
1 Introduction 
Although some algorithms are better than others on average, 
there is rarely a best algorithm for a given problem. Instead, it 
is often the case that different algorithms perform well on dif­
ferent problem instances. Not surprisingly, this phenomenon 
is most pronounced among algorithms for solving AA'P-Hard 
problems, because runtimes for these algorithms are often 
highly variable from instance to instance. When algorithms 
exhibit high runtime variance, one is faced with the problem 
of deciding which algorithm to use; in 1976 Rice dubbed this 
the "algorithm selection problem" [8]. In the nearly three 
decades that have followed, the issue of algorithm selection 
has failed to receive widespread attention, though of course 
some excellent work does exist. By far, the most common 
approach to algorithm selection has been to measure different 
algorithms' performance on a given problem distribution, and 
then to use only the algorithm having the lowest average run­
time. This "winner-take-aH" approach has driven recent ad­
vances in algorithm design and refinement, but has resulted in 
the neglect of many algorithms that, while uncompetitive on 
average, may offer excellent performance on particular prob­
lem instances. Our consideration of the algorithm selection 
literature, and our dissatisfaction with the winner-take-all ap­
proach, has led us to ask the following two questions. First, 
what general techniques can we use to perform per-instance 
(rather than per-distribution) algorithm selection? Second, 
once we have rejected the notion of winner-take-all algorithm 
evaluation, how ought novel algorithms to be evaluated? We 
offer the following answers: 

1. Algorithms with high average running times can be com­
bined to form an algorithm portfolio with low average 
running time when the algorithms' easy inputs are suffi­
ciently uncorrected. 

2. New algorithm design should focus on problems on 
which the current algorithm portfolio performs poorly. 

Readers familiar with the boosting paradigm in machine 
learning [9] will recognize that boosting uses similar ideas: 
combining weak classifiers into a much stronger ensemble 
by iterativcly training new classifiers on data on which the 
ensemble performs poorly. 

2 Algori thm Portfolios 
In our previous work [6] we demonstrated that statistical re­
gression can be used to learn surprisingly accurate algorithm-
specific models of the empirical hardness of given distribu­
tions of problem instances. In short, the method proposed in 
that work is: 
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1. Use domain knowledge to select features of problem in­
stances that might be indicative of runtime. 

2. Generate a set of problem instances from the given dis­
tribution, and collect runtime data for the algorithm on 
each instance. 

3. Use regression to learn a real-valued function of the fea­
tures that predicts runtime. 

Given this existing technique for predicting runtime, we 
now propose building portfolios of multiple algorithms as fol­
lows: 

1. Train a model for each algorithm, as described above. 
2. Given an instance: 

(a) Compute feature values 
(b) Predict each algorithm's running time 
(c) Run the algorithm predicted to be fastest 

2.1 WDP Case Study: Past Work 
Our case study is based on the data collected in our previous 
work [6]. In that work we have constructed models for pre­
dicting the running time of the CPLEX solver on the winner 
determination problem (WDP), which is an NP-Complete 
combinatorial optimization problem formally equivalent to 
weighted set-packing. We have also created models for two 
other WDP algorithms: GL (Gonen-Lehmann) [3], a simple 
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branch-and-bound algorithm wi th CPLEX's LP solver as its 
heuristic, and CASS [1 ] , a more complex branch-and-bound 
algorithm with a non-LP heuristic. The data set consists of 
4500 instances of a fixed size (256 goods and 1000 non-
dominated bids), sampled uniformly from CATS [7] instance 
generator. Since our methodology relies on machine learning, 
we split the data into training, validation, and test sets. We re­
port our portfol io runtimes only on the test set that was never 
used to train or evaluate models. Runtime data was collected 
on 550 M H z Pentium Xeons, running Linux 2.2. 

2.2 W D P Case S t u d y : Po r t f o l i o s 

We now describe new results. Fig. 1 compares the average 
runtimes of our three algorithms to that of the portfol io. Note 
that CPLEX would be chosen under winner-take-all algo­
rithm selection. The "opt ima l " bar shows the performance of 
an ideal portfol io where algorithm selection is performed per­
fectly and with no overhead. The portfol io bar shows the time 
taken to compute features (light portion) and the time taken 
to run the selected algorithm (dark portion). Despite the fact 
that CASS and GL are much slower than CPLEX on average, 
the portfol io outperforms CPLEX by more than a factor of 3. 
Further, neglecting the cost of computing features, our port­
fol io's selections take only 5% longer to run than the optimal 
selections. Figs. 2 and 3 show the frequency wi th which each 
algorithm is selected in the ideal portfol io and in our portfo­
l io. They illustrate the quality of our algorithm selection and 
the relative value of the three algorithms. Whi le our portfo­
l io does not always make the right choice, most of the mis­
takes occur when algorithms have very similar running times. 
These mistakes are not very costly, which explains why our 
portfolio's choices have a running time so close to optimal. 
These results show that our portfol io methodology can work 
very wel l even wi th a small number of algorithms, and even 
when one algorithm has superior average performance. 

3 Focused Algorithm Design 

Once it has been decided to select algorithms from a portfo­
l io on a per-instance basis, it is necessary to reexamine the 
way we design and evaluate algorithms. Since the purpose 
of designing new algorithms is to reduce the time that it w i l l 
take to solve problems, designers should aim to produce new 
algorithms that complement an existing portfol io given a dis­
tribution D reflecting problems that w i l l be encountered in 
practice. The instances wi th the greatest potential for im­
provement w i l l be hard for the portfol io, common in D, or 
both. The fu l l version of this paper describes a technique for 
using rejection sampling to automatically generate such in­
stances. In Figures 4 and 5 we show how our techniques are 
able to automatically skew two of the easiest CATS instance 
distributions towards harder regions. In fact, for these two 
distributions we generated instances that were (respectively) 
100 and 50 times harder than anything we had previously 
seen! Moreover, the average runtime for the new distribu­
tions was greater than the observed maximum running time 
on the original distribution. 

4 Conclusions 
Learned runtime models may be used to create algorithm 
portfolios that outperform their constituent algorithms. These 
models can also be used to induce harder benchmark distri­
butions for use in the development and evaluation of new al­
gorithms. Our case study on combinatorial auctions demon­
strates that a portfol io composed of CPLEX and two o lde r -
and generally much slower—algorithms outperforms CPLEX 
alone by about a factor of 3. In the fu l l version of this paper 
we describe our methodology in more detail, and also: 

• Show how to reduce the time spent computing features 
without substantially degrading portfol io performance; 

• Demonstrate ways of using response variable transfor­
mations to focus portfolios on metrics other than average 
running t ime; 

• Explain how to induce distributions wi th characteristics 
other than hardness (e.g. realism); 

• Compare our approach to previous work that executes 
algorithms in parallel [2 ] ; uses classification instead of 
regression [4 ] ; or considers the problem as an MDP [5]. 
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