
Combining Two Local Search Approaches to Hypergraph Partitioning 

Arathi Ramani and Igor Markov 
Department of Electrical Engineering and Computer Science, 

University of Michigan, Ann Arbor 48109-2122 
{ramania,imarkov} @eecs.umich.edu 

Abstract 

We study leading-edge local search heuristics for balanced hyper­
graph partitioning and Boolean satisfiability, intending the general­
ization of such heuristics beyond their original domains. We adapt 
the Fiduccia Mattheyses (FM) hypergraph partitioning heuristic to 
Boolean Satisfiability (SAT), and the WalkSAT SAT solver to hy­
pergraph partitioning. Focusing on balanced hypergraph partition­
ing, we propose a combination of the classical FM heuristic and 
our "cross-over" heuristic WalkPart, and empirically show that it is 
more powerful than each component alone. Empirically, we show 
a 15% improvement in net cut and a 7% improvement in runtime 
over a leading-edge implementation of the FM heuristic. 

1 Introduction 

The focus of our work is on search heuristics for balanced min-cut 
hypergraph partitioning, a well-known combinatorial optimization 
problem. In general terms, the problem seeks to assign every ver­
tex of a hypergraph to one of two subsets to minimize the number 
of connections between the two subsets, subject to having approx­
imately the same number of vertices in each subset. Hypergraph 
partitioning is important in circuit layout because circuits arc often 
represented by hypergraphs, e.g. in placement by recursive bisec­
tion. Many efficient hypergraph partitioning algorithms have been 
developed [3 ,4] . Here, we discuss the combination of two local 
search heuristics: the Fiduccia-Mattheyses (FM) hypergraph parti­
tioning heuristic [3], and the biased random walk heuristic, adapted 
from the WalkSAT SAT solver [5]. 

Our work is motivated by attempts to generalize well-known 
local search procedures [5, 3] beyond their original domains. We 
developed a SAT solver based on the FM algorithm [3], and a hy­
pergraph partitioner, WalkPart, based on the WalkSAT algorithm 
from [5]. The WalkPart algorithm is described in Section 3. A 
detailed description of the SAT solver is beyond the scope of this 
paper. Our results show that WalkPart outperforms a highly tuned 
implementation of FM on several circuit benchmarks. The algo­
rithms also produce very different solutions and appear to have 
different local minima, suggesting that a hybrid strategy might be 
effective. Empirical results show that the hybrid approach outper­
forms both algorithms, in terms of runtime and solution quality. 
Our main contributions are summarized as follows. 

• We describe the balanced min-cut hypergraph partitioning 
algorithm, WalkPart, based on the WalkSAT satisfiability 
solver [5] 

• We propose the combination of the FM and WalkPart heuris­
tics to form a "hybrid" heuristic, and perform two experi­
ments 

• Empirically, we show that a hybrid strategy achieves signifi­
cantly better performance than either heuristic alone 

2.1 Hypergraph Partitioning Problem: 

A hypergraph H(V,E) is defined as a set, V, of vertices, and a set, 
E, of hyperedges, where each edge e E is a set of two or more 
vertices from V. The k-way hypergraph partitioning problem is 
stated as follows: Let H(V,E) be a hypergraph with weighted ver­
tices and edges. The problem asks to find a minimum cost parti­
tion of the vertices of // to k disjoint subsets. The cost function 

typically used is edge cut, the sum of the weights of the hy­
peredges cut by the partition (this is called min-cut partitioning). 
A hypcredgc is cut exactly when all of its vertices arc in more than 
one subset. Constraints may be imposed on a partition e.g. limiting 
the total vertex weight in each subset (balance, constraints). The 
balance-constrained weighted hypergraph partitioning problem is 
NP-hard. The algorithms in this work deal with the balanced 
min-cut hypergraph bi-partitioning problem, i.e., we consider only 
the case where k = 2. In circuit layout, hypergraphs represent cir­
cuits by mapping vertices to signal nodes, and hyperedges to signal 
nets. In this context, we use the words "node" and "net" to mean 
"vertex" and "hyperedge" when referring to hypergraphs in this 
document. 

2.2 The Fiduccia-Mattheyses Heuristic 

The Fiduccia-Mattheyses (FM) [3] heuristic for bi-partitioning cir­
cuit hypergraphs is an iterative improvement algorithm. FM starts 
with an arbitrary initial solution and changes the solution by a se­
quence of moves, organized as passes. At the beginning of a pass, 
all vertices are free to move (unlocked). Each possible move is la­
beled with the immediate change in total cost it would cause (called 
"gain"). Iteratively, a move with highest gain is selected and exe­
cuted, which may result in a lower, higher or unchanged solution 
cost1. The moved vertex is locked, i.e., not allowed to move again 
during that pass. Since moving a vertex can change gains of ad­
jacent vertices, all affected gains are updated. Selection and exe­
cution of a best-gain move, followed by gain update, are repeated 
until every vertex is locked. The best solution seen during the pass 
is adopted as the starting solution of the next pass. The algorithm 
terminates when a pass fails to improve solution quality. 

The FM heuristic is now used as a component in multi-level 
partitioning algorithms [4] which create a series of clustered hy­
pergraphs, partition the most clustered with "flat" FM and then 
refine unclustered versions of the produced partition by applying 
FM in incremental mode. A highly optimized, leading edge im­
plementation of FM in this context is available in [2]. This work 
only deals with "flat" partitioning heuristics in the hope that im­
proved flat heuristics wi l l lead to improved multi-level heuristics. 
This assumption wi l l be verified in our future work. 

1 In a problem with balance constraints, moves should also not violate the legality 
constraint 

1546 POSTER PAPERS 

2 Background and Previous Work 



Table 1: Results for 10 passes of a Hybr id Algorith m: FM is run once to com ple-
t ion, followed by 100K moves of WalkPart alternated with single passes of FM . 

Benchmark 
Name 

Nodes Nets WalkPart FMPart Hybrid Cut 
Ratio 

Time 1 
Ratio 

Benchmark 
Name 

Nodes Nets 
Moves Time Cut Time Cut Time | Cut 

Cut 
Ratio 

Time 1 
Ratio 

ibm01 + 10 12752 14111 2M 9.16 610.67 1.54 477.00 2.0 284.00 0.59 1.29 
ibm01+4 12752 14111 500K 2.56 506.00 1.39 464.33 2.667 413.33 0.89 1.91 
ibm02+10 19601 19584 500K 3.61 329.67 2.15 402.00 3.8 290.67 0.72 1.76 
ibm02+4 19601 19584 500K 3.61 654.33 2.14 386.00 3.7 523.33 1.35 1.72 
ibm03+10 23136 27401 2M 14.15 1603.33 3.84 1487.67 5.0 1157.33 0.77 1.30 
ibm03+4 23136 27401 500K 3.84 1175.00 3.14 2488.00 5.86 1093.33 0.43 1.86 
ibm04+10 27507 31970 500K 4.50 1589.00 5.30 718.67 9.0 606.66 0.84 1.69 
ibm04+4 27507 31970 2M 14.94 2121.00 3.52 2505.00 5.0 1089.33 0.43 1.41 
ibm05+10 29347 28446 2M 17.34 4804.67 9.54 2793.33 14.75 1869.66 0.66 1.54 
ibm06+10 32498 34826 2M 12.73 750.00 5.63 1683.00 10.5 1117.00 0.66 1.86 
ibm()7+IO 45926 48117 2M 18.07 2483.33 9.63 1347.33 13.98 1190.67 0.88 1.45 
ibm08+10 51309 50513 2M 24.92 1902.67 11.76 3076.00 25.5 1574.66 0.51 2.16 
ibm09+10 53395 60902 2M 19.60 2069.00 14.38 1936.00 29.0 1365.33 0.70 2.01 
ibm10+10 69429 75196 2M 19.79 3414.67 15.36 2200.33 30.22 1440.33 0.65 1.96 
ibm11+10 70558 81454 2M 21.61 2433.33 19.78 4203.33 34.13 2992.00 0.71 1.72 
ibml2+10 71076 77240 2M 22.99 3803.67 23.03 4200.67 36 4525.33 1.07 1.56 
Average 0.7 1.7 

2.3 The WalkSAT Satisfiability Solver 

The WalkSAT algorithm [5] is a stochastic local search heuristic 
for Boolean Satisfiability. WalkSAT is an improvement on GSAT 
(Sclman et al., 1992), a greedy algorithm that starts with a random 
assignment and flips variables one at a time. The variable chosen 
for flipping is always the one that would cause the greatest im­
mediate reduction in the number of violated clauses. WalkSAT [5] 
improves on GSAT by using a biased random walk to avoid getting 
stuck in local minima. 

To select the next variable to flip, WalkSAT picks a clause at 
random from the unsatisfied clauses. With probability p, it flips a 
variable picked randomly from this clause. With probability 1 - p 
it flips the variable that would cause the least number of clauses to 
be violated when flipped. 

3 The WalkPart Algori thm 

The WalkPart algorithm is a stochastic local search algorithm for 
balance-constrained hypergraph bisection. It performs a sequence 
of moves, until a preset maximum number of moves is reached. A 
"move" moves a vertex from one partition to another, if balance 
constraints arc not violated. Moves are chosen using criteria sim­
ilar to WalkSAT: with probability p, a vertex is picked at random, 
and with probability 1 — p, a vertex is chosen to minimize some 
cost function. The selected vertex is then moved to the other par­
tition ( i f balance constraints allow). After a move, the costs of 
vertices adjacent to the moved vertex wil l change, and these are 
updated. 

The move selection procedure is explained in more detail as 
follows. A net from among the cut nets is chosen at random. With 
probability p, a vertex is chosen from that net at random, and with 
probability 1 — p, the vertex that minimizes the cost function under 
the decision heuristic in use is chosen from the net. If a chosen 
move is illegal, the selection process is repeated until a legal move 
is found. 

Due to space constraints, we describe only the decision heuris­
tic that performed best on the benchmarks in this paper, the nor­
malized node score heuristic. 

Normalized Score Heuristic: The FM heuristic is concerned 
with the "gain" of a node, determined by the number of nets that 
can be "cut" or "uncut" by moving the node. Therefore, it only 
considers "critical" nets that can be cut or uncut in a single move. 
It is mentioned in [4] that a more thorough measure would also 
estimate the effort required to uncut the net. We propose a new 
measure, the "score" of a node, defined as the number of moves 
required to uncut the net if the node in question was moved. In 
practice, scores are normalized to avoid bias due to net sizes. We 

can quickly approximate the score for a given node for a partic­
ular net as follows. Consider a node, ni, presently in partition j 
(j — O/I). Let e/c be a hyperedge containing ni, dk be the degree 
of and be the number of nodes from edge ek in partition 7, 

including ni,. Then the normalized score of ni, due to eK is 
The total node score is the sum of the scores due to all nets in 
which the node occurs. The idea of using a score comes from the 
work in [6], which discusses an adaptation of WalkSAT to formu­
las with pseudo-boolean constraints. In WalkPart, with probability 
I — p the algorithm picks the node from the chosen net with the 
minimum score. For the benchmarks in this paper, our empirical 
results are strongest when this heuristic is used, and when /; — 0.1. 

4 Hybr id Partitioner 

Through empirical evaluation, we observe that WalkPart often out­
performs a leading-edge implementation of FM [2], on standard 
industry circuit benchmarks [1]. Also, WalkPart frequently does 
well on benchmarks where FM does not, implying that both algo­
rithms do not find similar solutions or search in the same areas of 
the search space. These observations suggest that a hybrid algo­
rithm might be able to exploit the strengths of both. 

The hybrid approach alternates runs of FMPart (the FM imple­
mentation available in [2]) and WalkPart. It is known that FMPart 
reduces the net cut greatly in the first few passes, and then spends 
time performing more passes for relatively small improvements. 
The hybrid algorithm starts by performing one or more passes of 
FMPart, and then performs moves of WalkPart to improve FM-
Part's solution. Control then switches back to FMPart, and so on. 
A combined FMPart-WalkPart pass constitutes one pass of the hy­
brid algorithm. A preset number of hybrid passes are run before 
the algorithm terminates. The use of a WalkSAT-like randomized 
component makes it difficult to find obvious convergence criteria. 
We hope to address this issue in future works. In practice, we 
observe that the tendency of FM to converge rapidly causes con­
siderable reductions in net cut in a fairly small number of passes. 
This can be seen from our results in Section 5. Many stochastic 
local search approaches use such preset limits because of the un­
predictable nature of the search. 
5 Results 

In this section, we discuss the empirical performance of our al­
gorithms. We cannot include the results of all our experiments 
with different tuning and parameter settings due to limited space. 
We present results of two relatively simple experiments that illus­
trate the utility of the hybrid technique. The benchmarks used 
are standard IBM circuit partitioning benchmarks [1]. Although 
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Table 2: Results fo r 10 passes of o u r H y b r i d A l g o r i t h m . At each pass, t w o passes 
o f F M are fo l lowed by 5 0 K moves o f W a l k P a r t . 

| Benchmark 
| Name 

Nodes Nets WalkPart FMPart Hybrid Cut 
Ratio 

Time 
Ratio 

| Benchmark 
| Name 

Nodes Nets 
Moves Time cut Time Cut Time Cut 

Cut 
Ratio 

Time 
Ratio 

ibm01+10 12752 14111 2M 9.16 610.67 1.54 477.00 1.42 391.66 0.82 0.92 
ibm01+4 12752 14111 500K 2.56 506.00 1.39 464.33 1.53 439.67 0.94 1.1 
ibm02+10 19601 19584 500K 3.61 329.67 2.15 402.00 1.9 306.33 0.76 0.88 
ibm02+4 19601 19584 500K 3.61 654.33 2.14 386.00 2.0 344.67 0.89 0.93 
ibm03+10 23136 27401 2M 14.15 1603.33 3.84 1487.67 2.62 1244.33 0.83 0.68 
ibm03+4 23136 27401 500K 3.84 1175.00 3.14 2488.00 3.25 1351.33 0.54 1.03 
ibm04+10 27507 31970 500K 4.50 1589.00 5.30 718.67 2.9 1131.33 1.57 0.54 
ibm()4 + 4 27507 31970 2M 14.94 2121.00 3.52 2505.00 2.76 1071 0.42 0.78 
ibm05+10 29347 28446 2M 17.34 4804.67 9.54 2793.33 7.6 2612.33 0.93 0.79 
ibm06+IO 32498 34826 2M 12.73 750.00 5.63 1683.00 4.1 1160.33 0.68 0.72 
ibm07+10 45926 48117 2M 18.07 2483.33 9.63 1347.33 9.3 1687 1.25 0.96 
ibm08+10 51309 50513 2M 24.92 1902.67 11.76 3076.00 10.1 1501.33 0.48 0.85 
ibm09+10 53395 60902 2M 19.60 2069.00 14.38 1936.00 11.98 1676.33 0.86 0.83 
ibm10+10 69429 75196 2M 19.79 3414.67 15.36 2200.33 21.33 1520.66 0.69 1.38 
ibm11+10 70558 81454 2M 21.61 2433.33 19.78 4203.33 26.67 4072.33 0.96 1.34 
ibml2+10 71076 77240 2M 22.99 3803.67 23.03 4200.67 30.01 3781 0.90 1.30 
Average 0.84 0.93 

the benchmarks arc chosen from the VLSI domain, all the algo­
rithms discussed here are general and can be used on instances 
from any application. In the experiments, WalkPart uses the nor­
malized score heuristic, and randomness quotient p — 0.1. 2 We 
use the FM partitioning package by Caldwell ct. al., available at 
[2], for the FM component. WalkPart is written in C++. 

In the first experiment, we run 10 hybrid passes after first run­
ning FM once to completion. Each hybrid pass performs 100,000 
WalkPart moves followed by a single FMPart pass. The solution 
after a pass is used as the starting solution for the next pass. Results 
for this experiment arc shown in Table 1. 

The hybrid algorithm is compared against FMPart and Walk-
Part, run individually. WalkPart uses the normalized score heuris­
tic and p — 0.1, with two different move limits: 500,000 and 
2,000,000. Because some moves are picked randomly, increas­
ing the move limit docs not always produce better solutions. Wc 
show results for the move limit where net cut was lower. For each 
benchmark we report average solution quality and runtime over 
three independent starts on a 1.2 GHz AMD Athlon processor with 
1-2GB, running Linux. 

In the tabic, columns 1-3 describe benchmark statistics. The 
benchmarks are named ibmno+t%, where ibm indicates an IBM 
benchmark, no is the serial number, / indicates the balance con­
straint. Tolerances specify the maximum legal disparity between 
subset weights as a percentage of total vertex weight. The next 
three columns give WalkParf s number of moves, runtime and re­
sulting net cut. The next four columns show runtimes and net cuts 
for FM and the hybrid algorithm. The lowest net cut out of the 3 
algorithms is boldfaced. The last two columns show the ratio of 
net cut and runtime of the hybrid algorithm to net cut and runtime 
of FMPart. Averages are shown at the bottom. 

We observe that the hybrid algorithm achieves smaller cuts 
than both FMPart and WalkPart on most benchmarks. This is to 
be expected, since hybrid passes are run on a solution produced by 
FMPart. Nevertheless, we can make some important observations. 
First, FMPart frequently converges when a much better solution 
is achievable. Second, it is possible to achieve a better solution 
by introducing a randomized component with a different decision 
heuristic (normalized score). WalkPart can be used to lead FMPart 
out of local minima by performing random moves, after which FM­
Part can be run again to find a better solution. However, this exper­
iment has a runtime cost. On average, this strategy improves run 
time by 30% over FMPart, but is 1.7 times slower. 

Our second experiment improves runtime by avoiding the ini-

2 Parameter settings were not chosen arbitrarily After testing, we chose the values 
that gave best overall performance. 

tial run of FMPart. This experiment also uses 10 hybrid passes. 
Each pass consists of 2 passes of FMPart followed by 50,000 
moves of WalkPart. Results for this experiment are in Table 3. 

It is clear that the second hybrid configuration is competitive 
with FMPart and WalkPart in terms of runtime, and frequently pro­
duces better solutions. Also, while either FMPart or WalkPart may 
achieve lower net cut than the hybrid algorithm, it is very rare that 
both of them do so. The hybrid approach is usually close to the 
best solution achieved by either. On average, the second hybrid 
configuration improves net cut by 15% and is about 7% faster than 
FMPart alone. 
6 Conclusions and Future Work 

In this work, wc introduce our "crossover" hypergraph partitioning 
algorithm, WalkPart. Wc combine WalkPart with the well-known 
Fiduccia-Mattheyses (FM) heuristic for hypergraph partitioning to 
produce a hybrid heuristic that draws on the strengths of both tech­
niques. Wc achieve substantial improvement over FMPart with a 
very simple approach that requires almost no tuning. 

Our first experiment shows that net cuts achieved by FM, a 
widely used algorithm for this application, can be significantly im­
proved (by 30%), albeit with a runtime cost. However, our second 
experiment reduces net cuts by an average of 15%, and runtime by 
7% over FM. Our results show that combining these two heuris­
tics results in a search procedure that is more powerful than either 
heuristic used alone. Strong empirical results for the proposed hy­
brid algorithm motivate further research. We are incorporating our 
flat partitioning algorithms into the multilevel framework [4,2] and 
plan to make it available for use in CAD tools. We are also continu­
ing our investigation of effective search procedures for partitioning 
and looking for new techniques that can be hybridized with exist­
ing ones. 
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