
A lookahead strategy for solving large planning problems* 

Vincent Vidal 
CRIL - Universite d'Artois 
rue de 1'Universite - SP 16 
62307 Lens Cedex, France 
vidal@cril.univ-artois.fr 

Abstract 

Relaxed plans are used in the heuristic search plan­
ner FF for computing a numerical heuristic and ex­
tracting helpful actions. We present a novel way 
for extracting information from the relaxed plan 
and for dealing with helpful actions, by consider­
ing the high quality of the relaxed plans. In numer­
ous domains, the performance of heuristic search 
planning and the size of the problems that can be 
handled have been drastically improved. 

1 Computing and using lookahead states 
In classical forward state-space search algorithms, a node in 
the search graph represents a planning state and an arc start­
ing from that node represents the application of one action to 
this state, that leads to a new state. In order to ensure com­
pleteness, all actions that can be applied to one state must be 
considered. The order in which these states wil l then be con­
sidered for development depends on the overall search strat­
egy: depth-first, breadth-first, best-first... 

Let us now imagine that for each evaluated state S, we 
knew a valid plan P that could be applied to S and would 
lead to a state closer to the goal than the direct descendants 
of 5. It could then be interesting to apply P to 5, and use 
the resulting state S' as a new node in the search. This state 
could be simply considered as a new descendant of S. 

We have then two kinds of arcs in the search graph: the 
ones that come from the direct application of an action to a 
state, and the ones that come from the application of a valid 
plan to a state S and lead to a state S' reachable from S. We 
wil l call such states lookahead states, as they are computed 
by the application of a plan to a node S but are considered in 
the search tree as direct descendants of S. Nodes created for 
lookahead states wil l be called lookahead nodes. Plans label­
ing arcs that lead to lookahead nodes wil l be called lookahead 
plans. Once a goal state is found, the solution plan is then 
the concatenation of single actions for arcs leading to classi­
cal nodes and lookahead plans for arcs leading to lookahead 
nodes. 

*This work has been supported in part by the IUT de Lens, the 
CNRS and the Region Nord/Pas-de-Calais under the TACT Pro­
gramme. 

The determination of an heuristic value for each state as 
performed in the FF planner [Hoffmann and Nebel, 2001] 
offers a way to compute such lookahead plans. FF creates 
a planning graph [Blum and Furst, 1997] for each encoun­
tered state S, using the relaxed problem obtained by ignoring 
deletes of actions and using S as initial state. A relaxed plan 
is then extracted in polynomial time and space from this plan­
ning graph. The length in number of actions of the relaxed 
plan corresponds to the heuristic evaluation of the state for 
which it is calculated. Generally, the relaxed plan for a state 
S is not valid for S, as deletes of actions are ignored during 
its computation. In numerous benchmark domains, we can 
observe that relaxed plans have a very good quality because 
they contain a lot of actions that belong to solution plans. We 
propose a way of computing lookahead plans from these re­
laxed plans, by trying as most actions as possible from them 
and keeping the ones that can be collected into a valid plan. 

The lookahead algorithm and the modifications to the 
search algorithm are the following (all details can be found 
in [Vidal, 2002]). Each time a state S is evaluated, it is en­
tered into the open list. The relaxed plan extracted by the 
evaluation function is used to compute a lookahead plan P 
which leads to a state S" reachable from S. If P is more than 
one action long, S' is evaluated and added to the open list. 
Let P be a relaxed plan for a state S. A lookahead plan P' 
is computed as follows: all actions of P are observed in turn. 
When an action a is applicable to 5, it is added to the end of 
P' and S is updated (by the application of a). When all ac­
tions of P have been tried, this process is iterated without the 
actions that have been applied, until no action can be used. 

Completeness and correctness of search algorithms are pre­
served by this process, because no information is lost: all ac­
tions that can be applied to a state are still considered, and be­
cause the nodes that are added by lookahead plans are reach­
able from the states they are connected to. The only modifi­
cation is the addition of new nodes, corresponding to states 
that can be reached from the initial state. 

2 Using helpful actions: the "optimistic" 
best-first search algorithm 

In classical search algorithms, all actions that can be applied 
to a node are considered the same way: the states that they 
lead to are evaluated by an heuristic function and are then or-

1524 POSTER PAPERS 



dered, but there is no notion of preference over the actions 
themselves. Such a notion of preference during search has 
been introduced in the FF planner, with the concept of help­
ful actions. Once a relaxed plan is extracted for a state S, the 
actions of the relaxed plan that are executable in S are con­
sidered as helpful, while the other actions are forgotten by the 
local search algorithm of FF. This strategy appeared to be too 
restrictive, so the set of helpful actions is augmented in FF by 
all actions executable in S that produce fluents that were con­
sidered as subgoals at the first level of the planning graph, 
during the extraction of the relaxed plan. The main draw­
back of this strategy, as used in FF, is that it does not preserve 
completeness: the actions executable in a state S that are not 
considered as helpful are simply lost. FF switches to a com­
plete best-first algorithm when no solution is found. 

We present a way to use such a notion of helpful actions 
in complete search algorithms, that we call optimistic search 
algorithms because they give a maximum trust to the infor­
mations returned by the computation of the heuristic. The 
principles are the following: 

• Several classes of actions are created. In our implemen­
tation, we only use two of them: helpful actions (the re­
stricted ones), and rescue actions that are all the actions 
that are not helpful. 

• When a newly created state S is evaluated, the heuris­
tic function returns the numerical estimation of the state 
and also the actions executable in S partitioned into their 
different classes. For each class, one node is created for 
the state 5, that contains the actions of that class. 

• Nodes containing helpful actions are always preferred 
for development over nodes containing rescue actions, 
whatever their numerical heuristic values are. 

No information is lost by this process. The way nodes are 
developed is simply modified: a state S is developed first with 
helpful actions, some other nodes are developed, and then 

S can potentially be developed with rescue actions. As the 
union of helpful actions and rescue actions is equal to the set 
of all the actions that can be applied to 5, completeness and 
correctness are preserved. 

3 Experimental evaluation 
We compare four planners: FF v2.3, and three different set­
tings of our planning system called YAHSP (which stands for 
Yet Another Heuristic Search Planner1) implemented in Ob­
jective Caml: BFS (Best First Search: classical WA* search, 
with W = 3. The heuristic is based on the computation of a 
relaxed plan as in FF), OBFS (Optimistic Best First Search: 
identical to BFS, with preference of helpful actions over res­
cue actions), and LOBFS (Lookahead Optimistic Best First 
Search: identical to OBFS, with lookahead states). 

We report here complete results for Logistics domain (see 
Figure 1) and show in Table 1 some data about the largest 
problems solved by FF, OBFS and LOBFS, in order to realize 
the progress accomplished in the size of the problems that can 
be solved by a STRIPS planner, for five different domains. 

Acknowledgments 
Thanks a lot to Pierre Regnier for his help... 

References 
[Blum and Furst, 1997] A. Blum and M. Furst. Fast planning 

through planning-graphs analysis. Artificial Intelligence, 90(1-
2):281-300, 1997. 

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF 
planning system: Fast plan generation through heuristic search. 
JAIR, 14:253-302,2001. 

[Vidal, 2002] V. Vidal. A lookahead strategy for heuristic search 
planning. Technical Report 2002-35-R, IRIT, Universite Paul 
Sabatier, Toulouse, France, 2002. 
1 http://www.cril.univ-artois.fr/~vidal/yahsp.html 

POSTER PAPERS 1525 


