
Using Available Memory to Transform Graphplan's Search 
Terry Zimmerman & Subbarao Kambhampati 
Department of Computer Science and Engineering 
Arizona State University, Tempe AZ 85287-5406 

{zim,rao| @asu.cdu 

Abstract 
We present a major variant of the Graphplan algo­
rithm that employs available memory to transform 
the depth-first nature of Graphplan's search into an 
iterative state space view in which heuristics can 
be used to traverse the search space. When the 
planner, PEGG, is set to conduct exhaustive 
search, it produces guaranteed optimal parallel 
plans 2 to 90 times faster than a version of Graph-
plan enhanced with CSP speedup methods. By 
heuristically pruning this search space PEGG pro­
duces plans comparable to Graphplan's in make-
span, at speeds approaching state-of-the-art heuris­
tic serial planners. 

1 Mot i va t i on and Approach 
Despite the recent dominance of heuristic state-search 
planners over Graphplan-style planners, the Graphplan 
approach [Blum and Furst 1997] is still one of the most 
effective ways to generate so-called "optimal parallel 
plans". While state-space planners are drowned by the 
exponential branching factors of the search space of par­
allel plans, Graphplan excels due to the way it combines 
an IDA* style iterative search [Bonet and Geffner, 1999] 
with a highly efficient CSP-based, incremental generation 
of valid action subsets. We present here a system called 
PEGG, that addresses weaknesses in Graphplan's ap­
proach by employing available memory to: 1) reduce the 
redundant search Graphplan conducts in consecutive it­
erations, and 2) more importantly, to transform Graph-
plan's IDA* search into iterative expansion of a select set 
of states that can be traversed any order. 

A shortfall of the IDA* 's approach to search is the fact 
that it regenerates many of the same nodes in each of its 
iterations. This can be traced to using too little memory 
in many cases; the only information carried over from 
one iteration to the next is the upper bound on the f-
value. Given that consecutive iterations of search over­
lap significantly, we investigated using additional mem­
ory to store a trace of the explored search tree to avoid 
repeated re-generation of search nodes. With a represen­
tation of the explored search space, we can transform the 
way this space is extended during the next iteration. In 
particular, we can (a) expand search trace nodes in the 
order of their heuristic merit and (b) we may also con­
sider iteratively expanding a select set of states. This 
strategy is too costly for normal IDA* search, but Graph-
plan's type of IDA* search is particularly well-suited to 

these changes as the kth level planning graph provides a 
compact way of representing the search space traversed 
by the corresponding IDA* search in its kth iteration. 
The state space view provided by the search trace allows 
us to transform Graphplan's search from its depth-first 
default to a more informed traversal of the space. 

2 Design and Exper iments 
As would be expected for IDA* search there is great 

similarity (redundancy) in the search space for successive 
search episodes as the plan graph is extended. In fact, the 
search conducted at any level k+1 of the graph is essen­
tially a replay of the search conducted at the previous 
level k with certain well-defined extensions. Specifi­
cally, every set of subgoals reached in the backward 
search of episode n, starting at level k, wi l l be generated 
again by Graphplan in episode n+1 starting at level k+1. 

Figure J. State space view of Graphplan's search space: 
3 consecutive search episodes leading to a solution 

Figure 1 depicts the state space tree structure correspond­
ing to Graphplan's search over three consecutive search 
iterations on a hypothetical problem. The dark shaded 
states are first produced during Graphplan's attempt to 
satisfy the XYZ goal at level 7. They are generated again 
in the next episode, each at one level higher, along with 
some new states (shown in lighter shade). Finally, in the 
third episode Graphplan regenerates the dark and lighter 
shaded states, attempting to satisfy XYZ at level 9, and 
finds a solution. 

1526 POSTER PAPERS 



EGBG [Z immerman, Kambhampat i , 1999] 
used memory to aggressively record the experi-
ence in each search episode, essentially avo id­
ing a l l redundant effort . That approach con­
fronted memory constraints on larger problems, 
but it suggests a more power fu l use for a pared-
down search trace: exp lo i t ing the snapshot v iew 
of the entire search space of a Graphplan itera­
t ion to focus on the most promis ing areas. This 
transformation frees us f rom the depth-f irst na­
ture of Graphplan's search, permi t t ing move­
ment about the search space to focus on its most 
promis ing sections f irst -or even exclusively. 

A summary of PEGG (for detai ls; [Z immer­
man and Kambhampat i , 2003]) relies on these 
def ini t ions: Search segment: a state generated 
dur ing Graphplan's regression search f rom the 
goal state, indexed to a specif ic plan graph 
level. It holds the state's goal l ist , a pointer to 
the parent search segment, and the actions as­
signed in satisfying the parent's goals. Search 
t race (ST) : the l inked set of search segments 
(states) representing the search space visi ted in 
a Graphplan backward search episode. The sets 
of states in each of the three shadings of Figure 
1 can be seen as the ST after each of the three 
episodes. T r a n s p o s i t i o n : The extant trace of 
search segments (states) after search episode n 
is transposed up one planning graph level for 
episode n+1 as fo l lows: For each ST search 
segment associated w i th graph level j associate it 
w i th level j+1 for episode n+1. V i s i t i n g a search 
segment: the goals of segment Sp are memo 
checked at their associated level and if va l id , 
PEGG initiates Graphplan's CSP-style search to 
satisfy them. The process is enhanced by a cadre of 
ef f ic iency techniques such as a bi-level plan graph, 
domain preprocessing, explanation based learning 
(EBL), dependency directed backtracking (DDB), and 
goal & action ordering. Whenever the goals of Sp are va l ­
id ly assigned, a ch i ld segment is created containing Sp 's 
goals regressed over the assigned actions, and l inked to 
SP (thus extending the ST). 

The PEGG algor i thm: the graph is bu i l t unt i l the prob­
lem goals appear non-mutex, and the first regression 
search episode is conducted ala Graphplan fashion. Dur­
ing this search, the in i t ia l trace is constructed, concisely 
capturing al l 'states' generated dur ing the search process. 
If no solut ion is found, the ST directs the search process 
for future iterations. Th is search is 2-phased: select a 
promis ing ST state, then Graphplan's depth-f irst, CSP-
type search on the state's subgoals is conducted. Another 
ST search segment is heur ist ical ly selected if search fai ls. 
Since the ST provides a state space v iew, PEGG can use 
'distance based' heuristics (c.f. HSP-R [Bonet and Geff-
ner, 1999] and A l t A l t [Nguyen and Kambhampat i , 
2000]) . For results reported here, the 'adjusted sum' 
heuristic f rom the latter is used. 

Table 1 compares PEGG against standard Graphplan 
and a h ighly enhanced version (GP-e), which has been 
augmented w i th the ef f ic iency methods mentioned above. 
T w o PEGG modes of operat ion are reported; 1) so-PEGG: 
make-span opt imal , ST search segments ordered accord­
ing to a state space heurist ic, all segments v is i ted, 2) 
PEGG: Order ing the ST search segments as for 1, beam 

Problem 
Graphplan 5oPEGG 

cpu sec 
(steps/acts) 

PEGG 
cpu sec 

(steps/acts) 

Speedup I 
(PEGG vs. 

GP-e) 
Problem cpu sec (steps/acts) 

Stnd. GP-e 

5oPEGG 
cpu sec 

(steps/acts) 

PEGG 
cpu sec 

(steps/acts) 

Speedup I 
(PEGG vs. 

GP-e) 

bw-large-B 194.8 13.4(18/18) 12.2 3.1 (18/18) 4.3x 
bw-large-D ~ ~ (36/36) ~ 340 (38 / 38) >5x 
att-log-b - ~ ~ 120 (11/79) >15x 
gripper-15 - - (36/45) 47.5 16.7 (36/45) >107x 
gripper-20 ~ ~ (40/59) ~ 44.8 (40/59) >40x 
tower-9 ~ ~ (511/511) 118 23.6(511/511) >76x 
TSP-12 ~ ~ (12/12) 7.2 6.5 (12/12) >277x 
AIPS '98, '00, '02 Competition Problems \ 
gripper-x-4 ~ 190 (19/29) 73.9 30.9 (19/29) 6.1x 
gripper-x-5 ~ - 512 110 (23/35) >16x 
log-y-4 - 470 (11/60) 366 330 (11/58) 1.4x 
blocks-10-1 - 95.4 (34/34) 18.7 11.0 (34/34) 8.7x 
blocks-16-2 ~ - (54/54) ~ 58.7 (54/54) >31x 

logistics-10-0 - 30.0 (15/56) 21 8.9 (15/55) 3.4x 

logistics-12-1 - - 1101 (15/75) 119 (15/75) >15.1x 
freecell-2-1 98.0 (6/10) 80.1 62.9 1.5x 
depot-6512 239 5.1 5.0 2.1 2.4x 
depot-1212 ~ - (22/55) ~ 127 (22/56) >14x 
driverlog-2-3-6 - 27.5 (7/20) 1.9 1.9 (7/20) 14.5x 
driverlog-4-4-8 ~ ~ ~ 589 (10/24) >3x 
ztravel-3-7a - ~ 1434 (10/23) 222 (10/21) >8x 
ztravel-3-8a - 972 (7/25) 11.2 2.3 (7/25) 423x 

Table J. PEGG vs. Graphplan and enhanced Graphplan (GP-e) 
GP-e: enhanced Graphplan (sec text) so-PEGG step-optimal, search via 
the ST. PEGG: beam search on best 20% of search segments in ST 
- indicates failure in 30 min limit, cpu time 
Parentheses next to cpu time give # of steps/ # of actions in solution. 
Allegro Lisp, runtimes (cxcl. gc time) on Pentium 900 mhz, 384 MB RAM 

search on only the heurist ical ly 'best ' f ract ion. The f irst 
approach maintains Graphplan's guarantee of step op t i -
mal i ty whi le the latter sacrifices the guarantee of opt imal ­
ly in favor of pruning search in all search episodes and 
bounds the size of the search trace that is maintained in 
memory. Empi r ica l ly we f ind that opt imal make-span 
plans are generally found by PEGG regardless, (one ex­
ception shown in bold) and speedups as h igh as two or­
ders of magnitude over enhanced Graphplan are 
achieved. 

R e f e r e n c e s 
Blum A. and Furst M.1997. Fast planning through planning 
graph analysis. Artificial Intelligence 90(1-2). 1997. 
Bonet, B. and Geffner, H. 1999. Planning as heuristic search: 
New results. In Proceedings of ECP-99, 1999. 
Nguyen, X. and Kambhampati, S. 2000. Extracting effective 
and admissible state space heuristics from the planning graph. 
In Proceedings of. AAAI-2000. 

Zimmerman, T. and Kambhampati, S. 1999. Exploiting Sym­
metry in the Planning-graph via Explanation-Guided Search. 
In Proceedings of AAAJ-99, 1999. 
Zimmerman, T. and Kambhampati, S. 2003. Using memory to 
transform search on the planning graph. ASU Technical Re­
port (available at http://rakaposhi.eas.asu.edu/pegg-tr.pdO 

POSTER PAPERS 1527 


