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1 Introduction 
Constraint satisfaction problems constitute a broad class of 
algorithmic problems that are ubiquitous in several differ­
ent areas of artificial intelligence and computer science. 
In their full generality, constraint satisfaction problems are 
NP-complete and, thus, presumed to be algorithmically in­
tractable. To cope with the intractability of these prob­
lems, researchers have devoted considerable research efforts 
to both the design of heuristic algorithms for constraint sat­
isfaction and the pursuit of "islands of tractability", that is, 
special cases of constraint satisfaction problems for which 
polynomial-time algorithms exist. 

During the past decade, the pursuit of "islands of tractabil-
ity" of constraint satisfaction has been intensified and has 
led to a number of discoveries that have also unveiled tight 
connections between constraint satisfaction, database theory, 
logic, and universal algebra. Our goal in this paper is to 
present an overview of the current state of affairs in the study 
of the computational complexity of constraint satisfaction 
with emphasis on the connections of this area of research 
with database theory and logic. The paper is organized as 
follows: Section 2 contains the precise definition of the C O N -
STRAINT SATISFACTION PROBLEM and its reformulation as 
the H O M O M O R P H I S M P R O B L E M ; Section 3 contains some of 
the connections between constraint satisfaction problems and 
database theory; the remaining Sections 4, 5, and 6 contain 
a high-level account of some of the main results about the 
computational complexity of constraint satisfaction and the 
pursuit of tractable cases of this problem. 

2 The Constraint Satisfaction Problem and 
the Homomorphism Problem 

Constraint satisfaction problems were originally introduced 
by Montanari [Mon74l to model problems in computer vi­
sion. Since that time, however, it has been realized that nu­
merous important problems in artificial intelligence and com­
puter science can be modeled as constraint satisfaction prob­
lems (see [Dec92a; PJ971). An instance of the C O N S T R A I N T 
SATISFACTION PROBLEM (CSP) consists of a set of vari­
ables, a set of possible values for the variables, and a set 
of constraints on tuples of variables that restrict the combi­
nations of values that the variables may take; the question 
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is to determine whether there is an assignment of values to 
the variables so that the constraints are satisfied. More pre­
cisely, a CSP-instance is a triple (V,, D,C), where V of a 
finite set of variables, D is a finite domain of values for the 
variables, and C is a set constraints {t, R), where t is a tuple 

of variables for some m and R is a rela­
tion on D of arity m. A solution is a mapping h : V -> D 
such that, for every constraint (t,R) C, we have that 

Consider the Boolean satisfiability problem 3-SAT: given 
a 3CNF-formula with variables and clauses 

is satisfiable? Such an instance of 3 -SAT can 
be thought of as the CSP-instance in which the set of vari­
ables is V = ■ }, the domain is D — {0 ,1} , and 
the constraints are determined by the clauses of For ex­
ample, a clause of the form gives rise to the 
constraint In an analogous 
manner, 3 - C O L O R A B I L I T Y can be modeled as a constraint 
satisfaction problem. Indeed, an instance H = {V,E) of 
3 - C O L O R A B I L I T Y can be thought of as the CSP-instance in 
which the set of variables is the set V of the nodes of the 
graph H, the domain is the set of three colors, 
and the constraints are the pairs ((u, u), Q), where E 
and is the inequal­
ity relation on D. 

A vocabulary is a finite set of relational symbols 
R I , . . . , Rm each of which has a fixed arity. A rela­
tional structure over some vocabulary is a tuple A = 

such that A is a non-empty set, called the 
universe of A, and each RA is a relation on A having the 
same arity as the symbol Rt. Let A and B be two rela­
tional structures over the same vocabulary. A homomorphism 
h from A to B is a mapping h : A -> B from the uni­
verse A of A to the universe B of B such that, for every 
relation RA of A and every tuple we 
have that , . . . , F e d e r and Vardi [FV98] 
were the first to point out that the CONSTRAINT SATISFAC­
TION PROBLEM can be identified with the HOMOMORPHISM 
PROBLEM: given two relational structures A and B, is there 
a homomorphism h from A to The intuition behind this 
identification is that the structure A represents the variables 
and the tuples of variables that occur in the constraints, while 
the structure B represents the domain of values and the tu­
ples of values that these constrained tuples of variables are 
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allowed to take. Moreover, the homomorphisms from A to 
B are precisely the assignments of values to variables that 
satisfy the constraints. For instance, 3-COLORABILITY is 
equivalent to the problem of deciding whether there is a ho-
momorphism h from a given graph H to the complete graph 

with 3 
nodes. More generally, k -COLORABIL ITY , 2, amounts 
to the existence of a homomorphism from a given graph 
H to the complete graph Kk with A: nodes (also known as 
the k-clique). Numerous other important NP-complete prob­
lems can be viewed as special cases of the HOMOMORPHISM 
PROBLEM (and, hence, also of the C O N S T R A I N T SATISFAC­
T I O N PROBLEM) . For example, consider the C L I Q U E prob­
lem: given a graph H and an integer k, does H contain a 
clique of size A;? A moment's reflection shows that this is 
equivalent to the question: given a complete graph Kk and a 
graph H, is there a homomorphism from Kk to H? 

The conceptual insights gained from the identification of 
the C O N S T R A I N T SATISFACTION PROBLEM with the H O ­
MOMORPHISM PROBLEM have facilitated the use of tech­
niques from universal algebra in the study of constraint 
satisfaction [Jea98; FV98]). Moreover, they have clari­
fied the tight connections between constraint satisfaction and 
database theory. We discuss some of these connections in the 
next section. 

3 Constraint Satisfaction and Relational 
Databases 

The most frequently asked queries in relational database sys­
tems involve the computation of the join of two or more re­
lations in a database. Instead of spelling out the formal def­
inition of the join operation, let us consider for concreteness 
a database relation R(A, B, C) with A, B, C as attributes 
and a database relation S{B,C,D,E) with B, C, D, E as 
attributes. Then the join R S consists of all quintuples 

such that R and 5. Sev­
eral different researchers, including [Bib88], have pointed out 
that computing the set of all solutions of a CSP-instance can 
be viewed as a join evaluation problem. Indeed, if (V, D, C) is 
a CSP-instance, then, for every constraint 
in C, let be the relation R itself viewed as a 
database relation with attributes 
is the collection of all database relations obtained this way, 
then the join consists of all solutions to the 
CSP-instance 

Join evaluation is a special case of conjunctive query 
evaluation. Specifically, an n-ary conjunctive query 
Q over a relational vocabulary is a query definable 
by a positive existential first-order formula of the 
f o r m w h e r e 

is a conjunction of atomic formu­
las. For example, the binary conjunctive query "there is a 
path of length 3 from x1 to X2" is definable by the formula 

Note that 
joins are precisely those conjunctive queries in which none 
of the variables in is quantified. At other extreme, a 
Boolean conjunctive query is a conjunctive query in which 
all variables of have been quantified out. 

Every finite relational structure A gives rise to a canonical 
Boolean conjunctive query the positive existential first-
order sentence defining asserts that there exist as many 
elements as the cardinality of the universe of A and states all 
atomic facts satisfied by tuples from the universe of A. For 
example, if A = (A, E) is the 3-cycle with A = {1,2,3} and 
E = ( 3 , 1 ) } , then the canonical conjunctive 
query w is definable by the sentence 

The following basic result, due to Chandra and Merlin 
[CM77], establishes a strong connection between homomor­
phisms and conjunctive queries. 
Theorem 3.1: [CM771 The following are equivalent for finite 
relational structures A and B. 

As an example, we saw earlier that a graph G = (V, E) is 3-
colorable if and only if there is a homomorphism from G to 
K 3 . Consequently, Theorem 3.1 implies that G is 3-colorable 
if and only if K3 satisfies the canonical query QG of G. 

In view of the identification of the CONSTRAINT SATIS­
FACTION PROBLEM with the H O M O M O R P H I S M PROBLEM, 
the preceding Theorem 3.1 implies that the CONSTRAINT 
SATISFACTION PROBLEM can also be identified with two 
fundamental problems in database theory: conjunctive query 
evaluation and conjunctive query implication (or contain­
ment). This fundamental connection between constraint sat­
isfaction and database theory was brought to front stage and 
further investigated in [KVOOal. 

4 Computational Complexity of Constraint 
Satisfaction 

The C O N S T R A I N T SATISFACTION PROBLEM is NP-
complete, because it is clearly in NP and also contains 
NP-hard problems as special cases, including 3 -SAT, 3-
COLORABILITY, and CLIQUE. As explained in Garey and 
Johnson's classic monograph [GJ79], one of the main ways 
to cope with NP-completeness is to identify polynomial-
time solvable cases of the problem at hand that are ob­
tained by imposing restrictions on the possible inputs. For 
instance, H O R N 3-SAT, the restriction of 3-SAT to Horn 
3CNF-formulas, is solvable in polynomial-time using a 
unit-propagation algorithm. Similarly, it is known that 3-
COLOR ABILITY restricted to graphs of bounded treewidth is 
solvable in polynomial time (see IDF99]). In the case of con­
straint satisfaction, the pursuit of tractable cases has evolved 
over the years from the discovery of isolated cases to the dis­
covery of large "islands of tractability" of constraint satisfac­
tion. In what follows, we wil l give an account of some of the 
progress made in this area. We begin by introducing some 
terminology and notation that wil l enable us to formalize the 
concept of an "island of tractability" of constraint satisfaction 
using the fact that the C O N S T R A I N T SATISFACTION PROB­
L E M can be identified with the HOMOMORPHISM PROBLEM. 
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In general, an instance of the H O M O M O R P H I S M PROBLEM 
consists of two arbitrary relational structures A and B. Thus, 
all restricted cases of this problem can be obtained by impos­
ing restrictions on the input structures A and B. 
Definition 4.1: Let A, B be two classes of relational struc­
tures. We write CSP (.4,B) to denote the restriction of the 
H O M O M O R P H I S M PROBLEM to input structures from A and 
B. In other words, 

CSP 

An island of tractability of constraint satisfaction is a pair 
(A, B) of classes of relational structures such that CSP(A, B) 
is in the complexity class P of all decision problems solvable 
in polynomial time. 

The ultimate goal in the pursuit of islands of tractability 
of constraint satisfaction is to identify or somehow charac­
terize all classes A and B of relational structures such that 
CSP(A, B) is in P. The basic starting point in this investiga­
tion is to consider the cases in which one of the two classes 
A, B is as small as possible, while the other is as large as 
possible. This amounts to considering the cases in which one 
of A, B is the class All of all relational structures over some 
arbitrary, but fixed, relational vocabulary, while the other is a 
singleton { B } consisting of some fixed structure B over that 
vocabulary. Thus, the starting points of the investigation is 
to determine, for every relational structure B, the computa­
tional complexity of the decision problems CSP({B} , All) 
and CSP(A/ / , {B} ) . 

Clearly, for each fixed B, the decision problem 
CSP({B}, ,4/ / ) can be solved in polynomial time, because, 
given a structure A, the existence of a homomorphism from 
A to B can be checked by testing all functions h from the 
universe B of B to the universe A of A (the total number of 
such functions is which is a polynomial number in the 
size of the structure A) . At the other extreme, however, the 
situation is quite different, since the computational complex­
ity of CSP(.4//, { B } ) may very well depend on the partic­
ular structure B. Indeed, CSP is NP-complete, 
because it is the 3-COLORABILITY problem; in contrast, 
CSP is in P, because it is the 2-COLORABILITY 
problem. 

For simplicity, in what follows, for every fixed structure B, 
we put 

CSP(B) = CSP(A/ / , {B} ) 

and call this the non-uniform constraint satisfaction problem 
associated with B. Thus, the first major goal in the study 
of the computational complexity of constraint satisfaction is 
to identify those structures B for which CSP(B) is in P. A l ­
though this goal has yet to be realized, much progress has 
been made towards it. The next section contains a bird's-eye 
view of some of the main results obtained to date. 

5 The Computational Complexity of 
Non-Uniform Constraint Satisfaction 

The first major result in the study of non-uniform constraint 
satisfaction problems was obtained by Schaefer [Sch78], 

who, in effect, classified the computational complexity of 
all Boolean non-uniform constraint satisfaction problems. 
A Boolean structure is simply a relational structure with a 
2-element universe, that is, a structure of the form B = 

A Boolean non-uniform constraint 
satisfaction problem is a problem of the form CSP(B) with 
B a Boolean structure. These problems are also known as 
G E N E R A L I Z E D SATISF IABIL ITY PROBLEMS, because they 
can be viewed as variants of Boolean satisfiability problems 
in which the formulas are conjunctions of generalized con­
nectives [GJ79]. In particular, they contain the well known 
problems k-SAT, k 2, 1-IN-3-SAT, POSITIVE 1-IN-3-
SAT, N O T - A L L - E Q U A L 3 -SAT, and M O N O T O N E 3-SAT as 
special cases. For example, 3 -SAT is CSP(B), where B = 

and Ri is the set of truth assign­
ments that satisfy a 3-clause in which the first i-literals are 
negated, (thus, 
Similarly, MONOTONE 3 -SAT is CSP(B), where B ' = 

Ladner [Lad75] showed that if P NP, then there are 
decision problems in NP that are neither NP-complete, nor 
they belong to P. Consequently, it is conceivable that a given 
family of NP-problems contains problems of such interme­
diate complexity. Schaefer [Sch78], however, showed that 
the family of all Boolean non-uniform constraint satisfaction 
problems contains no problems of intermediate complexity. 

Theorem 5.1: (Schaefer's Dichotomy Theorem [Sch78]) 

is Boolean structure, then 
either CSP(B) is in P or CSP(B) is NP-complete. In a 
picture, 

• Moreover, there is a polynomial-time algorithm to de­
cide, given a Boolean structure B, whether CSP(B) is 
in P or it is NP-complete. 

Schaefer [Sch78] actually showed that there are exactly 
six types of Boolean structures such that CSP(B) is in P, 
and provided explicit descriptions of them. Specifically, he 
showed that CSP(B) is in P precisly when at least one of the 
following six conditions is satisfied: 

• Every relation of B is O-valid, that is, 
contains the all-zeroes tuple 

• Every relation of B is \-valid, that is, 
contains the all-ones tuple 

• Every relation of B is bijunctive, that 
is, . is the set of truth assignments satisfying some 
2CNF formula. 
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• Every relation m, of B is Horn, that is, 
RB

i is the set of truth assignments satisfying some Horn 
formula. 

• Every relation m, of B is dual Horn, that 
is, RB

i is the set of truth assignments satisfying some 
dual Horn formula. 

• Every relation of B is affine, that is, 
RB

t is the set of solutions to a system of linear equations 
over the two-element field. 

Schaefef's Dichotomy Theorem yields a complete classifi­
cation of the complexity of CSP(B) for Boolean structures 
B. At the same time, it raises the challenge of classifying 
the computational complexity of CSP(B) for arbitrary rela­
tional structures B. To this effect, Feder and Vardi [FV98] 
formulated the following important conjecture. 

Conjecture 5.2: (Feder-Vardi Dichotomy Conjecture) 
If B = RB

m) is an arbitrary relational structure, 
then either CSP(B) is in P or CSP(B) is NP-complete. In a 
picture, 

The Feder-Vardi Dichotomy Conjecture inspired intensive 
research efforts that resulted into significant advances to­
wards resolving it. In particular, quite recently Bulatov con­
firmed two important cases of this conjecture that are de­
scribed next. 

Theorem 5.3: be a relational 
structure. 

• (Bulatov [Bul02a]) /f B = {0,1,2} , then either 
CSP(B) is in P or CSP(B) is NP-complete. 

• (Bulatov lBul()3l) If every non-empty subset of B is one 
of the relations RB

i of B, then either CSP(B) is in P or 
CSP(B) is HP-complete. 

Moreover, in both cases there is a polynomial-time algorithm 
to decide whether CSP(B) is in P or it is NP-complete. 

The second of the two cases above is known as conserva­
tive constraint satisfaction. In effect, it is the case in which 
all possible unary constraints on the domain are present. 

In spite of the progress made, the Feder-Vardi Dichotomy 
Conjecture remains unresolved for CSP(B) with 4. 
The research efforts towards this conjecture, however, have 
also resulted into the discovery of broad sufficient condi­
tions for tractability of non-uniform constraint satisfaction 
that have provided unifying explanations for numerous seem­
ingly disparate tractability results and have also led to the dis­
covery of new islands of tractability of CSP(B). These broad 
sufficient conditions for tractability of CSP(B) are based on 

concepts and techniques from two different areas: universal 
algebra and logic. The approach via universal algebra yields 
sufficient conditions for tractabilty of CSP(B) in terms of 
closure properties of the relations in B under certain func­
tions on B. The approach via logic yields sufficient condi­
tions for tractability in terms of expressibility of CSP(B) in 
Datalog. In the remainder of this section, our primary focus 
is on the latter approach. 

Datalog is the main database query language used in de­
ductive database systems (see rU1189j). In a nutsfell, a Dat­
alog program is a negation-free and function-free logic pro­
gram. More precisely, a Datalog program is a finite set of 
rules of the form 

where T, S1,... , Sr are relation symbols. In effect, the right-
hand side of each rule (called the body of the rule) is a con­
junctive query in which all variables not occurring in the left-
hand side (called the head of the rule) are existentially quan­
tified. Datalog embodies recursion because relation symbols 
may occur both in the heads and the bodies of rules. Those 
that do are the recursive or or intensional database predicates 
(IDBs) of the program, while the remaining relation symbols 
are the extensional database predicates (EDBs). One of the 
IDB predicates is singled out as the goal of the program. 

As a standard example, the transitive closure of the edge 
relation E of a graph H = (V, E) is defined by the following 
Datalog program. 

Every Datalog program can be evaluated "bottom-up" in a 
polynomial number of iterations on a given database. For ex­
ample, the A:-th iteration of the above Datalog program yields 
the set of all pairs of nodes of H that are connected via a path 
of length at most K; moreover, at most n iterations suffice to 
compute the transitive closure of E, where n is the number of 
nodes in V. It follows that each fixed Datalog program can be 
evaluated in time polynomial in the size of a given relational 
structure. Consequently, if a query Q is definable by a Data-
log program, then Q is in P. Thus, expressibility in Datalog is 
a sufficient condition for tractability. 

Another important feature of Datalog is that queries de­
finable by Datalog programs are preserved under homomor-
phisms. This means that if a structure A satisfies the goal of 
a Datalog program and there is a homomorphism from A to 
B, then also B satisfies the goal of the program. 

Let B = be a relational structure. It 
is easy to see that, except for trivial situations, CSP(B) 
is not preserved under homomorphisms, which implies that 
CSP(B) is not expressible in Datalog. Thus, at first sight, 
it appears that there is no link between expressibility in Dat­
alog and tractability of non-uniform constraint satisfaction. 
A moment's reflection, however, reveals that the complement 
CSP(B) of CSP(B) is preserved under homomorphisms, 
where 

CSP(B) = {A : no homomorphism h : A -► B exists}. 

1590 INVITED SPEAKERS 



Consequently, it is conceivable that, for some structures B, 
the non-uniform constraint satisfaction problem CSP(B) is 
in P because its complement is expressible in Dat-
alog. Feder and Vardi IFV98] pursued this link in depth and 
demonstrated that expressibility of in Datalog is a 
unifying explanation for numerous tractability results about 
CSP(B). 

As an important concrete example, consider 2-
COLORABILITY, which is the same problem as CSP(K2 ) . 
The following Datalog program with Q as its goal expresses 
N O N 2-COLORABILITY, since a graph is 2-colorable if and 
only if it contains no cycles of odd length. 

As two additional important examples, recall that if B = 
is a Boolean structure such that ev­

ery relation RB
I is Horn or every relation RB

i is bijunctive, 
then CSP(B) is in P. It can be shown that in both these cases 
CSP(B) is expressible in Datalog. 

To gauge the broad spectrum of tractable cases covered by 
Datalog, it is perhaps worth comparing tractability via Dat­
alog to tractability via closure properties, which, as men­
tioned earlier, is an approach to tractability based on uni­
versal algebra. For this, we need to first introduce some 
basic concepts from universal algebra. If R is an n-ary 
relation on a set B and / : Bk B is a function, 
then we say that R is dosed under f if for every k--tuples 

we have that the 
n,-tuple is also in 
R. If is a relational structure, then 
a polymorphism of B is a function for 
some such that each relation 
is closed under /. We write Pol(B) for the set of all 
polymorphisms of B. As it turns out, the complexity of 
CSP(B) is intimately connected to the kinds of functions 
that Pol(B) contains. In particular, it has been shown that if 
Pol(B) contains functions that satisfy certain algebraic iden­
tities, then CSP(B) is in P. This connection has been in­
vestigated in depth and with much success by Jeavons and 
his collaborators in a sequence of papers, including [JCG97; 
JCC98], and by Bulatov |Bul02b] (but also Feder and Vardi 
[FV98] had results along these lines). The following are 
the presently known most general sufficient conditions for 
tractability of CSP(B) based on closure properties. 

Theorem 5.4: Let B = (B, Ri
B,... , RB

m) he a relational 
structure. 

• If Pol(B) contains a near-unanimity function, then 
CSP(B) is in P. 

• / /Po l (B) contains a set function, then CSP(B) is in P. 

• I f 'Pol(B) contains a Maltsev function, then CSP(B) is 
in?. 

A k-ary function / with is a near unanimity func­
tion if f(x1,... , Xk) = y, for every k-tuple (x1,... , xk) 
such that at least k - 1 of the xis are equal to y. Note that 

the ternary majority function on {0,1} is a near unanimity 
function. A k-ary function / with is a set function if 
for every k-tuple (x1,... , xk), we have that f(x1....., xk) 
depends only on the set {x1,... , xk}. Note that the Boolean 
binary functions A and V arc set functions. Finally, a ternary 
function f(x, y, z) is a Maltsev function if, for every x and y, 
it satisfies the identities f(y, y,x) — f(x,y,y) — x. Note 
that the Boolean function is a Maltsev function. 
It should be pointed out that the preceding Theorem 5.4 con­
tains as special cases the non-trivial tractable cases in Schae-
fer's Dichotomy Theorem 5.1. Indeed, it is known that a 
Boolean relation is bijunctive if and only if it is closed under 
the ternary majority operation; moreover, a Boolean relation 
is Horn (dual Horn) if and only if it is closed under (respec­
tively, V); finally, a Boolean relation is affine if and only if it 
is closed under 

Concerning the comparison between Datalog and closure 
properties, it can be shown that if Pol(B) contains a near-
unanimity function or a set function, then CSP(B) is express­
ible in Datalog. Thus, expressibility in Datalog subsumes two 
of the three sufficient conditions for tractability based on clo­
sure properties. It also known, however, that there are struc­
tures B (in fact, even Boolean structures) such that Pol(B) 
contains a Maltsev function, but CSP(B) is not expressible 
in Datalog. At the same time, there are structures B such 
that Pol(B) does not contain any near unanimity functions, 
set functions, or Maltsev functions, yet CSP(B) is tractable 
because CSP(B) is expressible in Datalog. 

In what follows in this section, we will take a closer look at 
the connections between Datalog and non-uniform constraint 
satisfaction. In particular, we will address the following ques­
tion: when is CSP(B) expressible in Datalog? As we will 
see, expressibility of CSP(B) in Datalog can be character-
ized in terms of pebble games and also in terms of consistency 
properties. 

Combinatorial games are a versatile tool in analyzing the 
expressive power of logics. The most well known among 
these games are the Ehrenfeucht-Fraisse-games for first-order 
logic (see [EFr94]). A different family of games, known as 
k-pebble games, has been used to study fixed-point logics and 
infinitary logics with finitely many variables (see [KV901. We 
now describe a variant of k--pebble games that are suitable for 
analyzing the expressive power of Datalog [KV95]. 
Definition 5.5: Let be a positive integer. The exis­
tential k-pebble game (or, in short, the -pebble game) is 
played between two players, the Spoiler and the Duplicator, 
on two relational structures A and B according to the follow­
ing rules: each player has k pebbles labeled 1 , . . . , k; on the 
i-th move of a round of the game, the Spoiler 
places a pebble on an element a, of .4, and the Duplicator 
responds by placing the pebble with the same label on an el­
ement bi of B. The Spoiler wins the game at the end of that 
round, if the correspondence is not a 
homomorphim between the substructures of A and B with 
universes {a1,... , ak} and [b1,... ,b k } , respectively. Oth­
erwise, the Spoiler removes one or more pebbles, and a new 
round of the game begins. The Duplicator wins the 
pebble game if he has a winning strategy, that is to say, a 
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systematic way that allows him to sustain playing "forever", 
so that the Spoiler can never win a round of the game. 

To illustrate this game, let Km be the complete undirected 
graph with in nodes. For every the Duplicator wins the 

-pebble game on Kk and K k + 1 , but the Spoiler wins 
the -pebble game on Kk+1 and Kk. As another 
example, let Ls be the s-element linear order, If m < 
n, then the Duplicator wins the -pebble game on Lm 

and L n , but the Spoiler wins the -pebble game on 
and 

Note that the above description of a winning strategy for 
the Duplicator in the -pebble game is rather informal. 
The concept of a winning strategy can be made precise, how­
ever, in terms of families of partial homomorphisms with ap­
propriate closure and extension properties, where a partial 
homomorphism from A to B is a homomorphism from a sub­
structure of A to a substructure of B. 

Definition 5.6: Let k be a positive integer. A winning strat­
egy for the Duplicator in the existential k-pebble game on A 
and B is a nonempty family T of partial homomorphisms 
from A to B such that: 

1. For every the domain dom(/) of / has at most 
k elements. 

2. F is closed under subfunctions, which means that if 
T and. then 

3 . T has the k-forth property, which means that for every 
with |dom and every on which 

/ is undefined, there is a that extends / and is 
defined on a. 

Intuitively, the second condition provides the Duplicator 
with a "good" move when the Spoiler removes a pebble from 
an element A, while the third condition provides the Dupli­
cator with a "good" move when the Spoiler places a pebble 
on an element of A. 

For every positive integer k, let k-Datalog be the collection 
of all Datalog programs such that each rule has at most A: 
distinct variables. The next result describes the connection 
between -pebble games and k-Datalog, and also gives 
some of the algorithmic properties of -pebble games. 

Theorem 5.7: [KV95; KVOOa] Let k be a positive integer. 

• Assume that Q is a query definable by a k-Datalog pro­
gram. If A and B are two relational structures such that 
A satisfies Q and the Duplicator wins the -pebble 
game on A and B, then also B satisfies Q. 

• There is a polynomial-time algorithm to decide whether, 
given two finite structures A and B, the Spoiler or the 
Duplicator wins the -pebble game on A and B. 

• For every finite relational structure B, there is a k-
Datalog program B that expresses the query: given 
a finite o -structure A, does the Spoiler win the 
pebble game on A andB? 

The preceding Theorem 5.7 can be used to characterize 
when CSP(B) is expressible in Datalog. 

Theorem 5.8: [KVOOa] Let k be a positive integer and B a fi­
nite relational structure. The following statements are equiv­
alent. 

• CSP(B) is expressible in k-Datalog 
• CSP(B) = {A : Duplicator wins the 

-pebble game on A and B}. 
Note that if a homomorphism from A to B exists, then the 

Duplicator wins the -pebble game on A and B using the 
values of the homomorphism as his strategy. Thus, Theorem 
5.8 asserts that CSP(B) is expressible in k-Datalog if and 
only if the following property holds: whenever the Duplicator 
wins the -pebble on A and B, a homomorphism from 
A to B exists. 

A striking consequence of Theorems 5.7 and 5.8 is that 
all non-uniform constraint satisfaction problems CSP(B) for 
which CSP(B) is expressible in fc-Datalog can be solved 
in polynomial time using the same algorithm, namely, the 
polynomial-time algorithm for determining the winner in the 
(3, fc)-pebble game. Moreover, since expressibility in Data-
log subsumes the tractable cases in which Pol(B) contains 
a near unanimity function or a set function, it follows that 
the algorithm for determining the winner in the (, fc)-pebble 
game can also be used to solve CSP(B) in polynomial time 
in these two major tractable cases. 

Many heuristic algorithms for constraint satisfaction in­
volve "constraint propagation", which can be intuitively de­
scribed as the derivation of new constraints from the original 
ones. This process has been formalized using various consis­
tency concepts that make explicit additional constraints im­
plied by the original constraints. The strong k-consistency 
property is the most important one among them; in infor­
mal terms, this property holds when every partial solution on 
fewer than k variables can be extended to a solution on k vari­
ables lDec92bl. Closely related to this is the process of estab­
lishing strong k-consistency, which is the question of whether 
additional constraints can be added to a given instance of 
the CONSTRAINT SATISFACTION PROBLEM in such a way 
that the resulting instance is strongly k-consistent and has 
the same space of solutions as the original one (see [Dec92b; 
KVOOb] for the formal definitions). It turns out that the fol­
lowing tight connection exists between strong fc-consistency 
properties and -pebble games. 
Theorem 5.9: [KVOOb] The following are equivalent for a 
CSP-instance(V,D,C). 

• /t is possible to establish strong k-consistency for 
(V,D,C). 

• The Duplicator wins the -pebble game on A and 
B, where A, B form the instance of the HOMOMOR­
PHISM PROBLEM associated with (V, D, C). 

Furthermore, when this happens, the set of 
all winning configurations for the Duplicator in the 
pebble game gives rise to the largest (and, hence, least con­
strained) CSP-instance that establishes strong k-consistency 
for 

The preceding theorem provides a different perspective on 
consistency properties and reinforces the usefulness of the 
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-pebble games in the study of constraint satisfaction. 
In particular, Theorem 5.9 implies that computing winning 
strategies for the Duplicator in the -pebble game is the 
most general form of constraint propagation. Moreover, as an 
immediate consequence of Theorems 5.8 and 5.9, we obtain 
another characterization of when CSP(B) is expressible in 
k-Datalog. 

Corollary 5.10: Let k be a positive integer and B be a fixed 
finite relational structure. Then the following are equivalent. 

• CSP(B) is expressible in k-Datalog 
• For every finite relational structure A, establishing 

strong k-consistency for A and B implies that there is a 
homomorphism from A to B. 

The results presented in this section make a strong case 
for the importance of the property "CSP(B) in expressible 
in Datalog" as a broad sufficient condition for tractability of 
CSP(B), since this property subsumes numerous tractable 
cases of non-uniform constraint satisfaction. In view of this, 
one would like to have an efficient algorith to test whether, 
given a relational structure B, we have that CSP(B) is ex­
pressible in Datalog. Such an algorithm could be used as a 
building block in heuristic algorithms for constraint satisfac­
tion, where one first tests for expressibility in Datalog be­
fore resorting to some other exhaustive search procedure. At 
present, however, no such efficient algorithm is known. In 
fact, it is not even known whether expressibility of CSP(B) 
in Datalog is a decidable property. More precisely, the fol­
lowing problem, originally posed by Feder and Vardi [FV98], 
remains open. 
Open Problem: Let be a fixed positive integer. Is 
there an algorithm to decide whether, given B, we have that 
CSP(B) is expressible in k-Datalog? 

6 Uniform Constraint Satisfaction and 
Bounded Treewidth 

In Section 5, we focused on the pursuit of islands of tractabil­
ity of non-uniform constraint satisfaction, that is, islands of 
the form 

CSP(B) - CSP(A l l , {B } ) , 

where B is a fixed relational structure. In particular, we saw 
that substantial progress has been made towards obtaining a 
complete classification of all relational structures B for which 
CSP(B) is solvable in polynomial time. The state of affairs, 
however, is different for constraint satisfaction problems of 
the form CSP(A,B), where neither A nor B is a singleton 
class. We call such problems uniform constraint satisfac-
tion problems, because an instance of CSP{A,B) is a pair 
of structures and (unlike CSP(B), where an 
instance is just a structure A) . 

At present, we are far away from even coming close to a 
characterization of all classes A and B such that CSP(A, B) 
is solvable in polynomial time. Nonetheless, significant 
progress has been made in the case in which B is the class All 
of all relational structures over an arbitrary, but fixed, vocabu­
lary. In what follows, we present the main results concerning 

islands of tractability of uniform constraint satisfaction of the 
form CSP{A, All). 

As is well known, many algorithmic problems that are 
"hard" on arbitrary graphs become "easy" on trees. This mo­
tivated researchers to investigate whether the concept of a tree 
can be appropriately relaxed while maintaining good compu­
tational behavior. As part of their seminar work on graph 
minors, Robertson and Seymour introduced the concept of 
treewidth and showed that graphs of bounded treewidth are 
"tree-like" structures exhibiting such good behavior. The 
monograph by Downey and Fellows [DF991 contains com­
plete definitions and characterizations of these concepts. 
Here, instead of giving the standard definition of treewidth 
in terms of tree compositions, we present an equivalent one 
in terms of partial k-trees. 

Definition 6.1: Let k be a positive integer. 
• A graph H is a k-tree if either H is a Kk+1 -clique or 

there are a k-tree G, nodes in G forming 
a and a node b in H - G such that H is 
obtained from G by connecting b to each of the nodes 
a 1 , . . . , ak (thus, forming a -clique). 

• A graph is a partial k-tree if it is a subgraph (not neces­
sarily induced) of a k-tree. 

• The treewidth of a graph H, denoted by tw(H) , is the 
smallest k such that H is a partial k-tree. 

• We write to denote the class of all graphs H such 
that tw(H) < k. 

Clearly, if T is a tree, then tw(T) = 1. Similarly, if 
and Cn is the n-element cycle, then tw(C) = 2. At the 
other end of the scale, — 1, for every 
Computing the treewidth of a graph is an intractable problem. 
Specifically, the following problem is NP-complete: given a 
graph H and an integer , is Nonetheless, 
Bodlaender [Bod93] showed that for every fixed integer k > 
1, there is a linear-time algorithm such that, given a graph H, 
it determines whether or not 

The notion of treewidth can be defined for arbitrary finite 
relational structures A = using the Gaifi 
man graph GA of the structure A. Specifically, tw(A) = 
tw (G(A) ) , where G ( A ) = (A,E) and 

occur in a tuple of for some i. 

In what follows, wil l denote the class of all relational 
structures of treewidth less than k over a fixed relational vo­
cabulary. 

Dechter and Pearl [DP891 and Freuder lFre90j showed that 
the classes of structures of bounded treewidth give rise to 
large islands of tractrability of uniform constraint satisfaction. 
Theorem 6.2: [DP89; Fre90l If is a positive integer, 
then CSP{T{k),All)isinP. 

The polynomial-time algorithm for CSP(T(k), All) in the 
above theorem is often described as a bucket elimination al­
gorithm [Dec99]. It should be noted that it is not a constraint 
propagation algorithm. Instead, this algorithm uses the bound 
on the treewidth to test if a solution to the constraint satisfac­
tion problem exists by solving a join evaluation problem in 
which all intermediate relations are of bounded arity. 
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Kolaitis and Vardi LKVOOb], and Dalmau, Kolaitis and 
Vardi [DKV02] investigated certain logical aspects of the 
treewidth of a relational structure and showed that this 
combinatorial concept is closely connected to the canoni­
cal conjunctive query of the structure being definable in a 
fragment of first-order logic with a fixed number of vari­
ables. This made it possible to show that the tractability of 
CSP(T(k), All) can be explained in terms of expressibility 
in k-Datalog. Moreover, it led to the discovery of larger is­
lands of tractability of uniform constraint satisfaction. 

Definition 6.3: Let be a positive integer. 

• FOk is the collection of all first-order formulas with at 
most k distinct variables. 

• Lk is the collection of all -formulas built using 
atomic formulas, conjunction, and existential first-order 
quantification only. 

As an example, it is easy to see that if Cn is the n-element 
cycle, then the canonical conjunctive query QCn is 
expressible in L3. For instance, is logically equivalent 
to 

As mentioned earlier, for every we have that 
tw(C n ) = 2. The next result shows that this relationship 
between treewidth and number of variables needed to express 
the canonical conjunctive query is not an accident. 
Theorem 6.4: [KVOOb; DKV02] Let be a positive 
integer. 

• // then the canonical conjunctive query QA 

is expressible in Lk. 
• If B is an arbitrary, but fixed, structure, then 

is expressible in k-Datalog. 
• CSP(T(k), All) can be solved in polynomial time by de­

termining whether, given a structure and an 
arbitrary structure B, the Spoiler or the Duplicator wins 
the (3, k)-pebble on A and B. 

As a consequence of the above Theorem 6.4, we see that 
CSP(T(A:),^4//) can be solved in polynomial time using a 
constraint propagation algorithm that is quite different from 
the bucket elimination algorithm in Theorem 6.2. 
Definition 6.5: Let A and B be two relational structures. 

• We say that A and B are homomorphically equivalent, 
denoted if there are homomorphisms h : 
B and h' : 

• We say that B is the core of A, and write core(A) = B, 
i f 

1. B is a substructure of A. 
2. There is no homomorphism h : B -> B' from B to 

a proper substructure B ; of B. 
Clearly, core and core Moreover, 

if if H is a 2-colorable graph, then core(H) = It 
should be note that cores play an important role in database 
query processing and optimization (see [CM77]). The next 
result shows that they can also be used to characterize when 
the canonical conjunctive query is definable in Lk. 

Theorem 6.6: Let be a positive integer and A a 
relational structure. Then the following statements are equiv­
alent. 

• QA is definable in Lk. 

• There is a structure 

Definition 6.7: If is a positive integer, then 
is the class of all relational structures over some fixed vocab­
ulary that are homomorphically equivalent to a structure in 
T(k). 

Equivalently, is the class of all relational struc­
tures A such that core(A) has treewidth less than k. 

It should noted that T(k) is properly contained in 
. Indeed, it is known that there are 2-colorable 

graphs of arbitrarily large treewidth. In particular, grids are 
known to have these properties (see IDF991). Yet, these 
graphs are members of since their core is K2 . 

Theorem 6.& [DKV02] Let be a positive integer. 

• If B is an arbitrary, but fixed, structure, then 
CSP(H(T(k)),{B}) is expressible in k-Datalog. 

• CSP {n(T(k)), All) is in P. Moreover, 
CSPXri(T(k)),All) can be solved in polynomial 
time by determining whether, given a structure 

and an arbitrary structure B, the Spoiler 
or the Duplicator wins the -pebble on A and B. 

The preceding Theorem 6.8 yields new islands of tractabil­
ity for uniform constraint satisfaction that properly subsume 
the islands of tractability constituted by the classes of struc­
tures of bounded treewidth. However, this expansion of the 
tractability landscape comes at a certain price. Specifically, 
as seen earlier, for every fixed k > 2, there is a polynomial-
algorithm for determining membership in T(k) [Bod93]. In 
contrast, it has been shown that, for every fixed k > 2, deter­
mining membership in H(T(k)) is an NP-complete problem 
[DKV021. Thus, these new islands of tractability are not as 
easily accessible as the earlier ones. 

Since H{T{k)) contains structures of arbitrarily large 
treewidth, the bucket elimination algorithm cannot be used to 
solve All) in polynomial time. Thus, Theo­
rem 6.8 also shows that determining the winner of the (3, k)-
pebble is a polynomial time algorithm that applies to islands 
of tractability not covered by the bucket elimination algo­
rithm. 

It is now natural to ask whether there are classes A of re­
lational structures over some fixed vocabulary such that they 
are larger than the classes and CSP(\4, All) is solv­
able in polynomial time. A rather unexpected and remarkable 
new result by Grohe [Gro03] essentially shows that no such 
classes exist, provided a certain complexity-theoretic hypoth­
esis is true. 

Theorem 6.9: [Gro03] Assume that FPT W[l]. If A is 
a recursively enumerable class of relational structures over 
some fixed vocabulary such that CSP(A,All) is in P, then 
there is a positive integer k such that 
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The hypothesis FPT W[l] is a statement in parametrized 
complexity that is analogous to the hypothesis P NP, and 
it is widely accepted as being true (see [DF99]). In effect, 
Grohe's Theorem 6.9 is a converse to Theorem 6.8. Together, 
these two theorems yield a complete characterization of all is­
lands of tractability of the form CSP(A, All). Moreover, they 
reveal that all tractable cases of the form CSP(A, All) can 
be solved by the same polynomial-time algorithm, namely, 
the algorithm for determining the winner in the -pebble 
game. In other words, all tractable cases of constraint sati-
faction of the form CSP(A, All) can be solved in polynomial 
time using constraint propagation. 
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