, but this 
is strongly dependent on the structure of the reward functions. 

A better alternative, referred to as negotiated W-learning, 
is to grant control to the module that stands to lose the most 
long term reward if it is not selected. This module can be 
discovered by examining the Q-values for the current state. 
Refer to [Humphrys, 1996] for a detailed description of the 
algorithm. 

Figure 1: Results of one training run for GM-Sarsa(O) and 
three Q-learning based algorithms on a food gathering task. 
Training is divided into trials lasting 100 time steps. Data 
points are generated by suspending training every 10000 tri­
als and computing the mean performance for 1000 trials with­
out exploration. Each algorithm uses an e-grecdy exploration 
policy with e linearly reduced from .4 to 0 during the first half 
of trials. Al l algorithms use a fixed learning rate of .05, and a 
discount factor of .9. 

3.1 The problem w i t h modular Q-learning 
Q-learning has some attractive qualities as a basis for 
multiple-goal reinforcement learning. Chief of these is the 
fact that it is an off-policy learning method. This means that 
Q-learning for a single MDP is guaranteed to converge to the 
optimal solution regardless of what policy is followed during 
training, as long as each state-action pair is visited infinitely 
often in the limit. This fact makes it easy to prove conver­
gence results for the composite reinforcement learning algo­
rithms introduced above. In particular, it is easy to see that 
each module is guaranteed to converge to the optimal policy 
and value function for its own MDP. Since the action selec­
tion mechanisms generate a policy deterministically from the 
component value functions, the composite policy is also guar­
anteed to converge, although there is no guarantee concerning 
the quality of the composite solution. 

Unfortunately, the off-policy character of Q-learning is 
also a serious limitation. The difficulty is that the one-step 
value updates for each module are computed under the as­
sumption that all future actions wil l be chosen optimally for 
that MDP. This assumption is not valid under the action selec­
tion mechanisms described above; future actions wil l repre­
sent some compromise policy in which the different modules 
share control. This means that the computed Q-values do not 
converge to the actual expected return under the composite 
policy. Instead, the max in equation (1) results in Q-values 
with a positive bias. 

4 Modular Sarsa(O) 
A possible solution is to the problem of positive bias is to 
replace Q-learning with an on-policy learning algorithm. In 
particular we wil l explore the use of Sarsa(O) [Rummery and 

1446 POSTER PAPERS 



Niranjan, 1994; Singh and Sutton, 1996; Sutton, 1996]. The 
update rule for Sarsa(O) is: 

(2) 

This update rule is virtually identical to that for Q-learning 
except that the max over Q-values on the right has been re­
placed with the Q-value of the state action pair that is actu­
ally observed on the next step. For the case of single MDPs 
Sarsa(O) has been proved to converge to the optimal policy 
as long as the exploration rate is asymptotically decayed to­
ward zero according to an appropriate schedule [Singh et al, 
2000]. 

The key observation for our purposes is that, since Sarsa(O) 
is an on-policy method, it does not suffer from the problem 
of positive bias. Since updates are based on the actions that 
are actually taken, rather than on the best possible action, we 
expect Sarsa(O) based modules to discover Q-values that are 
closer to the true expected return under the composite policy. 

Any of the action selection mechanisms from Section 3 
could be recast to use Sarsa(O) rather than Q-learning to train 
the modules. However, we focus on the method of greatest 
mass. We refer to the resulting algorithm as GM-Sarsa(O). 
Recall that the goal is to maximize the summed reward across 
all of the component MDPs. Assuming that we have trust­
worthy utility estimates from each of the modules, it makes 
sense to choose the action that has the highest summed util­
ity across all of the modules. By definition, this is the action 
that wil l lead to the greatest summed long term reward. This 
reasoning did not hold under Q-learning, because the utility 
estimates were inaccurate under the composite policy. 

Thus far we have no convergence proof for the GM-
Sarsa(O) algorithm. Refer to the associated technical report 
[Sprague and Ballard, 2003] for a discussion of the possible 
convergence characteristics. 

5 Examples 
Figure 1 demonstrates the performance of GM-Sarsa(O) on a 
sample composite task (the task is adapted from [Singh and 
Cohn, 1998]). The goal of the agent in this task is to gather 
stationary food items while avoiding a predator in a 5 x 5 grid. 
There are three food items present at all times. 

The agent moves in any of the eight possible directions at 
each time step. A random move is made with a probability 
of . 1 . If the agent contacts any of the food items it receives a 
reward of 1.0, and the item is randomly moved to a new posi­
tion. The agent receives a reward of .5 for every time step that 
it avoids the predator. The predator moves deterministically 
one position toward the agent on every other time step. 

The positions of the food items as well as the positions 
of the agent and predator result in 255 ` 10 million distinct 
states. This is too large for a monolithic tabular learning al­
gorithm to be practical. The task is a good candidate for a 
modular reinforcement learning algorithm because it can be 
decomposed into several small MDPs. One MDP describes 
the agent's interaction with the predator, and three MDPs 
describe the interaction with the food items. Each of these 
component MDPs has 252 = 625 states. Figure 1 shows the 
performance of GM-Sarsa(O) as well as the three Q-learning 

based algorithms from Section 3 on this task. Of the four 
algorithms, GM-Sarsa(O) exhibits the best performance. 

6 Conclusion 
We have presented a method for learning approximately opti­
mal policies for a certain class of composite Markov decision 
processes. Empirical results demonstrate that our approach 
performs better than a number of existing algorithms. Future 
work wil l focus on proving convergence results for our algo­
rithm. A longer version of this paper, including a discussion 
of related work is available as [Sprague and Ballard, 2003]. 

Acknowledgments 
This material is based upon work supported by a grant 
from the Department of Education under grant number 
P200A000306, a grant from the National Institutes of Health 
under grant number 5P41RR09283 and a grant from the Na­
tional Science Foundation under grant number El A-0080124. 
Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not 
necessarily reflect the views of the above mentioned institu­
tions. 

References 
[Humphrys, 1996] M. Humphrys. Action selection methods 

using reinforcement learning. In From Animals to Animats 
4: Proceedings of the Fourth International Conference on 
Simulation of Adaptive Behavior, pages 135-144, Cam­
bridge, MA, 1996. 

[Karlsson, 1997] J. Karlsson. Learning to Solve Multiple 
Goals. PhD thesis, University of Rochester, 1997. 

[Rummery and Niranjan, 1994] G. A. Rummery and M. Ni­
ranjan. On-line Q-learning using connectionist systems. 
Technical Report CUED/F-1NFENG/TR 166, Cambridge 
University Engineering Department, 1994. 

[Singh and Cohn, 1998] S. Singh and D. Cohn. How to dy­
namically merge markov decision processes. In Advances 
in Neural Information Processing Systems, volume 10, 
1998. 

[Singh and Sutton, 1996] S. Singh and R. Sutton. Reinforce­
ment learning with replacing eligibility traces. Machine 
Learning, 22(1-3), 1996. 

[Singh et al, 2000] S. Singh, T. Jaakkola, M. L. Littman, 
and C. Szepesvari. Convergence results for single-step 
on-policy reinforcement-learning algorithms. Machine 
Learning, 2000. 

[Sprague and Ballard, 2003] N. Sprague and D. Ballard. 
Multiple-goal reinforcement learning with modular 
sarsa(O). Technical Report 798, University of Rochester 
Computer Science Department, 2003. 

[Sutton, 1996] R. Sutton. Generalization in reinforcement 
learning: Successful examples using sparse coarse cod­
ing. In Advances in Neural Information Processing Sys­
tems, volume 8, 1996. 

POSTER PAPERS 1447 


