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Abstract 
Markov Decision Processes (MDPs) and contin­
gency planning (CP) are two widely used ap­
proaches to planning under uncertainty. MDPs are 
attractive because the model is extremely general 
and because many algorithms exist for deriving op­
timal plans. In contrast, CP is normally performed 
using heuristic techniques that do not guarantee op-
timality, but the resulting plans are more compact 
and more understandable. The inability to present 
MDP policies in a clear, intuitive way has limited 
their applicability in some important domains. We 
introduce an anytime algorithm for deriving con­
tingency plans that combines the advantages of the 
two approaches. 

1 Introduction 
Two closely related decision-theoretic planning paradigms 
have emerged in the area of planning under uncertainty: 
Markov Decision Processes (MDPs) have become a general 
framework for planning and reinforcement learning. Contin­
gency Planning (CP) on the other hand emphasizes compact­
ness and understandability of the solution. In both cases, an 
agent is manipulating an environment by performing actions 
with uncertain outcomes. In each move, the agent receives 
some reward and the overall goal is to maximize the cumula­
tive reward. 

MDPs are solved by deriving a policy which maps domain 
states to actions, typically represented as a large table. Sev­
eral existing algorithms can construct optimal policies, but 
the results are not easy to visualize or understand. CP is an­
other widely used approach in stochastic domains which al­
lows plans to include branches that may depend on arbitrary 
memory states. 

It is clear why optimal plans are desirable, but the issue 
of understandability is less obvious. In fact, for some ap­
plications, a plan represented as a large table mapping states 
to actions may be perfectly suitable. However, the lack of 
clarity has limited the adoption of MDP planning in some ap­
plication domains such as space exploration with unmanned 
rovers. In this domain, communication with the agent is re­
stricted and due to high mission costs and associated risks, 
understanding and verifying plans are crucial. 

We examine the relationship between policies and contin­
gency plans and define a precise measure of complexity of 
contingency plans. Then, we introduce a technique for auto­
mated contingency plan generation and briefly describe our 
experimental results. Finally, we conclude with a summary 
and future research directions. 

2 Formal Problem Description 

A Markov Decision Process (MDP) with goal states is a tu­
ple (5, A, P, R, s0, G), where S = S1 x • • • x Sn is a fac­
tored state space and Si is the (finite) domain of feature i. A 
is a set of actions, P the transition probabilities, R the re­
ward expectations, so a known initial state and G a (possibly 
empty) set of absorbing terminal states. 

A policy : S A is a mapping from states to ac­
tions. Following the notation in iLittman et al., 1998], a 
Contingency Plan for an MDP is a tuple 
where {V,E) is a directed graph with start state V. 

associates and action with each node of the graph, 
labels each edge with a set of states. 

An interval label descriptor maps state sets to sets 
of intervals over the feature domains defined as follows: 

The complexity of a contingency plan does not reflect 
the computational complexity of constructing it, but is a 
measure of how hard it is to understand. Formally: Com-

• ABF • ALDS, where ABF is 
the average branching factor of the graph and ALDS is the 
average label descriptor size. The size of a single label de­
scriptor is the number of constrained intervals. 

The value of a policy reflects the expected discounted re­
turn when the agent selects action using n, starting from the 
initial state. It can be computed with standard algorithms such 
as value iteration. Similarly, the value of a contingency plan 
is the expected discounted return when the agent selects ac­
tion using p, starting from the initial node. By considering the 
Markov chain induced by the state set S x V, the same meth­
ods used to evaluate MDP policies can be used to evaluate a 
contingency plan. 
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3 Automated Contingency Plan Generation 
Our approach to automatically generate more understandable 
(less complex) contingency plans relies on solving first the 
underlying MDP, obtaining an optimal policy and creat­
ing an equivalent initial contingency plan from it: V = 

By performing a depth-first search over the set of all reach-
able edges between the state-node pairs in S x V, a reach­
ability analysis can be applied to remove states from label 
descriptors, edges from nodes and nodes from the graph. 

Since a benefit of interval label descriptors is the ability 
to capture easily large sets of states and simplify the branch 
conditions, n-dimensional boxes to describe them more com­
pactly can be generated by merging intervals along the di­
mensions of the state space. This is in particular very effec­
tive if the order of feature values corresponds to some natural 
ordering. 

By trading off optimality for clarity, interval descriptors 
can be merged even if there are a few states that make the 
merge operator not admissible. 

Most importantly, the node-split operator splits a node of 
the plan graph into two and adapts the incoming and outgoing 
edges according to a given partition of the state space. This 
gives contingency plans their real strength: The current node 
of the graph then represents partial information about the cur­
rent state ("context information"), so less details of the actual 
state may be needed to make the branch decision on the next 
step. For instance, with a state set S = {u, v, w, x, y, z) and 
the partition S\ — {u,v,w}, S2 = {x,y,z}, the result of a 
split operator is illustrated below: 

4 Experimental Results 
It turns out that combining these operators can significantly 
reduce the complexity of a contingency plan. This leads to the 
following search problem: Given the initial contingency plan 
defined above, find a contingency plan with the lowest com­
plexity, not giving up more that a certain fraction e of the op­
timality of the policy n. Unfortunately, two major obstacles 
make an exhaustive search intractable: The node-split oper­
ator is parameterized by a partition of the MDP state space, 
leading to a large number of possible splits and thus to a large 
branching factor. In addition, the computational complexity 
of reachability analysis is fairly high. 

As a result, we decided to relax the requirement of mini­
mizing complexity and developed a method to combine the 
operators and automatically generate some understandable 
plans. Performance improvement can be obtained by choos­
ing a partition of the state space, split the nodes according 

to this partition, perform a reachability analysis and merge 
the interval descriptors subsequently. We implemented a hill-
climbing algorithm that used some domain-specific heuristics 
for choosing a partition and performed random restarts, lead­
ing to an interruptible anytime algorithm that performed well 
on a simple set of test problems. 

For instance, in a maze domain with stochastic move ac­
tions, the algorithm took advantage of bottlenecks, tunnels 
and alternative branches. In a simulated planetary rover do­
main with uncertain action durations, some hints for good 
split partitions lead to dramatically decreased complexity. 
The resulting plan instructed the agent to perform certain ac­
tions until a resource (one feature of the factored state space) 
drops below a certain threshold. This was very easy to under­
stand for humans unlike the optimal policy given in the form 
of a huge lookup-table. 

5 Conclusions 
The main objective of this work has been to find solutions 
for decision-theoretic planning problems that are optimal (or 
near-optimal) and also compact and understandable. We de­
fined a measure of the complexity of contingency plans, re­
flecting their size, branching factor and the size of the label 
descriptors. The results we gained by experimenting with 
several plan-transformation operators are encouraging and 
show the potential of automated generation of understandable 
contingency plans. 

There are several interesting directions for future research. 
First, a better measure of the plan complexity could be devel­
oped. Second, additional operators could be added. Third, 
the language for representing edge labels could be enriched. 
Finally, methods for finding good split partitions have to be 
found to create more reliable algorithms. The results reported 
in this paper provide a good framework for future exploration 
of these research directions. 
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