
A Formalization of Equilibria for Multiagent Planning 

Michael Bowling, Rune Jensen, and Manuela Veloso 
Computer Science Department 

Carnegie Mellon University 
Pittsburgh PA, 15213-3891 

1 Introduction 
Traditionally, planning involves a single agent for which a 
planner needs to find a sequence of actions that can transform 
some initial state into some state where a given goal state­
ment is satisfied. But in general, "planning" can be viewed 
as being concerned with a general action selection problem. 
The planning framework has been extended from the classi­
cal deterministic plan generation problem along many other 
dimensions, in particular nondeterministic actions. With the 
introduction of nondeterministic actions, the presence of an 
environment and other agents can become a consideration. In 
fact, actions may have nondeterministic effects not only be­
cause of the uncertainty of their own execution, but also due 
to the uncertainty of the actions of other agents. The pos­
sible presence of other agents as executors is the challenge 
of "multiagent planning." The interest in this area has been 
steadily increasing and many issues remain open. 

Despite the existence of planning languages with explicit 
models of uncontrallable agents [Jensen and Veloso, 2000], 
we believe that there has not been a formal discussion of the 
space of multiagent plans or solutions. In this work, we do 
not focus on the problem of plan generation for multiagent 
planning. Instead, we focus on the interesting question of 
analyzing and comparing solutions for multiagent planning. 
Our motivation comes from making an analogy with game 
theory and the notion of equilibria [Owen, 1995]. 

Inspired by game theory and extending previous formal 
definitions of single-agent planning [Cimatti et al, 2000], in 
this paper, we introduce a formal definition of equilibria for 
multiagent planning. 

2 Planning Equilibria 
In this section, we formalize the concept of a multiagent plan­
ning equilibrium. In order to help make these concepts clear 
we will first describe an example, which is small enough to 
easily enumerate all of the states. 

2.1 A Simple Example — The Nar row Doorway 
Consider a two agent robot domain where both agents are in 
a hallway and want to move into the same room through a 
single doorway. The agents have an operator to go through 
the door (G) that only succeeds if the other agent is not also 
trying to go through the door. They also have the choice of 
waiting (W). Each agent's goal is simply to be in the room. 

2.2 The Formal izat ion 
We first begin by formalizing some planning related concepts. 
The definitions parallel closely with Cimatti and colleagues' 
single-agent formalization [2000]. We extend their defini­
tions of planning domains, problems, and solutions to encom­
pass multiple agents. We then follow this formal framework 
with a definition of multiagent planning equilibrium. Notice 
that the definitions and concepts presented are not bound to 
any particular planning algorithm or language. 

We start by defining a multiagent planning domain. 

Definition 1 (Multiagent Planning Domain) 
A multiagent planning domain D is a tuple 

where, 

I.e., each agent's set of actions that can be executed from 
a state are independent. 

In addition, let ACTi(s) Ai be the set of applicable or 
executable actions in state s. Formally, 

The additional condition in the planning domain definition 
on R requires that each agent be capable of selecting actions 
independently. Formally this amounts to the following. For 
all states s and executable actions for the agents 
there exists some transition that is in 7v. 

In the doorway domain, V contains two propositions, A-
in-room and B-in-room. The set of states S corresponds to all 
four possible subsets of P, since all combinations of proposi­
tions are valid in this domain, n is two and is the set of 
actions {G, W}. The transition relation is defined by the 
rules described above. The complete enumeration of states 
and transitions is shown in Figure 1. The figure also num­
bers the states so they can be referred to in an abbreviated 
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Figure 1: Doorway domain. a n d r e p r e s e n t As and 
B\s goal states, and , respectively. 

form. Note that this domain satisfies the independent action 
condition on R. 

In the doorway example, the goal states for agent A are 
{ 1 ,3 } and for agent B are { 2 , 3 } . The init ial state set is the 
singular set { 0 } . Wi th this definition of domain and problem, 
we can now formalize a notion of a plan. 

Def in i t ion 3 (State-Act ion Table) 
A state-action table for agent i in domain V is a set of pairs 

A joint state-action table 
constructed from state-action tables for each agent is 
the set of pairs 

A (joint) state-action table is complete if and only if for any 
.s S there exists some pair (s, •) in the state-action table. 

For the doorway domain, a state-action table (or plan) for 
each agent might be, 

These are also complete state-action tables since they specify 
at least one action for each state. We can combine these ta­
bles into a complctcjoint state-action table. In general, a jo int 
state-action table together wi th a multiagent planning domain 
determines the entire execution of the system. In order to de­
fine what it means for a plan to be a solution to a planning 
problem we need to formalize the notion of reachability and 
paths of execution. We w i l l do this by first defining the exe­
cution structure of the multiagent system. 

Intuitively, Q is the set of states that the system could reach 
during execution of the plan and T is the set of transitions 
that the system could cross during execution. For our door­
way domain the execution structure induced by our example 
jo int state-action table is, 

We can now formalize an execution path. 

Def ini t ion 5 (Execut ion Path) 
Let K = (Q, T) be the execution structure induced by a state-
action table from X. An execution path of K from so T is 
a possibly infinite sequence SQ,SI , . s 2 , . . . of states in Q such 
that, for all states si in the sequence: 

• either si is the last state of the sequence, in which case 
Si is a terminal state of K, or 

A state s' is reachable from a state s if and only if there is an 
execution path with s0 = s and si = s1. 

For our doorway domain and example jo in t state-action ta­
ble one execution path from the init ial state is, 

We are now in a position to define what it means for our plan 
to solve a planning problem. We actually define multiple con­
cepts increasing in strength. These concepts formalize some 
of the intuitive discussion from the previous section about 
whether a plan has one or more of the fol lowing properties: 

• the possibility of reaching the goal, 
• a guarantee of reaching the goal, and 
• a guarantee of reaching the goal in a finite number of 

steps. 

These concepts and their formalization are inspired and 
highly related to Cimatti and colleagues' single-agent solu­
tion concepts [Cimatti et al., 2000]. 

Def in i t ion 6 (Mul t iagent Planning Solutions) 
Let V be a multiagent planning domain and P = 

be a multiagent planning problem. Let be 
a complete joint state-action table for V. Let K — (Q,T) be 
the execution structure induced by from 1. The following is 
an ordered list of solution concepts increasing in strength. 

J. is a weak solution for agent i if and only if for any 
state in I some state in is reachable. 

2. is a strong cyclic solution for agent i if and only if from 
any state in Q some state in is reachable. 

3. is a strong solution for agent i if and only i /a l l execu­
tion paths, including infinite length paths, from a state 
in Q contain a state in  
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For our doorway domain, the joint state-action table is a 
strong cyclic solution for both agents but not strong (i.e., it 
has a strength of 2 for both agents). This means that there is 
a path to the goal from any reachable state. But there are also 
paths that do not include either agents' goal states, and so it 
is not a strong solution for either agent. 

These solutions define what it means for one agent to be 
successful given a joint state-action table. The goal of plan­
ning from one agent's perspective is to find a plan that has the 
highest strength given the plans of the other agents. But the 
other agents' selection of a plan is equally contingent upon 
the first agent's plan. This recursive dependency leads to our 
main contribution of the paper: planning equilibria. 

Definition 7 (Multiagent Planning Equilibria) 
Let V be a multiagent planning domain and V -

be a multiagent planning problem. Let be 
a complete joint state-action table for V. Let K — (Q, T) be 
the execution structure induced by from X. is an equilib­
rium solution to V if and only if for all agents i and for any 
complete joint state-action table such that  

I.e., each agent's state-action table attains the strongest solu­
tion concept possible given the state-action tables of the other 
agents. 

Note that our example joint state-action table for the door­
way domain is not an equilibrium. Both agents A and B cur­
rently have strength 2, but B can achieve a strength of 4 by 
choosing a different state-action table. Specifically, B should 
select the wait (W) action from the initial state and the go (G) 
action in state 1. 

To make the concept of planning equilibria clearer, we i l ­
lustrate it in the doorway domain. We gave above an example 
joint state-action table that is not a multiagent planning equi­
libria for this domain. An equilibria is the following state-
action tables: 

In this case agent A goes through the door while agent B 
waits and then follows through the door. This is a perfect 
plan for both agents and so obviously no agent can achieve a 
higher strength with a different state-action table. Similarly, 
the symmetric tables where agent B goes through the door 
while agent A waits is also an equilibrium. There is an addi­
tional equilibrium, 

Here both agents nondeterministically decide between going 
through the door and waiting. This results in a strong cyclic 

solution for both agents, but given this state-action table for 
the other agent no strong or perfect plan exists for either 
agent. So this is also an equilibrium although obviously in­
ferior to the other equilibria where both agents have higher 
strength plans. In game theory, such a joint strategy is called 
Pareto dominated. 
Collision variation. Consider a variation on this domain 
where collisions (when both agents choose G) result in the 
robots becoming damaged and unable to move. In this case, 
the first two state-action tables above remain equilibria, but 
the third inferior table no longer is an equilibrium. This joint 
plan is now only a weak solution for both agents since there is 
a possibility of never achieving the goal. Each agent can also 
change to a different plan where it waits for the other agent to 
get through the door thus achieving a strong cyclic plan and a 
higher strength. 
Door closing variation. Finally, consider that one agent en­
tering the room sometimes causes the door to close behind 
it. Once the door is closed it cannot be opened and the door­
way cannot be used. In this case, the same two joint plans 
are again an equilibrium but now they have different strengths 
for the different agents. The first joint state-action table is a 
strong plan for agent A, but only a weak plan for agent B, 
though it can do no better. The second is just a symmetry of 
this. 

3 Conclusion 
We presented a formalization of multiagent planning and in­
troduced the concept of a multiagent planning equilibrium. 
This is the first known solution concept that explicitly ac­
counts for the goals of all the agents. This work provides 
a unifying framework for considering planning in multiagent 
domains with identical, competing, or overlapping goals. It 
also opens up many exciting questions related to practical al­
gorithms for finding equilibria, the existence of equilibria, 
and the coordination of equilibria selection. 
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