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Abstract 

We address the problem of optimally controlling 
stochastic environments that are partially observ­
able. The standard method for tackling such prob­
lems is to define and solve a Partially Observable 
Markov Decision Process (POMDP). However, it 
is well known that exactly solving POMDPs is 
very costly computationally. Recently, Littman, 
Sutton and Singh (2002) have proposed an alter­
native representation of partially observable en­
vironments, called predictive state representations 
(PSRs). PSRs are grounded in the sequence of ac­
tions and observations of the agent, and hence re­
late the state representation directly to the agent's 
experience. In this paper, we present a policy iter­
ation algorithm for finding policies using PSRs. In 
preliminary experiments, our algorithm produced 
good solutions. 

1 Predictive State Representation 
We assume that we are given a system consisting of a dis­
crete, finite set of n states 5, a discrete finite set of actions 
A, and a discrete finite set of observations O. The interaction 
with the system takes place at discrete time intervals. The 
initial state of the system so is drawn from an initial probabil­
ity distribution over states I. On every time step t, an action 
at is chosen according to some policy. Then the underlying 
state changes to and a next observation 0i+1 is gener­
ated. The system is Markovian, in the sense that for every 
action, the transition to the next state is generated according 
to a probability distribution described by an (n x n) transition 
matrix Similarly, for a given observation o and action a, 
the next observation is generated according to an (n x n) diag­
onal observation matrix where is the probability of 
observation o when action a is selected and state i is reached. 
Since we are interested in optimal control, rather than predic­
tion, we also assume that there exists a set of reward vectors 

for each action a, where is the reward for taking action 
a in underlying state i 

PSRs are based on the notion of tests. A test is an ordered 
sequence of action-observation pairs q = The 
prediction for test q is the probability of the sequence of ob­
servations being generated, given the sequence of ac­

tions a1...ak. The prediction for a test q given prior history 
//-, denoted is the probability of seeing the sequence 
of observations of q after seeing history h and taking the se­
quence of actions specified by q. For any set of tests Q, its 
prediction vector is: 

A set of tests Q is a PSR if its prediction vector forms a suffi­
cient statistic for the dynamical system, i.e., if all tests can be 
predicted based on p(Q|h). Of particular interest is the case 
of linear PSRs, in which there exists a projection vector mq 

for any test q such that 

Littman et al. also define an outcome function u map­
ping tests into n-dimensional vectors defined recursively by: 

and u(aoq) = where e repre­
sents a null test and cn is the (1 x n) vector of all Is. Each 
component u, (q) indicates the probability of the test q when 
its sequence of actions is applied from state st. A set of 
tests Q = = 1,2,..A;} is called linearly independent 
if the outcome vectors of its tests arc 
linearly independent. Using this definition, such a set Q can 
be found by a simple search algorithm in polynomial time, 
given the POMDP model of the environment. Littman, Sut­
ton and Singh (2002) showed that the outcome vectors of the 
tests in Q can be linearly combined to produce the outcome 
vector for any test. 

2 Policy evaluation using PSRs 
We assume that we are given a policy and that 
the initial start state of the system, is drawn according to 
the staring probability distribution I. If we consider a given 
horizon t, only a finite number of tests of length t are possible 
when starting from I. Let be this set of possible tests. 

The value of a memoryless policy with respect to a given 
start state distribution I is the expected return over all possi­
ble tests that can occur when the starting state is drawn form 
I and then behavior is generated according to policy  

where is the expected return for test q given that the 
initial state is drawn from / and policy is followed. 
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Let U be the matrix formed by concatenating 
the outcome vectors for all tests in and be its pseu-
doinverse. The columns of U define the probability of each 
test in when applied from each underlying state. Conse­
quently, IU represents the probability of the tests in when 
starting in /. 

For each action-observation combination ao, we can define 
a projection matrix: 

and a projection vector: 

Considering the probability distribution over tests that 
generates and the expected return of a test q given / and 
we have: 

This evaluation method requires a large amount of precom-
putation, but it can be useful if a small horizon suffices to get 
a good policy. 

3 Policy iteration for PSRs 
Similar to POMDPs in PSRs we can define action-value func­
tions on the level of tests. The action-value function for tak­
ing action a after test q can be computed as: 

Then, the policy of the agent can be improved by choosing 
an action greedily with respect to this action-value function: 

The agent must, in other words, select the best pol­
icy tree rooted at each decision point and each time 
step. Therefore the total running time of the algorithm is 

and the complexity of the algorithm is only 
single-exponential in the horizon time. 

4 Experimental results 
We experimented with a standard gridworld navigation task 
used in the POMDP literature (Cassandra, 1994; Parr& Rus­
sell, 1996). The environment is a (4 x 4) grid. The agent 
has four actions, N, S, E, and W, which change its location 
deterministically to one of the four neighboring states. There 
is one goal state, in the lower right corner, which generates a 
distinct observation and a reward of +1. Al l the other states 
are perceptually aliased and generate no reward. The initial 
probability distribution is uniform over all states except the 
goal. Taking any action in the goal state moves the agent uni­
formly randomly to one of the other states. 

For this problem we have 6 possible combinations of 
action-observation (ao) pairs: 1 -Nnothing,2-Wnothing,3-
Enothing,4-Snothing,5-Egoal,6-Sgoal. The set of core tests 

Figure 1: Policy quality vs. number of iterations for the 4x4 
grid world 

Q found consists of 16 linearly independent tests: 4, 5, 6, 15, 
36, 46, 436, 446, 4436, 3336, 1336, 44336, 43336, 31336. 
We tried this problem for finite horizon case with a discount 
factor r = 0.8. Figure 1 indicates the performance of the 
algorithm on this problem. 

5 Conclusion and future work 
The key difficulty for our planning algorithm is that the num­
ber of possible tests grows exponentially with the horizon 
length. Hence, the algorithm cannot be used for large prob­
lems or for the infinite horizon case. However, this is not 
worse than other existing exact solution methods for solving 
POMDPs. Our hope is that good approximations of the opti­
mal solution can be found efficiently. 
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