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Abs t rac t 

Best-first search is limited by the memory 
needed to store nodes in order to detect dupli­
cates. Disks can greatly expand the amount of 
storage available, but randomly accessing a disk 
is impractical. Rather than checking newly-
generated nodes as soon as they are generated, 
we append them to a disk file, then sort the 
file, and finally scan the sorted file in one pass 
to detect and remove duplicate nodes. This 
also speeds up such searches that fit entirely 
in memory, by improving cache performance. 
We implement this idea for breadth-first search, 
performing the first complete searches of the 
2 x 7 sliding-tile puzzle, and the 18-disk, 4-peg 
Towers of Hanoi puzzle. 

1 In t roduc t i on : The Prob lem 
Best-first search algorithms, such as breadth-first search 
(BFS), Dijkstra's algorithm [Dijkstra, 1959], and A* 
[Hart, Nilsson, k Raphael, 1968], store every node that 
is generated, in either the Open list or the Closed list. 
One reason for doing this is to detect duplicate nodes, 
and avoid expanding a state more than once. As a result, 
these algorithms are limited by the available memory. 

In some problems, this memory l imitation can be 
avoided by depth-first searches (DFS) such as depth-
first iterative-deepening (DFID) or iterative-deepening-
A* ( IDA*) [Korf, 1985], but DFS can generate ex­
ponentially more nodes than BFS. For example, in a 
rectangular-grid problem space, BFS wil l generate 0(r2) 
nodes within a radius of r, while DFID will generate 
0(3r) nodes. While there are ways of detecting some 
duplicate nodes in a DFS[Taylor k Korf, 1993], they do 
not apply to all problem spaces. 

2 Front ier Search 
An algorithm called frontier searc/i[Korf, 1999; Korf k 
Zhang, 2000] saves only the Open list of nodes at the 
frontier of the search, and not the Closed list of nodes 
that have been expanded, thus saving some memory. 

Wi th each node, it stores a used-operator bit for each op-
erator, to indicate whether the neighboring state reached 
by that operator has already been generated. For exam­
ple, the sliding-tile puzzles require four such bits for each 
state, one for each direction in which a tile could move. 
When a parent node is expanded, only children that are 
reached via unused operators are generated, and the par­
ent node is deleted from memory. In each child node, the 
operator that generates the parent is marked as used. 
When duplicate states are found in the Open list, only 
one copy is kept, and any operator that is marked as 
used in any copy is marked as used in the retained copy. 
Since the closed list is not stored, reconstructing the so­
lution path requires additional work. See [Korf, 1999; 
Korf k Zhang, 2000] for two ways to do this. 

The memory required by frontier search is propor­
tional to the maximum size of the Open list, or the width 
of the problem space, rather than the size of the space. 
For example, in the grid space mentioned above, the 
width of the space grows only linearly with the search 
radius, while the entire space grows quadratically. As 
another example, the width of the n-disk, 3-peg Towers 
of Hanoi space is only 2n states, while the entire space 
contains 3n states. Frontier search is still l imited by the 
memory required to store the Open list, however. 

3 Delayed Dupl icate Detect ion ( D D D ) 

Hard disks with hundreds of gigabytes of storage are 
available for less than a dollar per gigabyte, which is over 
a hundred times cheaper than memory. Because of high 
latency, however, a disk behaves more like a sequential 
device, such as a magnetic-tape drive, with large capac­
ity and high bandwidth, but only if it is accessed se­
quentially. To quickly detect duplicate states in a search 
algorithm, however, nodes are usually stored in a hash 
table, which is designed to be accessed randomly. 

Our solution to this problem is rather than checking 
each newly-generated node for duplicates as soon as it is 
generated, we append each node to a disk file containing 
previously generated nodes. At some point later we sort 
the file, thereby bringing together nodes representing the 
same state. Then we scan the sorted list of nodes in one 
pass, merging any duplicate nodes. 
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3.1 B read th -F i r s t Front ie r Search 

As a simple example, we describe breadth-first frontier 
search with delayed duplicate detection. BFS is normally 
implemented with a FIFO queue, which we implement 
with two disks files, an input file and an output file. Ini­
tially, the input file contains the init ial state. As we read 
each node in the input file, we expand i t , and write its 
children to the output file, with no duplicate checking. 
When the input file is exhausted, we delete i t . At that 
point, the output file contains all the nodes at the next 
depth, including any duplicate nodes. We then sort the 
nodes in the output file by their state representations, 
which brings together any duplicate nodes representing 
the same state. Next, we linearly scan the output file, 
merging duplicate nodes and ORing their used operator 
bits, and write one copy of each state to a new input file, 
deleting the output file when we're done. This completes 
one level of the breadth-first search. The algorithm con­
tinues unti l expanding the nodes in the input file doesn't 
generate any more nodes in the output file. 

3.2 Sor t ing the D isk Fi les 

Algorithms for sorting disk files are well-known. See 
[Garcia-Molina, Ullman, & Widom, 2000], pp. 42-48. 
The basic algorithm is to read as much of the unsorted 
file as wil l fit into memory, sort it in memory using quick­
sort, for example, and write the sorted portion of the 
file to a new subfile. Continue until the entire original 
file has been read and written into a set of sorted sub­
files. Then, all the sorted subfiles are merged in one pass, 
storing the head of each file in memory, and writ ing the 
lowest record to a final sorted output file. 

3.3 D D D i n M e m o r y 

Surprisingly, delayed duplicate detection is useful even 
when all nodes fit in memory, resulting in reduced run­
ning time due to improved cache performance. In the 
standard implementation of breadth-first search in mem­
ory, the Open list is stored in a hash table. As each 
new node is generated, it is looked up in the hash table, 
which often results in a cache miss, since the hash func­
tion is designed to randomly scatter the nodes. A DDD 
implementation doesn't use a hash table, but a single 
FIFO queue in memory, reading nodes off the head of 
the queue, and appending them to the tai l . Once a level 
of the search is completed, the queue is sorted in mem­
ory using an algorithm such as quicksort, and the sorted 
queue is scanned, merging duplicate nodes. The advan­
tage of this approach is that the queue is only accessed 
at the head and tai l , or at two points in between during 
quicksort, and hence most memory references wil l reside 
in cache, reducing the running time. 

4 Exper iments 

We implemented a breadth-first search on sliding-tile 
puzzles, and the 4-Peg Towers of Hanoi problem. 

4.1 S l id ing-T i le Puzzles 
[Schofield, 1967] published a complete breadth-first 
search of the 3 x 3 Eight puzzle. We completed a BFS for 
all sliding-tile puzzles up to the 2 x 7 Thirteen Puzzle. 
Table 1 below shows the results. The first column gives 
the x and y dimensions of the puzzle, and the second 
column gives the number of moves needed to reach all 
solvable states, starting with the blank in a corner posi­
t ion. This is also the worst-case optimal solution length, 
for a goal with the blank in a corner. The third column 
gives the number of solvable states, which is (xy)\/2, and 
the fourth column gives the width of the problem space, 
which is the maximum number of nodes at any depth. 

Size Moves Total States Max Width 
2 x 2 6 12" 2 
2 x 3 21 360 44 
2 x 4 37 20,160 1,999 
3 x 3 31 181,440 24,047 
2 x 5 55 1,814,400 133,107 
2 x 6 80 239,500,800 13,002,649 
3 x 4 53 239,500,800 21,841,159 
2 x 7 108 43,589,145,600 1,862,320,864 

Table 1: Sliding-Tile Puzzle Results 

The 3 x 4 and 2 x 6 Eleven Puzzles were the largest 
that we could solve in memory. We implemented both 
a standard BFS algorithm, using one bit of memory per 
state, and also breadth-first frontier search with delayed 
duplicate detection. The standard BFS required 17.5 
minutes, while the frontier search with DDD required 
only 9.6 minutes, on a 440 Megahertz Sun Ultra 10 work­
station. This demonstrates that DDD frontier search is 
useful even for problems that fit in memory. 

The 2 x 7 Fourteen Puzzle was the largest we could 
search exhaustively wi th our 120 gigabyte disk. At 8 
bytes per state, this problem required about 15 gigabytes 
of disk storage, and ran for 51 hours, 13 minutes. The 
ratio of the problem size to the problem width is about 
23.4, il lustrating the advantage of frontier search. 

4.2 Towers of H a n o i 
For the standard 3-peg Towers of Hanoi problem, there 
is a simple algorithm that guarantees the shortest path 
between any pair of states. The 4-peg Towers of Hanoi 
puzzle, known as Reve's puzzle, is much more interest­
ing. There exists a algorithm for finding a solution, and 
a conjecture that it generates optimal solutions, but the 
conjecture remains unproven. [van de Liefvoort, 1992] 
contains a good bibliography for this problem. [Szegedy, 
1999] gives bounds for the A:-peg version, but they in­
clude an unspecified constant in the exponent. 

For the sliding-tile puzzles, all paths between any pair 
of states have the same even-odd parity, and the algo­
r i thm described in Section 3.1 works correctly. For the 
Towers of Hanoi, however, two states can have both even 
and odd length paths between them. In that case, fron­
tier search wi th delayed duplicate detection can fail by 
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leaking into the interior of the search. One solution to 
this problem is to store two complete levels of the search 
at a time. See our full paper for the details [Korf, 2003]. 

Using this algorithm, we were able to exhaustively 
search all problems through 18 disks, starting with all 
disks on one peg. Table 2 shows the results. The first 
column gives the number of disks, and the second col­
umn shows the minimum number of moves required to 
move all the disks from one peg to another. The third 
column gives the total number of states of the problem, 
which is 4 n , where n is the number of disks. The fourth 
column shows the maximum width of the graph, starting 
from a state with all disks on one peg. In all cases, the 
optimal number of moves equals the conjectured mini­
mal number of moves. The 18-disk problem took almost 
6 days to run, and at 8 bytes per state required about 30 
gigabytes of disk space. Note that the ratio of the total 
number of states to the problem width for the 18-disk 
problem is almost 34.5. 

Disks Moves Total States Max Width 

r 1 4 3 
2 3 16 6 
3 5 64 30 
4 9 256 72 
5 13 1,024 282 
6 17 4,096 918 
7 25 16,284 2,568 
8 33 65,536 9,060 
9 41 262,144 31,638 

10 49 1,048,576 109,890 
11 65 4,194,304 335,292 
12 81 16,777,216 1,174,230 
13 97 67,108,864 4,145,196 
14 113 268,435,456 14,368,482 
15 129 1,073,741,824 48,286,104 
16 161 4,294,967,296 162,989,898 
17 193 17,179,869,184 572,584,122 
18 225 68,719,476,736 1,994,549,634 

Table 2: 4-Peg Towers of Hanoi Results 

5 Conclusions and Fur ther Work 
We showed that delaying the detection of duplicate 
nodes in a breadth-first search can effectively make use 
of very large capacity disk-storage systems. We also 
showed how to combine this idea with frontier search. 
In addition, we demonstrated that these ideas can also 
speed up a search that occurs entirely in memory. Using 
these algorithms, we completed breadth-first searches of 
sliding-tile puzzles with up to 43 billion nodes, and 4-peg 
Towers of Hanoi problems with up to 68 billion nodes. 
For the 4-peg Towers of Hanoi, we verified a conjecture 
regarding optimal solution lengths to 18 disks. 

Current work is focussed on implementing these tech­
niques for more complex best-first search algorithms such 
as Dijkstra's algorithm [Dijkstra, 1959] and A* [Hart, 
Nilsson, & Raphael, 1968]. 
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