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Abstract 
Distance-based methods in pattern recognition and 
machine learning have to rely on a similarity or 
dissimilarity measure between patterns in the in­
put space. For many applications, Euclidean dis­
tance in the input space is not a good choice and 
hence more complicated distance metrics have to 
be used. In this paper, we propose a parametric 
method for metric learning based on class label in­
formation. We first define a dissimilarity measure 
that can be proved to be metric. It has the favorable 
property that between-class dissimilarity is always 
larger than within-class dissimilarity. We then per­
form parametric learning to find a regression map­
ping from the input space to a feature space, such 
that the dissimilarity between patterns in the in­
put space is approximated by the Euclidean dis­
tance between points in the feature space. Para­
metric learning is performed using the iterative ma-
jorization algorithm. Experimental results on real-
world benchmark data sets show that this approach 
is promising. 

1 Introduction 
The notion of similarity or dissimilarity plays a fundamental 
role in pattern recognition and machine learning. A promis­
ing direction to pursue is to learn good (dis)similarity mea­
sures from data. Recently, learning distance metrics from 
data has aroused a great deal of interest from machine learn­
ing researchers. One typically wants to embed patterns in 
a (possibly non-metric) input space into a feature space, in 
which the Euclidean distance between points accurately re­
flects the dissimilarity between the corresponding patterns. 
Therefore the (linear or nonlinear) mapping from the input 
space to the feature space corresponds to feature extraction. 
Alternatively, the feature space may be a low-dimensional 
space for data visualization. 

In this paper, we propose a parametric distance metric 
learning method in the supervised setting. The main ideas 
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of our method are summarized as follows. Using class la­
bel information, we define a similarity measure (and hence 
also the corresponding dissimilarity measure) between pat­
terns in the input space. The dissimilarity measure implicitly 
induces a metric space for embedding the original patterns. 
To explicitly represent the mapping from the input space to 
the feature space, we then approximate the mapping by a re­
gression model to embed the original patterns in an Euclidean 
space. The regression parameters are estimated from data 
with the objective that the dissimilarity between patterns in 
the input space is approximated by the Euclidean distance be­
tween points in the feature space. Once the regression model 
has been found, any new pattern can be mapped to its corre­
sponding location in the feature space. Distance-based meth­
ods, such as k-means clustering, nearest neighbor classifiers 
and support vector machines, can then be applied in the fea­
ture space for clustering or classification applications. 

The rest of this paper is organized as follows. A modified 
metric incorporating class label information is proposed in 
Section 2. Section 3 outlines our regression model for metric 
learning and the corresponding optimization method. Exper­
imental results are presented in Section 4, and the last section 
gives some concluding remarks. 

2 Modified Metric with Label Information 
Denote the input space by Rq and the set of all C possible 
class (target) labels by T. A training set has 
n patterns where U = r if pattern i 
belongs to class r. Here, each pattern is assumed to belong to 
only one class. In general, a number of similarity measures 
can be defined on these patterns [Gower and Legendre, 1986]. 
In this paper, we utilize also the label information in defining 
the similarity sij between patterns xi and Xj: 

(1) 

where denotes the Euclidean norm and B > 0 is a width 
parameter. The corresponding dissimilarity Sij is then: 

(2) 
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As illustrated in Figure 1, this (dis)similarity measure en­
joys some nice properties for pattern discrimination. For ex­
ample, the (dis)similarity between any two patterns in the 
same class is always larger (smaller) than that between any 
two patterns belonging to different classes. Moreover, the 
larger the Euclidean distance between the patterns is, the 
smaller is the within-class similarity while the larger is the 
between-class similarity. 

Figure 1: Similarity and dissimilarity in (1) and (2). 

In recent years, finite metric spaces and their embeddings 
have received much attention [Indyk, 2001; Linial et al, 
1995]. Among embedding into normed spaces, embedding 
into an Euclidean space is the most popular. 

Given the dissimilarity matrix we are in­
terested in the question of whether and how the dissimilarity 
matrix can be embedded. In other words, for the origi­
nal points we attempt to find a configuration 
of points in some Euclidean space such that 
the squared distances between these points will be equal to 
the so-defined dissimilarities  

The following theorem confirms that can be embedded. 
Theorem 1 Define d ij ~ with as in (2). The matrix 
D — is metric. In other words, satisfies the following 
properties: 

The proof of this theorem can be found in IZhang et al, 
2003]. The subsequent task is then to find the embedding, 
i.e., points such that the inter-point dis­
tance is equal to dij In general, obtaining an exact solution 
for these xi's is difficult. Nevertheless, because D is met­
ric, an approximate solution can be easily obtained by using 
principal coordinate analysis or other multidimensional scal­
ing (MDS) methods [Cox and Cox, 2000]. We will return to 
this problem in Section 3. 

Notice that the resultant Euclidean embedding will still in­
corporate information from both the input space representa­
tion (Xi) of the patterns and their corresponding class labels 

(tl). Moreover, the distance metric dtJ, like the associated 
enjoys those nice properties useful for pattern discrimination. 

3 Metric Learning with Regression Model 
As mentioned in Section 2, an approximate solution for 

can be obtained by using MDS. However, this 
may be intractable for large data sets. Moreover, for new pat­
terns with unknown labels, the problem then is on how to 
determine sl3 in the first place. Following [Koontz and Fuku-
naga, 1972; Cox and Ferry, 1993; Webb, 1995], we attempt 
to find a mapping from x, in the original input space to 

in the embedded Euclidean space One possibility is to 
first obtain a MDS configuration, and then construct a regres­
sion model from xt to iCox and Ferry, 1993]. However, 
this mapping is not determined as part of the MDS procedure 
[Webb, 1995]. In the following, we will follow the approach 
of [Webb, 19951. 

Denote the mapping from the original input space to the 
embedded Euclidean space by f — ( f 1 , . . . , fi)'. Assume 
that each fi is a linear combination of p basis functions: 

(3) 

where W = contains the free parameters, and the 
are basis functions that can be linear or nonlinear. 

The regression mapping (3) can be written in matrix form as 

where Let X be the target con­
figuration, with where is defined in (2). 
Using the iterative majorization algorithm, we then minimize 
the squared error 

(4) 

4 Experiments 
In this Section, we perform experiments on six benchmark 
data sets (Table 1) from the UCI repository [Murphy and Aha, 
1994]. The distance metric is learned using a small subset of 
the labeled patterns, with / = p = q, = x and the width 

in (1) set to the average distance of the labeled patterns to 
the class means. The remaining patterns are then used for 
testing. 

Table 2 shows the classification results by the nearest mean 
and nearest neighbor classifiers, with both the Euclidean and 
learned metrics. As can be seen, the learned metric almost 
always outperforms the original metric. 

Next, we perform clustering experiments using the A;-
means clustering algorithm, with the value of k set to the true 
number of clusters in each data set. The clustered patterns 
are assigned labels and the clustering accuracy is measured 
by comparing these labels with the true labels (as in classi­
fication problems). As these cluster labels can be permuted 
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Table 1: The six UCI data sets used in the experiments. 

data set total # of patterns # patterns for 
metric learning 

data set 
class size 

# patterns for 
metric learning 

Pima Indians 
diabetes (diabetes) 

1 
2 

500 
268 

80 
50 

soybean 1 
2 
3 
4 

10 
10 
10 
17 

2 
2 
2 
4 

wine 1 
2 
3 

59 
71 
48 

20 
20 
20 

Wisconsin breast 
cancer (WBC) 

1 
2 

212 
357 

50 
50 

ionosphere 1 
2 

126 
225 

50 
50 

iris 1 
2 
3 

50 
50 
50 

10 
10 
10 

without changing the clustering solution, results reported here 
arc based on the labeling with the highest clustering accuracy. 
As can be seen from Table 3, the learned metric outperforms 
that with the original metric on all data sets. 

Table 2: Classification accuracies on the UCI data sets (Num­
bers in bold indicate the better results). 

data set 1 nearest mean | nearest neighbor data set 
Euclidean 

1 metric 
learned 
metric 

Euclidean 
1 metric 

learned 
metric 

diabetes 1 1 463/638 475/638 1 432/638 425/638 
soybean 36/37 37/37 35/37 37/37 

wine 86/118 115/118 77/118 117/118 
WBC 430/469 451/469 420/469 453/469 

ionosphere 159/251 201/251 212/251 225/251 
iris 108/120 110/120 114/120 114/120 

5 Concluding Remarks 
In this paper, we proposed a new parametric method for dis­
tance metric learning based on class label information. Ex­
periments on UCI data sets show promising results. 

The current work can be extended in several directions. 
First, nonlinear basis functions can be used to improve the 
approximation power of the regression mapping. Second, al­
though Theorem 1 states that the dissimilarity measure in­
duces a metric, it is not clear whether the matrix is also Eu­
clidean. If this is the case, a new kernel can then be defined 
on the joint space of the input space and class label space 
[Scholkopf, 2002]. Third, in addition to using label infor­
mation, we will also incorporate manifold structure between 
neighboring patterns into our metric learning process. 
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Table 3: Clustering accuracies on the UCI data sets (Numbers 
in bold indicate the better results). 

data set Euclidean metric learned metric 
diabetes 459/638 480/638 
soybean 37/37 37/37 

wine 85/118 117/118 
WBC 412/469 446/469 

ionosphere 168/251 221/251 
iris 107/120 110/120 
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