
Delayed Duplicate Detection: Extended Abstract

Richard E. K o r f
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abs t rac t

Best-first search is limited by the memory
needed to store nodes in order to detect dupli­
cates. Disks can greatly expand the amount of
storage available, but randomly accessing a disk
is impractical. Rather than checking newly-
generated nodes as soon as they are generated,
we append them to a disk file, then sort the
file, and finally scan the sorted file in one pass
to detect and remove duplicate nodes. This
also speeds up such searches that fit entirely
in memory, by improving cache performance.
We implement this idea for breadth-first search,
performing the first complete searches of the
2 x 7 sliding-tile puzzle, and the 18-disk, 4-peg
Towers of Hanoi puzzle.

1 In t roduc t i on : The Prob lem
Best-first search algorithms, such as breadth-first search
(BFS), Dijkstra's algorithm [Dijkstra, 1959], and A*
[Hart, Nilsson, k Raphael, 1968], store every node that
is generated, in either the Open list or the Closed list.
One reason for doing this is to detect duplicate nodes,
and avoid expanding a state more than once. As a result,
these algorithms are limited by the available memory.

In some problems, this memory l imitation can be
avoided by depth-first searches (DFS) such as depth-
first iterative-deepening (DFID) or iterative-deepening-
A* (IDA*) [Korf, 1985], but DFS can generate ex­
ponentially more nodes than BFS. For example, in a
rectangular-grid problem space, BFS wil l generate 0(r2)
nodes within a radius of r, while DFID will generate
0(3r) nodes. While there are ways of detecting some
duplicate nodes in a DFS[Taylor k Korf, 1993], they do
not apply to all problem spaces.

2 Front ier Search
An algorithm called frontier searc/i[Korf, 1999; Korf k
Zhang, 2000] saves only the Open list of nodes at the
frontier of the search, and not the Closed list of nodes
that have been expanded, thus saving some memory.

Wi th each node, it stores a used-operator bit for each op-
erator, to indicate whether the neighboring state reached
by that operator has already been generated. For exam­
ple, the sliding-tile puzzles require four such bits for each
state, one for each direction in which a tile could move.
When a parent node is expanded, only children that are
reached via unused operators are generated, and the par­
ent node is deleted from memory. In each child node, the
operator that generates the parent is marked as used.
When duplicate states are found in the Open list, only
one copy is kept, and any operator that is marked as
used in any copy is marked as used in the retained copy.
Since the closed list is not stored, reconstructing the so­
lution path requires additional work. See [Korf, 1999;
Korf k Zhang, 2000] for two ways to do this.

The memory required by frontier search is propor­
tional to the maximum size of the Open list, or the width
of the problem space, rather than the size of the space.
For example, in the grid space mentioned above, the
width of the space grows only linearly with the search
radius, while the entire space grows quadratically. As
another example, the width of the n-disk, 3-peg Towers
of Hanoi space is only 2n states, while the entire space
contains 3n states. Frontier search is still l imited by the
memory required to store the Open list, however.

3 Delayed Dupl icate Detect ion (D D D)

Hard disks with hundreds of gigabytes of storage are
available for less than a dollar per gigabyte, which is over
a hundred times cheaper than memory. Because of high
latency, however, a disk behaves more like a sequential
device, such as a magnetic-tape drive, with large capac­
ity and high bandwidth, but only if it is accessed se­
quentially. To quickly detect duplicate states in a search
algorithm, however, nodes are usually stored in a hash
table, which is designed to be accessed randomly.

Our solution to this problem is rather than checking
each newly-generated node for duplicates as soon as it is
generated, we append each node to a disk file containing
previously generated nodes. At some point later we sort
the file, thereby bringing together nodes representing the
same state. Then we scan the sorted list of nodes in one
pass, merging any duplicate nodes.

POSTER PAPERS 1539

3.1 B read th -F i r s t Front ie r Search

As a simple example, we describe breadth-first frontier
search with delayed duplicate detection. BFS is normally
implemented with a FIFO queue, which we implement
with two disks files, an input file and an output file. Ini­
tially, the input file contains the init ial state. As we read
each node in the input file, we expand i t , and write its
children to the output file, with no duplicate checking.
When the input file is exhausted, we delete i t . At that
point, the output file contains all the nodes at the next
depth, including any duplicate nodes. We then sort the
nodes in the output file by their state representations,
which brings together any duplicate nodes representing
the same state. Next, we linearly scan the output file,
merging duplicate nodes and ORing their used operator
bits, and write one copy of each state to a new input file,
deleting the output file when we're done. This completes
one level of the breadth-first search. The algorithm con­
tinues unti l expanding the nodes in the input file doesn't
generate any more nodes in the output file.

3.2 Sor t ing the D isk Fi les

Algorithms for sorting disk files are well-known. See
[Garcia-Molina, Ullman, & Widom, 2000], pp. 42-48.
The basic algorithm is to read as much of the unsorted
file as wil l fit into memory, sort it in memory using quick­
sort, for example, and write the sorted portion of the
file to a new subfile. Continue until the entire original
file has been read and written into a set of sorted sub­
files. Then, all the sorted subfiles are merged in one pass,
storing the head of each file in memory, and writ ing the
lowest record to a final sorted output file.

3.3 D D D i n M e m o r y

Surprisingly, delayed duplicate detection is useful even
when all nodes fit in memory, resulting in reduced run­
ning time due to improved cache performance. In the
standard implementation of breadth-first search in mem­
ory, the Open list is stored in a hash table. As each
new node is generated, it is looked up in the hash table,
which often results in a cache miss, since the hash func­
tion is designed to randomly scatter the nodes. A DDD
implementation doesn't use a hash table, but a single
FIFO queue in memory, reading nodes off the head of
the queue, and appending them to the tai l . Once a level
of the search is completed, the queue is sorted in mem­
ory using an algorithm such as quicksort, and the sorted
queue is scanned, merging duplicate nodes. The advan­
tage of this approach is that the queue is only accessed
at the head and tai l , or at two points in between during
quicksort, and hence most memory references wil l reside
in cache, reducing the running time.

4 Exper iments

We implemented a breadth-first search on sliding-tile
puzzles, and the 4-Peg Towers of Hanoi problem.

4.1 S l id ing-T i le Puzzles
[Schofield, 1967] published a complete breadth-first
search of the 3 x 3 Eight puzzle. We completed a BFS for
all sliding-tile puzzles up to the 2 x 7 Thirteen Puzzle.
Table 1 below shows the results. The first column gives
the x and y dimensions of the puzzle, and the second
column gives the number of moves needed to reach all
solvable states, starting with the blank in a corner posi­
t ion. This is also the worst-case optimal solution length,
for a goal with the blank in a corner. The third column
gives the number of solvable states, which is (xy)\/2, and
the fourth column gives the width of the problem space,
which is the maximum number of nodes at any depth.

Size Moves Total States Max Width
2 x 2 6 12" 2
2 x 3 21 360 44
2 x 4 37 20,160 1,999
3 x 3 31 181,440 24,047
2 x 5 55 1,814,400 133,107
2 x 6 80 239,500,800 13,002,649
3 x 4 53 239,500,800 21,841,159
2 x 7 108 43,589,145,600 1,862,320,864

Table 1: Sliding-Tile Puzzle Results

The 3 x 4 and 2 x 6 Eleven Puzzles were the largest
that we could solve in memory. We implemented both
a standard BFS algorithm, using one bit of memory per
state, and also breadth-first frontier search with delayed
duplicate detection. The standard BFS required 17.5
minutes, while the frontier search with DDD required
only 9.6 minutes, on a 440 Megahertz Sun Ultra 10 work­
station. This demonstrates that DDD frontier search is
useful even for problems that fit in memory.

The 2 x 7 Fourteen Puzzle was the largest we could
search exhaustively wi th our 120 gigabyte disk. At 8
bytes per state, this problem required about 15 gigabytes
of disk storage, and ran for 51 hours, 13 minutes. The
ratio of the problem size to the problem width is about
23.4, il lustrating the advantage of frontier search.

4.2 Towers of H a n o i
For the standard 3-peg Towers of Hanoi problem, there
is a simple algorithm that guarantees the shortest path
between any pair of states. The 4-peg Towers of Hanoi
puzzle, known as Reve's puzzle, is much more interest­
ing. There exists a algorithm for finding a solution, and
a conjecture that it generates optimal solutions, but the
conjecture remains unproven. [van de Liefvoort, 1992]
contains a good bibliography for this problem. [Szegedy,
1999] gives bounds for the A:-peg version, but they in­
clude an unspecified constant in the exponent.

For the sliding-tile puzzles, all paths between any pair
of states have the same even-odd parity, and the algo­
r i thm described in Section 3.1 works correctly. For the
Towers of Hanoi, however, two states can have both even
and odd length paths between them. In that case, fron­
tier search wi th delayed duplicate detection can fail by

1540 POSTER PAPERS

leaking into the interior of the search. One solution to
this problem is to store two complete levels of the search
at a time. See our full paper for the details [Korf, 2003].

Using this algorithm, we were able to exhaustively
search all problems through 18 disks, starting with all
disks on one peg. Table 2 shows the results. The first
column gives the number of disks, and the second col­
umn shows the minimum number of moves required to
move all the disks from one peg to another. The third
column gives the total number of states of the problem,
which is 4 n , where n is the number of disks. The fourth
column shows the maximum width of the graph, starting
from a state with all disks on one peg. In all cases, the
optimal number of moves equals the conjectured mini­
mal number of moves. The 18-disk problem took almost
6 days to run, and at 8 bytes per state required about 30
gigabytes of disk space. Note that the ratio of the total
number of states to the problem width for the 18-disk
problem is almost 34.5.

Disks Moves Total States Max Width

r 1 4 3
2 3 16 6
3 5 64 30
4 9 256 72
5 13 1,024 282
6 17 4,096 918
7 25 16,284 2,568
8 33 65,536 9,060
9 41 262,144 31,638

10 49 1,048,576 109,890
11 65 4,194,304 335,292
12 81 16,777,216 1,174,230
13 97 67,108,864 4,145,196
14 113 268,435,456 14,368,482
15 129 1,073,741,824 48,286,104
16 161 4,294,967,296 162,989,898
17 193 17,179,869,184 572,584,122
18 225 68,719,476,736 1,994,549,634

Table 2: 4-Peg Towers of Hanoi Results

5 Conclusions and Fur ther Work
We showed that delaying the detection of duplicate
nodes in a breadth-first search can effectively make use
of very large capacity disk-storage systems. We also
showed how to combine this idea with frontier search.
In addition, we demonstrated that these ideas can also
speed up a search that occurs entirely in memory. Using
these algorithms, we completed breadth-first searches of
sliding-tile puzzles with up to 43 billion nodes, and 4-peg
Towers of Hanoi problems with up to 68 billion nodes.
For the 4-peg Towers of Hanoi, we verified a conjecture
regarding optimal solution lengths to 18 disks.

Current work is focussed on implementing these tech­
niques for more complex best-first search algorithms such
as Dijkstra's algorithm [Dijkstra, 1959] and A* [Hart,
Nilsson, & Raphael, 1968].

6 Acknowledgments
Larry Taylor brought the 4-Peg Towers of Hanoi problem
to my attention, and also used disk storage in a breadth-
first search to find duplicate operator strings [Taylor &
Korf, 1993]. Thanks to Jianming He for verifying the
Towers of Hanoi results. This research was supported
by NSF under grant No. EIA-0113313, by NASA and
JPL under contract No. 1229784, and by the State of
California MICRO grant No. 01-044.

References
[Dijkstra, 1959] Dijkstra, E. 1959. A note on two prob­

lems in connexion with graphs. Numerische Mathe-
matik 1:269-271.

[Garcia-Molina, Ullman, & Widom, 2000]
Garcia-Molina, H.; Ullman, J. D.; and Widom, J.
2000. Database System Implementation. Upper Saddle
River, N.J.: Prentice-Hall.

[Hart, Nilsson, & Raphael, 1968] Hart, P.; Nilsson, N.;
and Raphael, B. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans.
Systems Science and Cybernetics SSC-4(2):100-107.

[Korf & Zhang, 2000] Korf, R., and Zhang, W. 2000.
Divide-and-conquer frontier search applied to opti­
mal sequence alignment. In Proceedings of the Na­
tional Conference on Artificial Intelligence (AAAI-
2000), 910-916.

[Korf, 1985] Korf, R. 1985. Depth-first iterative-
deepening: An optimal admissible tree search. Ar­
tificial Intelligence 27(1):97-109.

[Korf, 1999] Korf, R. 1999. Divide-and-conquer bidi­
rectional search: First results. In Proceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), 1184-1189.

[Korf, 2003] Korf, R. 2003. Delayed duplicate detection:
initial results. In Proceedings of the IJCAI-03 Work­
shop on Model Checking and Artificial Intelligence.

[Schofield, 1967] Schofield, P. 1967. Complete solution
of the eight puzzle. In Meltzer, B., and Michie, D.,
eds., Machine Intelligence 3. New York: American El­
sevier. 125-133.

[Szegedy, 1999] Szegedy, M. 1999. In how many steps
the k peg version of the towers of hanoi game can be
solved? In Proceedings of the 16th Annual Symposium
on Theoretical Aspects of Computer Science (STACS
'99), LNCS 1563. Trier, Germany: Springer-Vcrlag.

[Taylor & Korf, 1993] Taylor, L., and Korf, R. 1993.
Pruning duplicate nodes in depth-first search. In Pro­
ceedings of the National Conference on Artificial In­
telligence (AAAI-93), 756-761.

[van de Liefvoort, 1992] van de Liefvoort, A. 1992. An
iterative algorithm for the reve's puzzle. The Com­
puter Journal 35(l):91-92.

POSTER PAPERS 1541

