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1 Introduction

Due to recent advances in robot hardware, there is a
great demand for vision-based robot localisation techniques
[DeSouza and Kak, 2002]. We present a probabilistic sen-
sor model for camera-pose estimation in hallways and other
known structured environments. Given a 3D geometrical map
of the environment, we want to find an approximate mea-
sure of the probability that a given camera image has been
obtained at a certain place in the robot's operating environ-
ment. Our sensor model is based on feature matching tech-
niques that are simpler than state-of-the-art photogrammet-
ric approaches. This allows the model to be used in proba-
bilistic robot localisation methods, such as Monte Carlo lo-
calisation (MCL) [Dellaert et al, 1999]. We have combined
photogrammetric techniques for feature projection with the
flexibility and robustness of MCL. Moreover, our approach is
sufficiently fast to allow for sensor fusion. That is, by using
distance measurements from sonars and laser in addition to
the visual input, we may be able to improve localisation ac-
curacy. We have used our sensor model with MCL to track the
position of a Pioneer 2 robot navigating in a hallway. Possi-
bly, our approach can be used also for localisation in cluttered
environments and for shape-based object detection.

In the next section, we briefly describe the components of
the visual-sensor model. We conclude with a discussion of
experimental results.

2 Sensor Model

A visual-sensor model describes the probability of obtaining
a particular camera image given the camera's pose and a ge-
ometrical map of the environment. Rather than comparing
camera image and the expected view at the pixel level, we
gained improved robustness using image features. We de-
cided to use line segments because they can be detected com-
paratively reliably under changing illumination conditions.
As world model, we use a wire-frame model of the operating
environment, represented in VRML. The individual process-
ing steps are depicted in Figure 1.

Representation. Each straight-line feature is represented
as a single point (g,8) in the 2D Hough space given by
p = zxcosf + ysind, where end-points are neglected. In
this representation, truncated or split lines have similar coor-
dinates.
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Figure 1: Processing steps of the visual-sensor model.

Similarity measures. The correspondence of image and
model features is evaluated by a similarity measure. In gen-
eral, such a measure may take into account the differences
in orientation between corresponding line segments in im-
age and model, or their distance and difference in length. In
the following, we present two simple and efficient similarity
measures. The first is solely based on the distance of line seg-
ments in the Hough space. We consider only those image fea-
tures as possible matches that lie within a rectangular cell in
the Hough space centred at the model feature. The matches
are counted and the resulting sum is normalised. The map-
ping from the expectation (model features) to the measure-
ment (image features) accounts for the fact that the measure
should be invariant with respect to objects not modelled in
the provided map or unexpected changes in the operating en-
vironment. Invariance of the number of visible features is
obtained by normalisation. Specifically, this centred match
count (CMC) measure SCMC is defined as:
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where the predicate m defines a valid match using the dis-
tance parameters {t,, #3) and the operator # counts the num-
ber of matches. Generally speaking, this similarity measure
computes the proportion of expected model Hough points
h. €H, that are confirmed by at least one measured image
Hough point Ay, , € Hy, falling within tolerance (t5.ta). Note
that neither endpoint coordinates nor lengths are considered
here. The second measure is based on a comparison of the
total length values of groups of lines, which we name grid
length match (GLM). Split lines in the image are grouped
together using a uniform discretisation of the Hough space.
This method is similar to the Hough transform for straight
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Figure 2: Performance of CMCon antificially created images,

lines. The same is performed for line segments obtained from
the 3D model. Again, the mapping is directional, ie., the
world model is ysed ag reference, in order to obtain invari-
ance of noise, clutter, and dynamic objects.

Obtaining probabilities, ldeally, we want a monoton;-

3 Experimental Results

We have evaluated the proposed sensor mode] and similarity
Imeasures in a series of €xperiments,

Using artificially generated images. First, we simulated
the feature extraction steps from real images by duplicating
the right-hand branch of Figure 1. By introducing a pose
deviation A} Systematically, we investigated its influence on
the similarity values. For visualisation purposes, Az and Ay
were combined into a spatial deviation At. For the measures
CMC and GLM, over 15 million random camera poses were
coupled with a random pose deviation. As shown in Figure 2,

into account penalises incidental false matches.
rd more realistic conditions. In order to learn the
effect of distorted and noisy image data on our sensor model,

The results obtained for the two measures did not differ sig-
nificantly from the first set of experiments.

Using real imeges from the hallway. As the results ob-
tained in simulation might be questionable with respect to
real-world conditions, we conducted another set of experi-
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Figure 3: Performance of GLM on rea) images,

Application to Monte Carlo localisation. The generic in-
terface of the sensor mode] allows it to be used in the correc-
tion step of Bayesian localisation methods, for example, the

translational deviation, This finding can be explained by the
effect of motion on features jn the Hough space. Hence, the
strength of our model lays at detecting rotationa] disagree-
ment.  This property makes jt especially suitable for (wo-
wheel driven robots like our Pioneer bearing a much higher
rotational odometry error than translational error.
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