
Recognizing Plan/Goal Abandonment* 

Christopher W. Geib, 
Honeywell Laboratories 
3660 Technology Drive 
Minneapolis, MN 55418 

christopher.geib@honeywell.com 

Robert P. Goldman, 
SIFT Inc. 

2119 Oliver Ave. South 
Minneapolis, MN 55405 
rpgoldman@siftech.com 

Abstract 
The ability to recognize when an agent abandons a 
plan is an open problem in the plan recognition lit­
erature and is a significant problem if these meth­
ods are to be applied in real systems. This paper 
presents an explicit, formal, and implemented solu­
tion to the problem of recognizing when an agent 
has abandoned one of its goals based on a theory of 
probabilistic model revision. 

1 Introduction 
There is a large body of research on the topic of intent recog­
nition or task tracking, focused on identifying the goals of a 
user from observations of their actions. However, none of this 
work has directly addressed the problem of recognizing when 
a user has abandoned a goal. 

In general, the ability to infer abandoned goals is an op­
erational requirement for any plan recognition system that is 
executing incrementally and continuously. Abandoning goals 
is something that any real observed agent wil l do. If a plan 
recognition system is unable to recognize this fact, the system 
will build up an ever increasing set of active or open plans 
that the agent has no intention of completing. A system at­
tempting to find completions for these open plans wil l wind 
up considering unreasonable situations such as the first step 
of a time critical two step plan simple plan are taken but the 
plan is not elder a two step plan with a required seconds or 
minutes duration but not attempting the second step of the 
plan until days or weeks later. Unfortunately, existing plan 
recognition systems cannot draw such inferences. 

2 Background 
Recent work in execution based plan/intent recognition [Bui 
etai, 2002; Geib and Goldman, 2001; Goldman et al, 1999] 
has been based on a model of the execution of simple hierar­
chical task network (HTN) plans [Erol et al, 1994]. 

The idea behind this approach is that initially the executing 
agent has a set of goals and chooses a set of plans to execute 
to achieve these goals. The set of plans chosen determines a 
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Figure 1: A simple model of plan execution. 

pending set of primitive actions. The agent executes one of 
the pending actions, generating a new pending set from which 
the next action wil l be chosen, and so on. 

This process is illustrated in Figure 1. In this light, the 
observed actions are nothing more than the observations of 
a hidden Markov model and the process of plan recognition 
is the inference of the underlying state of the model.Space 
prohibits a full exposition of this approach. We refer readers 
to [Geib and Goldman, 2001; Goldman et al., 1999] for a 
more complete discussion. 

3 Exact Solutions 
Given our model of plan execution, a formal and general 
model of probabilistic abandonment of goals, wil l be forced 
to deal with an exponentially larger model and will be re­
quired to obtain the prior probabilities that each of the goals 
is abandoned. For real world applications this approach is 
simply untenable. A complete discussion of these issues is 
provided in the full paper. 

4 Model Revision 
Rather than explicitly considering all of the possible plans 
that could be abandoned, the problem can be looked at as 
a question of model revision. If we are using a model of 
plan execution that does not consider plan abandonment to 
recognize observation streams in which the agent is aban­
doning plans, we expect that the computed probabilities for 
the observation streams wi l l be quite low. Laskey [1991], 
Jensen [Jensen et ai, 1990], and others have suggested that 
cases of an unexpectedly small P(observations\M odd) 
should be used as evidence of a model mismatch. 
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Figure 2: A very simple example plan library. 

Instead of the general P(observations\model) statis­
tic we propose the probability that none of the ob­
served actions in a subsequence (from say s to t) con­
tribute to one of the goals (call it G), and we denote it 

If this prob­
ability gets unexpectedly small, we consider this as evidence 
of a mismatch between the model and the real world. Namely 
the model predicts that the agent is still working on the goal, 
while the agent may have abandoned it. 

4.1 Comput ing notContrib 
Consider the plan library shown in Figure 2. The first plan is 
a very simple plan for achieving S by executing a, 6, and c 
and the second plan for R has only the single step of g. Next, 
assume the following sequence of observations: 

In this case we know that at time 0 and 1 that the agent has 
as a goal achieving S. Let us assume that all of the elements 
of the pending set are equally likely to be selected for execu­
tion next. Note that this is an assumption that we wil l make 
for the rest of this paper. Nothing about the algorithm hinges 
on this uniformity assumption. It is made solely for ease of 
computation and discussion. 

Given this assumption, the probability of seeing c at time 2 
is given by: where m is the number of elements 
in the pending set that have c as the next action. The proba­
bility that we don't see c (that is the probability that any other 
element of the pending set is chosen at time 2) is just: 

or more generally the probability that we have seen b at time 
(s - 1) and not seen c by time t: 

To handle partially ordered plans, this formula must be 
generalized slightly. With partially ordered plans it is pos­
sible for more than a single next action to contribute to 
the specified root goal. Thus, if mqi represents the num­
ber of elements (with any next action) in the pending set 
at time i that contribute to goal q, (s-1) is the last time 
we saw an action contribute to q and t is the current time, 

Thus, under the assumptions that we have made we can 
compute the probability of the subsequence of actions not 

Figure 3: Required Evidence Theoretical Curves. 

contributing to a given plan or goal. By computing this value 
and setting a threshold, we can consider any drop in this prob­
ability below the threshold as sufficient evidence of a model 
mismatch and revise the model to reflect the goals abandon­
ment. This requires removing all the elements from the cur­
rent pending set that contribute to the abandoned goal. Mod­
eling the rest of the plans continues as before. 

4.2 Evident ial Requirements 
This approach creates an interesting linkage between the size 
of the pending set, the number of elements that contribute 
to the goal of interest, and the number of actions that don't 
contribute to the goal that must be observed before the goal is 
considered abandoned. 

Figure 3 shows three theoretical curves for the probability 
of notContrib for different sets of values. The curves are 
labeled with the number of actions that contribute to a goal 
and the size of the pending set. Thus the curve labeled " 1 of 
2" shows the drop in the probability given each observation 
if there is one action that contributes to the desired goal out 
of a pending set of size two. Note that in these curves, we 
are again making the assumption that all of the actions in the 
pending set are equally likely to be chosen. 

Notice that as the ratio of the number of contributing ac­
tions to the size of the pending set drops the number of actions 
required to drive notContrib down to a particular threshold 
value increases significantly. We wil l see the effects of this in 
the empirical results. 

4.3 Est imat ing P(abandoned{g) \Obs) 
If we compute for each 
g and threshold our explanations as described in the previ­
ous section, we can now produce explanations of the obser­
vations in which goals have been abandoned. By considering 
the complete and covering set of such explanations for the ob­
servations we can estimate the probability of a specific goal's 
abandonment. It is given by: 

where Exp represents the set of all explanations for the ob­
servations, and represents the set of explanations in 
which goal g is marked as abandoned. 
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Figure 4: Empirical Accuracy 

5 Accuracy 
To test this theory we have extended Geib and Goldman's 
Probabilistic Hostile Agent Task Tracker (PHATT) to esti­
mate goal abandonment. We wil l not cover the details of the 
PHATT algorithm here; instead we refer the interested reader 
to [Geib and Goldman, 2001]. We used a very simple plan l i ­
brary with three root goals each having eight unordered steps. 
To generate test cases, we chose an ordering for the actions 
for each of the three goals. These plans were then randomly 
interleaved preserving the intra-plan ordering. To simulate 
goal abandonment, at each time step one of the goals could 
be chosen for abandonment. If chosen, all remaining steps of 
the plan were removed from the observation stream. When 
given to PHATT, each of these test sequences produced one 
of three possible results: 
abandoned where PHATT believed with probability greater 

than 0.5 that the correct goal had been abandoned. 
not abandoned where PHATT did not believe believe with 

probability greater than 0.5 that the correct goal had 
been abandoned 

not explained where PHATT was unable to explain the set 
of observations. In all cases, this was a result of the 
system believing that a goal was abandoned before it ac­
tually had been. The system was therefore unable to ac­
count for the remaining actions in that test data point. 

The results of one thousand such randomly generated data 
points at each of nine notContrib threshold values between 
0.1 and 0.9 can be seen in Figure 4. To aid in understand­
ing, the X-axis plots (l - the notContrib threshold) which we 
wil l call the probability of abandonment threshold(PAT). The 
y-axis plots the percentage of test points for each of the pos­
sible results at that threshold value. The results confirm our 
intuitions. 

The number of test sequences that are not explained drops 
to zero as the PAT is raised. The PAT is specifying how much 
evidence the algorithm needs to have before it can consider a 
goal abandoned. Since the system's failure to explain a test 
sequence is a result of prematurely believing a goal has been 
abandoned, as the PAT rises and more evidence is required 
this number should drop to zero. 

The number of test sequences that are not abandoned rises 
as the PAT is raised. As the threshold rises the system requires 
more and more evidence to be convinced that the goal has 
been abandoned. This allows more data points to reach the 
end of the observation sequence without being convinced of 
the goal's abandonment. 

Finally, abandoned rises and peaks giving the algorithm a 
maximum accuracy of about seventy five percent at a PAT of 
between 0.6 and 0.7. The algorithm's subsequent dip is again 
a result of the increasing confidence in abandonment required 
by the rising PAT. As with not abandoned at this point the 
system's accuracy is falling prey to the limited length of the 
test sequences. Since each test sequence is of limited length 
the test runs are ending before enough evidence can be ob­
served for the higher PAT values. Figure 3 will show us why. 

Consider the curve in Figure 3 labeled "l of 5." This is 
approximately the ratio of contributing actions to the size of 
the pending set in this example. At a PAT of 0.9 the system 
will require approximately ten actions in a row that do not 
contribute to the goal in order to convince itself of the goals 
abandonment. Since the longest any of the tests can be is 
twenty three actions if the plan is abandoned more than half 
way through the observation stream it will have a hard time 
producing enough evidence to convince the system. 

6 Conclusions 
This paper presents a solution to the problem of recognizing 
when an agent has abandoned a goals based on probabilistic 
model revision. A number of issues are covered in more detail 
in the full version of this paper available from the author. 
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