
Combining Two Local Search Approaches to Hypergraph Partitioning

Arathi Ramani and Igor Markov
Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor 48109-2122
{ramania,imarkov} @eecs.umich.edu

Abstract

We study leading-edge local search heuristics for balanced hyper­
graph partitioning and Boolean satisfiability, intending the general­
ization of such heuristics beyond their original domains. We adapt
the Fiduccia Mattheyses (FM) hypergraph partitioning heuristic to
Boolean Satisfiability (SAT), and the WalkSAT SAT solver to hy­
pergraph partitioning. Focusing on balanced hypergraph partition­
ing, we propose a combination of the classical FM heuristic and
our "cross-over" heuristic WalkPart, and empirically show that it is
more powerful than each component alone. Empirically, we show
a 15% improvement in net cut and a 7% improvement in runtime
over a leading-edge implementation of the FM heuristic.

1 Introduction

The focus of our work is on search heuristics for balanced min-cut
hypergraph partitioning, a well-known combinatorial optimization
problem. In general terms, the problem seeks to assign every ver­
tex of a hypergraph to one of two subsets to minimize the number
of connections between the two subsets, subject to having approx­
imately the same number of vertices in each subset. Hypergraph
partitioning is important in circuit layout because circuits arc often
represented by hypergraphs, e.g. in placement by recursive bisec­
tion. Many efficient hypergraph partitioning algorithms have been
developed [3 ,4] . Here, we discuss the combination of two local
search heuristics: the Fiduccia-Mattheyses (FM) hypergraph parti­
tioning heuristic [3], and the biased random walk heuristic, adapted
from the WalkSAT SAT solver [5].

Our work is motivated by attempts to generalize well-known
local search procedures [5, 3] beyond their original domains. We
developed a SAT solver based on the FM algorithm [3], and a hy­
pergraph partitioner, WalkPart, based on the WalkSAT algorithm
from [5]. The WalkPart algorithm is described in Section 3. A
detailed description of the SAT solver is beyond the scope of this
paper. Our results show that WalkPart outperforms a highly tuned
implementation of FM on several circuit benchmarks. The algo­
rithms also produce very different solutions and appear to have
different local minima, suggesting that a hybrid strategy might be
effective. Empirical results show that the hybrid approach outper­
forms both algorithms, in terms of runtime and solution quality.
Our main contributions are summarized as follows.

• We describe the balanced min-cut hypergraph partitioning
algorithm, WalkPart, based on the WalkSAT satisfiability
solver [5]

• We propose the combination of the FM and WalkPart heuris­
tics to form a "hybrid" heuristic, and perform two experi­
ments

• Empirically, we show that a hybrid strategy achieves signifi­
cantly better performance than either heuristic alone

2.1 Hypergraph Partitioning Problem:

A hypergraph H(V,E) is defined as a set, V, of vertices, and a set,
E, of hyperedges, where each edge e E is a set of two or more
vertices from V. The k-way hypergraph partitioning problem is
stated as follows: Let H(V,E) be a hypergraph with weighted ver­
tices and edges. The problem asks to find a minimum cost parti­
tion of the vertices of // to k disjoint subsets. The cost function

typically used is edge cut, the sum of the weights of the hy­
peredges cut by the partition (this is called min-cut partitioning).
A hypcredgc is cut exactly when all of its vertices arc in more than
one subset. Constraints may be imposed on a partition e.g. limiting
the total vertex weight in each subset (balance, constraints). The
balance-constrained weighted hypergraph partitioning problem is
NP-hard. The algorithms in this work deal with the balanced
min-cut hypergraph bi-partitioning problem, i.e., we consider only
the case where k = 2. In circuit layout, hypergraphs represent cir­
cuits by mapping vertices to signal nodes, and hyperedges to signal
nets. In this context, we use the words "node" and "net" to mean
"vertex" and "hyperedge" when referring to hypergraphs in this
document.

2.2 The Fiduccia-Mattheyses Heuristic

The Fiduccia-Mattheyses (FM) [3] heuristic for bi-partitioning cir­
cuit hypergraphs is an iterative improvement algorithm. FM starts
with an arbitrary initial solution and changes the solution by a se­
quence of moves, organized as passes. At the beginning of a pass,
all vertices are free to move (unlocked). Each possible move is la­
beled with the immediate change in total cost it would cause (called
"gain"). Iteratively, a move with highest gain is selected and exe­
cuted, which may result in a lower, higher or unchanged solution
cost1. The moved vertex is locked, i.e., not allowed to move again
during that pass. Since moving a vertex can change gains of ad­
jacent vertices, all affected gains are updated. Selection and exe­
cution of a best-gain move, followed by gain update, are repeated
until every vertex is locked. The best solution seen during the pass
is adopted as the starting solution of the next pass. The algorithm
terminates when a pass fails to improve solution quality.

The FM heuristic is now used as a component in multi-level
partitioning algorithms [4] which create a series of clustered hy­
pergraphs, partition the most clustered with "flat" FM and then
refine unclustered versions of the produced partition by applying
FM in incremental mode. A highly optimized, leading edge im­
plementation of FM in this context is available in [2]. This work
only deals with "flat" partitioning heuristics in the hope that im­
proved flat heuristics wi l l lead to improved multi-level heuristics.
This assumption wi l l be verified in our future work.

1 In a problem with balance constraints, moves should also not violate the legality
constraint

1546 POSTER PAPERS

2 Background and Previous Work

Table 1: Results for 10 passes of a Hybr id Algorith m: FM is run once to com ple-
t ion, followed by 100K moves of WalkPart alternated with single passes of FM .

Benchmark
Name

Nodes Nets WalkPart FMPart Hybrid Cut
Ratio

Time 1
Ratio

Benchmark
Name

Nodes Nets
Moves Time Cut Time Cut Time | Cut

Cut
Ratio

Time 1
Ratio

ibm01 + 10 12752 14111 2M 9.16 610.67 1.54 477.00 2.0 284.00 0.59 1.29
ibm01+4 12752 14111 500K 2.56 506.00 1.39 464.33 2.667 413.33 0.89 1.91
ibm02+10 19601 19584 500K 3.61 329.67 2.15 402.00 3.8 290.67 0.72 1.76
ibm02+4 19601 19584 500K 3.61 654.33 2.14 386.00 3.7 523.33 1.35 1.72
ibm03+10 23136 27401 2M 14.15 1603.33 3.84 1487.67 5.0 1157.33 0.77 1.30
ibm03+4 23136 27401 500K 3.84 1175.00 3.14 2488.00 5.86 1093.33 0.43 1.86
ibm04+10 27507 31970 500K 4.50 1589.00 5.30 718.67 9.0 606.66 0.84 1.69
ibm04+4 27507 31970 2M 14.94 2121.00 3.52 2505.00 5.0 1089.33 0.43 1.41
ibm05+10 29347 28446 2M 17.34 4804.67 9.54 2793.33 14.75 1869.66 0.66 1.54
ibm06+10 32498 34826 2M 12.73 750.00 5.63 1683.00 10.5 1117.00 0.66 1.86
ibm()7+IO 45926 48117 2M 18.07 2483.33 9.63 1347.33 13.98 1190.67 0.88 1.45
ibm08+10 51309 50513 2M 24.92 1902.67 11.76 3076.00 25.5 1574.66 0.51 2.16
ibm09+10 53395 60902 2M 19.60 2069.00 14.38 1936.00 29.0 1365.33 0.70 2.01
ibm10+10 69429 75196 2M 19.79 3414.67 15.36 2200.33 30.22 1440.33 0.65 1.96
ibm11+10 70558 81454 2M 21.61 2433.33 19.78 4203.33 34.13 2992.00 0.71 1.72
ibml2+10 71076 77240 2M 22.99 3803.67 23.03 4200.67 36 4525.33 1.07 1.56
Average 0.7 1.7

2.3 The WalkSAT Satisfiability Solver

The WalkSAT algorithm [5] is a stochastic local search heuristic
for Boolean Satisfiability. WalkSAT is an improvement on GSAT
(Sclman et al., 1992), a greedy algorithm that starts with a random
assignment and flips variables one at a time. The variable chosen
for flipping is always the one that would cause the greatest im­
mediate reduction in the number of violated clauses. WalkSAT [5]
improves on GSAT by using a biased random walk to avoid getting
stuck in local minima.

To select the next variable to flip, WalkSAT picks a clause at
random from the unsatisfied clauses. With probability p, it flips a
variable picked randomly from this clause. With probability 1 - p
it flips the variable that would cause the least number of clauses to
be violated when flipped.

3 The WalkPart Algori thm

The WalkPart algorithm is a stochastic local search algorithm for
balance-constrained hypergraph bisection. It performs a sequence
of moves, until a preset maximum number of moves is reached. A
"move" moves a vertex from one partition to another, if balance
constraints arc not violated. Moves are chosen using criteria sim­
ilar to WalkSAT: with probability p, a vertex is picked at random,
and with probability 1 — p, a vertex is chosen to minimize some
cost function. The selected vertex is then moved to the other par­
tition (i f balance constraints allow). After a move, the costs of
vertices adjacent to the moved vertex wil l change, and these are
updated.

The move selection procedure is explained in more detail as
follows. A net from among the cut nets is chosen at random. With
probability p, a vertex is chosen from that net at random, and with
probability 1 — p, the vertex that minimizes the cost function under
the decision heuristic in use is chosen from the net. If a chosen
move is illegal, the selection process is repeated until a legal move
is found.

Due to space constraints, we describe only the decision heuris­
tic that performed best on the benchmarks in this paper, the nor­
malized node score heuristic.

Normalized Score Heuristic: The FM heuristic is concerned
with the "gain" of a node, determined by the number of nets that
can be "cut" or "uncut" by moving the node. Therefore, it only
considers "critical" nets that can be cut or uncut in a single move.
It is mentioned in [4] that a more thorough measure would also
estimate the effort required to uncut the net. We propose a new
measure, the "score" of a node, defined as the number of moves
required to uncut the net if the node in question was moved. In
practice, scores are normalized to avoid bias due to net sizes. We

can quickly approximate the score for a given node for a partic­
ular net as follows. Consider a node, ni, presently in partition j
(j — O/I). Let e/c be a hyperedge containing ni, dk be the degree
of and be the number of nodes from edge ek in partition 7,

including ni,. Then the normalized score of ni, due to eK is
The total node score is the sum of the scores due to all nets in
which the node occurs. The idea of using a score comes from the
work in [6], which discusses an adaptation of WalkSAT to formu­
las with pseudo-boolean constraints. In WalkPart, with probability
I — p the algorithm picks the node from the chosen net with the
minimum score. For the benchmarks in this paper, our empirical
results are strongest when this heuristic is used, and when /; — 0.1.

4 Hybr id Partitioner

Through empirical evaluation, we observe that WalkPart often out­
performs a leading-edge implementation of FM [2], on standard
industry circuit benchmarks [1]. Also, WalkPart frequently does
well on benchmarks where FM does not, implying that both algo­
rithms do not find similar solutions or search in the same areas of
the search space. These observations suggest that a hybrid algo­
rithm might be able to exploit the strengths of both.

The hybrid approach alternates runs of FMPart (the FM imple­
mentation available in [2]) and WalkPart. It is known that FMPart
reduces the net cut greatly in the first few passes, and then spends
time performing more passes for relatively small improvements.
The hybrid algorithm starts by performing one or more passes of
FMPart, and then performs moves of WalkPart to improve FM-
Part's solution. Control then switches back to FMPart, and so on.
A combined FMPart-WalkPart pass constitutes one pass of the hy­
brid algorithm. A preset number of hybrid passes are run before
the algorithm terminates. The use of a WalkSAT-like randomized
component makes it difficult to find obvious convergence criteria.
We hope to address this issue in future works. In practice, we
observe that the tendency of FM to converge rapidly causes con­
siderable reductions in net cut in a fairly small number of passes.
This can be seen from our results in Section 5. Many stochastic
local search approaches use such preset limits because of the un­
predictable nature of the search.
5 Results

In this section, we discuss the empirical performance of our al­
gorithms. We cannot include the results of all our experiments
with different tuning and parameter settings due to limited space.
We present results of two relatively simple experiments that illus­
trate the utility of the hybrid technique. The benchmarks used
are standard IBM circuit partitioning benchmarks [1]. Although

POSTER PAPERS 1547

Table 2: Results fo r 10 passes of o u r H y b r i d A l g o r i t h m . At each pass, t w o passes
o f F M are fo l lowed by 5 0 K moves o f W a l k P a r t .

| Benchmark
| Name

Nodes Nets WalkPart FMPart Hybrid Cut
Ratio

Time
Ratio

| Benchmark
| Name

Nodes Nets
Moves Time cut Time Cut Time Cut

Cut
Ratio

Time
Ratio

ibm01+10 12752 14111 2M 9.16 610.67 1.54 477.00 1.42 391.66 0.82 0.92
ibm01+4 12752 14111 500K 2.56 506.00 1.39 464.33 1.53 439.67 0.94 1.1
ibm02+10 19601 19584 500K 3.61 329.67 2.15 402.00 1.9 306.33 0.76 0.88
ibm02+4 19601 19584 500K 3.61 654.33 2.14 386.00 2.0 344.67 0.89 0.93
ibm03+10 23136 27401 2M 14.15 1603.33 3.84 1487.67 2.62 1244.33 0.83 0.68
ibm03+4 23136 27401 500K 3.84 1175.00 3.14 2488.00 3.25 1351.33 0.54 1.03
ibm04+10 27507 31970 500K 4.50 1589.00 5.30 718.67 2.9 1131.33 1.57 0.54
ibm()4 + 4 27507 31970 2M 14.94 2121.00 3.52 2505.00 2.76 1071 0.42 0.78
ibm05+10 29347 28446 2M 17.34 4804.67 9.54 2793.33 7.6 2612.33 0.93 0.79
ibm06+IO 32498 34826 2M 12.73 750.00 5.63 1683.00 4.1 1160.33 0.68 0.72
ibm07+10 45926 48117 2M 18.07 2483.33 9.63 1347.33 9.3 1687 1.25 0.96
ibm08+10 51309 50513 2M 24.92 1902.67 11.76 3076.00 10.1 1501.33 0.48 0.85
ibm09+10 53395 60902 2M 19.60 2069.00 14.38 1936.00 11.98 1676.33 0.86 0.83
ibm10+10 69429 75196 2M 19.79 3414.67 15.36 2200.33 21.33 1520.66 0.69 1.38
ibm11+10 70558 81454 2M 21.61 2433.33 19.78 4203.33 26.67 4072.33 0.96 1.34
ibml2+10 71076 77240 2M 22.99 3803.67 23.03 4200.67 30.01 3781 0.90 1.30
Average 0.84 0.93

the benchmarks arc chosen from the VLSI domain, all the algo­
rithms discussed here are general and can be used on instances
from any application. In the experiments, WalkPart uses the nor­
malized score heuristic, and randomness quotient p — 0.1. 2 We
use the FM partitioning package by Caldwell ct. al., available at
[2], for the FM component. WalkPart is written in C++.

In the first experiment, we run 10 hybrid passes after first run­
ning FM once to completion. Each hybrid pass performs 100,000
WalkPart moves followed by a single FMPart pass. The solution
after a pass is used as the starting solution for the next pass. Results
for this experiment arc shown in Table 1.

The hybrid algorithm is compared against FMPart and Walk-
Part, run individually. WalkPart uses the normalized score heuris­
tic and p — 0.1, with two different move limits: 500,000 and
2,000,000. Because some moves are picked randomly, increas­
ing the move limit docs not always produce better solutions. Wc
show results for the move limit where net cut was lower. For each
benchmark we report average solution quality and runtime over
three independent starts on a 1.2 GHz AMD Athlon processor with
1-2GB, running Linux.

In the tabic, columns 1-3 describe benchmark statistics. The
benchmarks are named ibmno+t%, where ibm indicates an IBM
benchmark, no is the serial number, / indicates the balance con­
straint. Tolerances specify the maximum legal disparity between
subset weights as a percentage of total vertex weight. The next
three columns give WalkParf s number of moves, runtime and re­
sulting net cut. The next four columns show runtimes and net cuts
for FM and the hybrid algorithm. The lowest net cut out of the 3
algorithms is boldfaced. The last two columns show the ratio of
net cut and runtime of the hybrid algorithm to net cut and runtime
of FMPart. Averages are shown at the bottom.

We observe that the hybrid algorithm achieves smaller cuts
than both FMPart and WalkPart on most benchmarks. This is to
be expected, since hybrid passes are run on a solution produced by
FMPart. Nevertheless, we can make some important observations.
First, FMPart frequently converges when a much better solution
is achievable. Second, it is possible to achieve a better solution
by introducing a randomized component with a different decision
heuristic (normalized score). WalkPart can be used to lead FMPart
out of local minima by performing random moves, after which FM­
Part can be run again to find a better solution. However, this exper­
iment has a runtime cost. On average, this strategy improves run
time by 30% over FMPart, but is 1.7 times slower.

Our second experiment improves runtime by avoiding the ini-

2 Parameter settings were not chosen arbitrarily After testing, we chose the values
that gave best overall performance.

tial run of FMPart. This experiment also uses 10 hybrid passes.
Each pass consists of 2 passes of FMPart followed by 50,000
moves of WalkPart. Results for this experiment are in Table 3.

It is clear that the second hybrid configuration is competitive
with FMPart and WalkPart in terms of runtime, and frequently pro­
duces better solutions. Also, while either FMPart or WalkPart may
achieve lower net cut than the hybrid algorithm, it is very rare that
both of them do so. The hybrid approach is usually close to the
best solution achieved by either. On average, the second hybrid
configuration improves net cut by 15% and is about 7% faster than
FMPart alone.
6 Conclusions and Future Work

In this work, wc introduce our "crossover" hypergraph partitioning
algorithm, WalkPart. Wc combine WalkPart with the well-known
Fiduccia-Mattheyses (FM) heuristic for hypergraph partitioning to
produce a hybrid heuristic that draws on the strengths of both tech­
niques. Wc achieve substantial improvement over FMPart with a
very simple approach that requires almost no tuning.

Our first experiment shows that net cuts achieved by FM, a
widely used algorithm for this application, can be significantly im­
proved (by 30%), albeit with a runtime cost. However, our second
experiment reduces net cuts by an average of 15%, and runtime by
7% over FM. Our results show that combining these two heuris­
tics results in a search procedure that is more powerful than either
heuristic used alone. Strong empirical results for the proposed hy­
brid algorithm motivate further research. We are incorporating our
flat partitioning algorithms into the multilevel framework [4,2] and
plan to make it available for use in CAD tools. We are also continu­
ing our investigation of effective search procedures for partitioning
and looking for new techniques that can be hybridized with exist­
ing ones.

References

[1] C. J. Alpert, "The 1SPD98 Circuit Benchmark Suite", Proc. ISPD
1997, pp. 80-85

[2] A. E. Caldwell, A. B. Kahng and I. L.
Markov, UCLA Physical Design Tools Release:
http://nexus6.cs.ucla.edu/software/PDtools/tar.gz/

[3] C. M. Fiduccia and R. M. Mattheyses, "A linear time heuristic for
improving network partitions", Proc. ACM/IEEE Design Automation
Conference, 1982, pp. 175-181.

[4] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, "Multilevel
Hypergraph Partitioning: Applications in VLSI Design", in Proc.
ACM/IEEE Design Automation Conference, 1997, pp. 526-529.

[5] B. Selman, H. Kautz, and B. Cohen, "Noise strategies for improving
local search", AAAI '94, pp. 337-343.

[6] J. P. Walser, "Solving Linear Pseudo-Boolean Constraint Problems
with Local Search", AAAI '97.

1548 POSTER PAPERS

