
Constraint Satisfaction, Databases, and Logic

Phokion G. Kolaitis*
Computer Science Department

University of California, Santa Cruz
Santa Cruz, CA 95064, U.S.A
kolaitis@cs.ucsc.edu

1 Introduction
Constraint satisfaction problems constitute a broad class of
algorithmic problems that are ubiquitous in several differ­
ent areas of artificial intelligence and computer science.
In their full generality, constraint satisfaction problems are
NP-complete and, thus, presumed to be algorithmically in­
tractable. To cope with the intractability of these prob­
lems, researchers have devoted considerable research efforts
to both the design of heuristic algorithms for constraint sat­
isfaction and the pursuit of "islands of tractability", that is,
special cases of constraint satisfaction problems for which
polynomial-time algorithms exist.

During the past decade, the pursuit of "islands of tractabil-
ity" of constraint satisfaction has been intensified and has
led to a number of discoveries that have also unveiled tight
connections between constraint satisfaction, database theory,
logic, and universal algebra. Our goal in this paper is to
present an overview of the current state of affairs in the study
of the computational complexity of constraint satisfaction
with emphasis on the connections of this area of research
with database theory and logic. The paper is organized as
follows: Section 2 contains the precise definition of the C O N -
STRAINT SATISFACTION PROBLEM and its reformulation as
the H O M O M O R P H I S M P R O B L E M ; Section 3 contains some of
the connections between constraint satisfaction problems and
database theory; the remaining Sections 4, 5, and 6 contain
a high-level account of some of the main results about the
computational complexity of constraint satisfaction and the
pursuit of tractable cases of this problem.

2 The Constraint Satisfaction Problem and
the Homomorphism Problem

Constraint satisfaction problems were originally introduced
by Montanari [Mon74l to model problems in computer vi­
sion. Since that time, however, it has been realized that nu­
merous important problems in artificial intelligence and com­
puter science can be modeled as constraint satisfaction prob­
lems (see [Dec92a; PJ971). An instance of the C O N S T R A I N T
SATISFACTION PROBLEM (CSP) consists of a set of vari­
ables, a set of possible values for the variables, and a set
of constraints on tuples of variables that restrict the combi­
nations of values that the variables may take; the question

* Partially supported by NSF Grant No. IIS-9907419

is to determine whether there is an assignment of values to
the variables so that the constraints are satisfied. More pre­
cisely, a CSP-instance is a triple (V,, D,C), where V of a
finite set of variables, D is a finite domain of values for the
variables, and C is a set constraints {t, R), where t is a tuple

of variables for some m and R is a rela­
tion on D of arity m. A solution is a mapping h : V -> D
such that, for every constraint (t,R) C, we have that

Consider the Boolean satisfiability problem 3-SAT: given
a 3CNF-formula with variables and clauses

is satisfiable? Such an instance of 3 -SAT can
be thought of as the CSP-instance in which the set of vari­
ables is V = ■ }, the domain is D — {0 ,1} , and
the constraints are determined by the clauses of For ex­
ample, a clause of the form gives rise to the
constraint In an analogous
manner, 3 - C O L O R A B I L I T Y can be modeled as a constraint
satisfaction problem. Indeed, an instance H = {V,E) of
3 - C O L O R A B I L I T Y can be thought of as the CSP-instance in
which the set of variables is the set V of the nodes of the
graph H, the domain is the set of three colors,
and the constraints are the pairs ((u, u), Q), where E
and is the inequal­
ity relation on D.

A vocabulary is a finite set of relational symbols
R I , . . . , Rm each of which has a fixed arity. A rela­
tional structure over some vocabulary is a tuple A =

such that A is a non-empty set, called the
universe of A, and each RA is a relation on A having the
same arity as the symbol Rt. Let A and B be two rela­
tional structures over the same vocabulary. A homomorphism
h from A to B is a mapping h : A -> B from the uni­
verse A of A to the universe B of B such that, for every
relation RA of A and every tuple we
have that , . . . , F e d e r and Vardi [FV98]
were the first to point out that the CONSTRAINT SATISFAC­
TION PROBLEM can be identified with the HOMOMORPHISM
PROBLEM: given two relational structures A and B, is there
a homomorphism h from A to The intuition behind this
identification is that the structure A represents the variables
and the tuples of variables that occur in the constraints, while
the structure B represents the domain of values and the tu­
ples of values that these constrained tuples of variables are

INVITED SPEAKERS 1587

allowed to take. Moreover, the homomorphisms from A to
B are precisely the assignments of values to variables that
satisfy the constraints. For instance, 3-COLORABILITY is
equivalent to the problem of deciding whether there is a ho-
momorphism h from a given graph H to the complete graph

with 3
nodes. More generally, k -COLORABIL ITY , 2, amounts
to the existence of a homomorphism from a given graph
H to the complete graph Kk with A: nodes (also known as
the k-clique). Numerous other important NP-complete prob­
lems can be viewed as special cases of the HOMOMORPHISM
PROBLEM (and, hence, also of the C O N S T R A I N T SATISFAC­
T I O N PROBLEM) . For example, consider the C L I Q U E prob­
lem: given a graph H and an integer k, does H contain a
clique of size A;? A moment's reflection shows that this is
equivalent to the question: given a complete graph Kk and a
graph H, is there a homomorphism from Kk to H?

The conceptual insights gained from the identification of
the C O N S T R A I N T SATISFACTION PROBLEM with the H O ­
MOMORPHISM PROBLEM have facilitated the use of tech­
niques from universal algebra in the study of constraint
satisfaction [Jea98; FV98]). Moreover, they have clari­
fied the tight connections between constraint satisfaction and
database theory. We discuss some of these connections in the
next section.

3 Constraint Satisfaction and Relational
Databases

The most frequently asked queries in relational database sys­
tems involve the computation of the join of two or more re­
lations in a database. Instead of spelling out the formal def­
inition of the join operation, let us consider for concreteness
a database relation R(A, B, C) with A, B, C as attributes
and a database relation S{B,C,D,E) with B, C, D, E as
attributes. Then the join R S consists of all quintuples

such that R and 5. Sev­
eral different researchers, including [Bib88], have pointed out
that computing the set of all solutions of a CSP-instance can
be viewed as a join evaluation problem. Indeed, if (V, D, C) is
a CSP-instance, then, for every constraint
in C, let be the relation R itself viewed as a
database relation with attributes
is the collection of all database relations obtained this way,
then the join consists of all solutions to the
CSP-instance

Join evaluation is a special case of conjunctive query
evaluation. Specifically, an n-ary conjunctive query
Q over a relational vocabulary is a query definable
by a positive existential first-order formula of the
f o r m w h e r e

is a conjunction of atomic formu­
las. For example, the binary conjunctive query "there is a
path of length 3 from x1 to X2" is definable by the formula

Note that
joins are precisely those conjunctive queries in which none
of the variables in is quantified. At other extreme, a
Boolean conjunctive query is a conjunctive query in which
all variables of have been quantified out.

Every finite relational structure A gives rise to a canonical
Boolean conjunctive query the positive existential first-
order sentence defining asserts that there exist as many
elements as the cardinality of the universe of A and states all
atomic facts satisfied by tuples from the universe of A. For
example, if A = (A, E) is the 3-cycle with A = {1,2,3} and
E = (3 , 1) } , then the canonical conjunctive
query w is definable by the sentence

The following basic result, due to Chandra and Merlin
[CM77], establishes a strong connection between homomor­
phisms and conjunctive queries.
Theorem 3.1: [CM771 The following are equivalent for finite
relational structures A and B.

As an example, we saw earlier that a graph G = (V, E) is 3-
colorable if and only if there is a homomorphism from G to
K 3 . Consequently, Theorem 3.1 implies that G is 3-colorable
if and only if K3 satisfies the canonical query QG of G.

In view of the identification of the CONSTRAINT SATIS­
FACTION PROBLEM with the H O M O M O R P H I S M PROBLEM,
the preceding Theorem 3.1 implies that the CONSTRAINT
SATISFACTION PROBLEM can also be identified with two
fundamental problems in database theory: conjunctive query
evaluation and conjunctive query implication (or contain­
ment). This fundamental connection between constraint sat­
isfaction and database theory was brought to front stage and
further investigated in [KVOOal.

4 Computational Complexity of Constraint
Satisfaction

The C O N S T R A I N T SATISFACTION PROBLEM is NP-
complete, because it is clearly in NP and also contains
NP-hard problems as special cases, including 3 -SAT, 3-
COLORABILITY, and CLIQUE. As explained in Garey and
Johnson's classic monograph [GJ79], one of the main ways
to cope with NP-completeness is to identify polynomial-
time solvable cases of the problem at hand that are ob­
tained by imposing restrictions on the possible inputs. For
instance, H O R N 3-SAT, the restriction of 3-SAT to Horn
3CNF-formulas, is solvable in polynomial-time using a
unit-propagation algorithm. Similarly, it is known that 3-
COLOR ABILITY restricted to graphs of bounded treewidth is
solvable in polynomial time (see IDF99]). In the case of con­
straint satisfaction, the pursuit of tractable cases has evolved
over the years from the discovery of isolated cases to the dis­
covery of large "islands of tractability" of constraint satisfac­
tion. In what follows, we wil l give an account of some of the
progress made in this area. We begin by introducing some
terminology and notation that wil l enable us to formalize the
concept of an "island of tractability" of constraint satisfaction
using the fact that the C O N S T R A I N T SATISFACTION PROB­
L E M can be identified with the HOMOMORPHISM PROBLEM.

1588 INVITED SPEAKERS

In general, an instance of the H O M O M O R P H I S M PROBLEM
consists of two arbitrary relational structures A and B. Thus,
all restricted cases of this problem can be obtained by impos­
ing restrictions on the input structures A and B.
Definition 4.1: Let A, B be two classes of relational struc­
tures. We write CSP (.4,B) to denote the restriction of the
H O M O M O R P H I S M PROBLEM to input structures from A and
B. In other words,

CSP

An island of tractability of constraint satisfaction is a pair
(A, B) of classes of relational structures such that CSP(A, B)
is in the complexity class P of all decision problems solvable
in polynomial time.

The ultimate goal in the pursuit of islands of tractability
of constraint satisfaction is to identify or somehow charac­
terize all classes A and B of relational structures such that
CSP(A, B) is in P. The basic starting point in this investiga­
tion is to consider the cases in which one of the two classes
A, B is as small as possible, while the other is as large as
possible. This amounts to considering the cases in which one
of A, B is the class All of all relational structures over some
arbitrary, but fixed, relational vocabulary, while the other is a
singleton { B } consisting of some fixed structure B over that
vocabulary. Thus, the starting points of the investigation is
to determine, for every relational structure B, the computa­
tional complexity of the decision problems CSP({B} , All)
and CSP(A/ / , {B}) .

Clearly, for each fixed B, the decision problem
CSP({B}, ,4/ /) can be solved in polynomial time, because,
given a structure A, the existence of a homomorphism from
A to B can be checked by testing all functions h from the
universe B of B to the universe A of A (the total number of
such functions is which is a polynomial number in the
size of the structure A) . At the other extreme, however, the
situation is quite different, since the computational complex­
ity of CSP(.4//, { B }) may very well depend on the partic­
ular structure B. Indeed, CSP is NP-complete,
because it is the 3-COLORABILITY problem; in contrast,
CSP is in P, because it is the 2-COLORABILITY
problem.

For simplicity, in what follows, for every fixed structure B,
we put

CSP(B) = CSP(A/ / , {B})

and call this the non-uniform constraint satisfaction problem
associated with B. Thus, the first major goal in the study
of the computational complexity of constraint satisfaction is
to identify those structures B for which CSP(B) is in P. A l ­
though this goal has yet to be realized, much progress has
been made towards it. The next section contains a bird's-eye
view of some of the main results obtained to date.

5 The Computational Complexity of
Non-Uniform Constraint Satisfaction

The first major result in the study of non-uniform constraint
satisfaction problems was obtained by Schaefer [Sch78],

who, in effect, classified the computational complexity of
all Boolean non-uniform constraint satisfaction problems.
A Boolean structure is simply a relational structure with a
2-element universe, that is, a structure of the form B =

A Boolean non-uniform constraint
satisfaction problem is a problem of the form CSP(B) with
B a Boolean structure. These problems are also known as
G E N E R A L I Z E D SATISF IABIL ITY PROBLEMS, because they
can be viewed as variants of Boolean satisfiability problems
in which the formulas are conjunctions of generalized con­
nectives [GJ79]. In particular, they contain the well known
problems k-SAT, k 2, 1-IN-3-SAT, POSITIVE 1-IN-3-
SAT, N O T - A L L - E Q U A L 3 -SAT, and M O N O T O N E 3-SAT as
special cases. For example, 3 -SAT is CSP(B), where B =

and Ri is the set of truth assign­
ments that satisfy a 3-clause in which the first i-literals are
negated, (thus,
Similarly, MONOTONE 3 -SAT is CSP(B), where B ' =

Ladner [Lad75] showed that if P NP, then there are
decision problems in NP that are neither NP-complete, nor
they belong to P. Consequently, it is conceivable that a given
family of NP-problems contains problems of such interme­
diate complexity. Schaefer [Sch78], however, showed that
the family of all Boolean non-uniform constraint satisfaction
problems contains no problems of intermediate complexity.

Theorem 5.1: (Schaefer's Dichotomy Theorem [Sch78])

is Boolean structure, then
either CSP(B) is in P or CSP(B) is NP-complete. In a
picture,

• Moreover, there is a polynomial-time algorithm to de­
cide, given a Boolean structure B, whether CSP(B) is
in P or it is NP-complete.

Schaefer [Sch78] actually showed that there are exactly
six types of Boolean structures such that CSP(B) is in P,
and provided explicit descriptions of them. Specifically, he
showed that CSP(B) is in P precisly when at least one of the
following six conditions is satisfied:

• Every relation of B is O-valid, that is,
contains the all-zeroes tuple

• Every relation of B is \-valid, that is,
contains the all-ones tuple

• Every relation of B is bijunctive, that
is, . is the set of truth assignments satisfying some
2CNF formula.

INVITED SPEAKERS 1589

• Every relation m, of B is Horn, that is,
RB

i is the set of truth assignments satisfying some Horn
formula.

• Every relation m, of B is dual Horn, that
is, RB

i is the set of truth assignments satisfying some
dual Horn formula.

• Every relation of B is affine, that is,
RB

t is the set of solutions to a system of linear equations
over the two-element field.

Schaefef's Dichotomy Theorem yields a complete classifi­
cation of the complexity of CSP(B) for Boolean structures
B. At the same time, it raises the challenge of classifying
the computational complexity of CSP(B) for arbitrary rela­
tional structures B. To this effect, Feder and Vardi [FV98]
formulated the following important conjecture.

Conjecture 5.2: (Feder-Vardi Dichotomy Conjecture)
If B = RB

m) is an arbitrary relational structure,
then either CSP(B) is in P or CSP(B) is NP-complete. In a
picture,

The Feder-Vardi Dichotomy Conjecture inspired intensive
research efforts that resulted into significant advances to­
wards resolving it. In particular, quite recently Bulatov con­
firmed two important cases of this conjecture that are de­
scribed next.

Theorem 5.3: be a relational
structure.

• (Bulatov [Bul02a]) /f B = {0,1,2} , then either
CSP(B) is in P or CSP(B) is NP-complete.

• (Bulatov lBul()3l) If every non-empty subset of B is one
of the relations RB

i of B, then either CSP(B) is in P or
CSP(B) is HP-complete.

Moreover, in both cases there is a polynomial-time algorithm
to decide whether CSP(B) is in P or it is NP-complete.

The second of the two cases above is known as conserva­
tive constraint satisfaction. In effect, it is the case in which
all possible unary constraints on the domain are present.

In spite of the progress made, the Feder-Vardi Dichotomy
Conjecture remains unresolved for CSP(B) with 4.
The research efforts towards this conjecture, however, have
also resulted into the discovery of broad sufficient condi­
tions for tractability of non-uniform constraint satisfaction
that have provided unifying explanations for numerous seem­
ingly disparate tractability results and have also led to the dis­
covery of new islands of tractability of CSP(B). These broad
sufficient conditions for tractability of CSP(B) are based on

concepts and techniques from two different areas: universal
algebra and logic. The approach via universal algebra yields
sufficient conditions for tractabilty of CSP(B) in terms of
closure properties of the relations in B under certain func­
tions on B. The approach via logic yields sufficient condi­
tions for tractability in terms of expressibility of CSP(B) in
Datalog. In the remainder of this section, our primary focus
is on the latter approach.

Datalog is the main database query language used in de­
ductive database systems (see rU1189j). In a nutsfell, a Dat­
alog program is a negation-free and function-free logic pro­
gram. More precisely, a Datalog program is a finite set of
rules of the form

where T, S1,... , Sr are relation symbols. In effect, the right-
hand side of each rule (called the body of the rule) is a con­
junctive query in which all variables not occurring in the left-
hand side (called the head of the rule) are existentially quan­
tified. Datalog embodies recursion because relation symbols
may occur both in the heads and the bodies of rules. Those
that do are the recursive or or intensional database predicates
(IDBs) of the program, while the remaining relation symbols
are the extensional database predicates (EDBs). One of the
IDB predicates is singled out as the goal of the program.

As a standard example, the transitive closure of the edge
relation E of a graph H = (V, E) is defined by the following
Datalog program.

Every Datalog program can be evaluated "bottom-up" in a
polynomial number of iterations on a given database. For ex­
ample, the A:-th iteration of the above Datalog program yields
the set of all pairs of nodes of H that are connected via a path
of length at most K; moreover, at most n iterations suffice to
compute the transitive closure of E, where n is the number of
nodes in V. It follows that each fixed Datalog program can be
evaluated in time polynomial in the size of a given relational
structure. Consequently, if a query Q is definable by a Data-
log program, then Q is in P. Thus, expressibility in Datalog is
a sufficient condition for tractability.

Another important feature of Datalog is that queries de­
finable by Datalog programs are preserved under homomor-
phisms. This means that if a structure A satisfies the goal of
a Datalog program and there is a homomorphism from A to
B, then also B satisfies the goal of the program.

Let B = be a relational structure. It
is easy to see that, except for trivial situations, CSP(B)
is not preserved under homomorphisms, which implies that
CSP(B) is not expressible in Datalog. Thus, at first sight,
it appears that there is no link between expressibility in Dat­
alog and tractability of non-uniform constraint satisfaction.
A moment's reflection, however, reveals that the complement
CSP(B) of CSP(B) is preserved under homomorphisms,
where

CSP(B) = {A : no homomorphism h : A -► B exists}.

1590 INVITED SPEAKERS

Consequently, it is conceivable that, for some structures B,
the non-uniform constraint satisfaction problem CSP(B) is
in P because its complement is expressible in Dat-
alog. Feder and Vardi IFV98] pursued this link in depth and
demonstrated that expressibility of in Datalog is a
unifying explanation for numerous tractability results about
CSP(B).

As an important concrete example, consider 2-
COLORABILITY, which is the same problem as CSP(K2) .
The following Datalog program with Q as its goal expresses
N O N 2-COLORABILITY, since a graph is 2-colorable if and
only if it contains no cycles of odd length.

As two additional important examples, recall that if B =
is a Boolean structure such that ev­

ery relation RB
I is Horn or every relation RB

i is bijunctive,
then CSP(B) is in P. It can be shown that in both these cases
CSP(B) is expressible in Datalog.

To gauge the broad spectrum of tractable cases covered by
Datalog, it is perhaps worth comparing tractability via Dat­
alog to tractability via closure properties, which, as men­
tioned earlier, is an approach to tractability based on uni­
versal algebra. For this, we need to first introduce some
basic concepts from universal algebra. If R is an n-ary
relation on a set B and / : Bk B is a function,
then we say that R is dosed under f if for every k--tuples

we have that the
n,-tuple is also in
R. If is a relational structure, then
a polymorphism of B is a function for
some such that each relation
is closed under /. We write Pol(B) for the set of all
polymorphisms of B. As it turns out, the complexity of
CSP(B) is intimately connected to the kinds of functions
that Pol(B) contains. In particular, it has been shown that if
Pol(B) contains functions that satisfy certain algebraic iden­
tities, then CSP(B) is in P. This connection has been in­
vestigated in depth and with much success by Jeavons and
his collaborators in a sequence of papers, including [JCG97;
JCC98], and by Bulatov |Bul02b] (but also Feder and Vardi
[FV98] had results along these lines). The following are
the presently known most general sufficient conditions for
tractability of CSP(B) based on closure properties.

Theorem 5.4: Let B = (B, Ri
B,... , RB

m) he a relational
structure.

• If Pol(B) contains a near-unanimity function, then
CSP(B) is in P.

• / /Po l (B) contains a set function, then CSP(B) is in P.

• I f 'Pol(B) contains a Maltsev function, then CSP(B) is
in?.

A k-ary function / with is a near unanimity func­
tion if f(x1,... , Xk) = y, for every k-tuple (x1,... , xk)
such that at least k - 1 of the xis are equal to y. Note that

the ternary majority function on {0,1} is a near unanimity
function. A k-ary function / with is a set function if
for every k-tuple (x1,... , xk), we have that f(x1....., xk)
depends only on the set {x1,... , xk}. Note that the Boolean
binary functions A and V arc set functions. Finally, a ternary
function f(x, y, z) is a Maltsev function if, for every x and y,
it satisfies the identities f(y, y,x) — f(x,y,y) — x. Note
that the Boolean function is a Maltsev function.
It should be pointed out that the preceding Theorem 5.4 con­
tains as special cases the non-trivial tractable cases in Schae-
fer's Dichotomy Theorem 5.1. Indeed, it is known that a
Boolean relation is bijunctive if and only if it is closed under
the ternary majority operation; moreover, a Boolean relation
is Horn (dual Horn) if and only if it is closed under (respec­
tively, V); finally, a Boolean relation is affine if and only if it
is closed under

Concerning the comparison between Datalog and closure
properties, it can be shown that if Pol(B) contains a near-
unanimity function or a set function, then CSP(B) is express­
ible in Datalog. Thus, expressibility in Datalog subsumes two
of the three sufficient conditions for tractability based on clo­
sure properties. It also known, however, that there are struc­
tures B (in fact, even Boolean structures) such that Pol(B)
contains a Maltsev function, but CSP(B) is not expressible
in Datalog. At the same time, there are structures B such
that Pol(B) does not contain any near unanimity functions,
set functions, or Maltsev functions, yet CSP(B) is tractable
because CSP(B) is expressible in Datalog.

In what follows in this section, we will take a closer look at
the connections between Datalog and non-uniform constraint
satisfaction. In particular, we will address the following ques­
tion: when is CSP(B) expressible in Datalog? As we will
see, expressibility of CSP(B) in Datalog can be character-
ized in terms of pebble games and also in terms of consistency
properties.

Combinatorial games are a versatile tool in analyzing the
expressive power of logics. The most well known among
these games are the Ehrenfeucht-Fraisse-games for first-order
logic (see [EFr94]). A different family of games, known as
k-pebble games, has been used to study fixed-point logics and
infinitary logics with finitely many variables (see [KV901. We
now describe a variant of k--pebble games that are suitable for
analyzing the expressive power of Datalog [KV95].
Definition 5.5: Let be a positive integer. The exis­
tential k-pebble game (or, in short, the -pebble game) is
played between two players, the Spoiler and the Duplicator,
on two relational structures A and B according to the follow­
ing rules: each player has k pebbles labeled 1 , . . . , k; on the
i-th move of a round of the game, the Spoiler
places a pebble on an element a, of .4, and the Duplicator
responds by placing the pebble with the same label on an el­
ement bi of B. The Spoiler wins the game at the end of that
round, if the correspondence is not a
homomorphim between the substructures of A and B with
universes {a1,... , ak} and [b1,... ,b k } , respectively. Oth­
erwise, the Spoiler removes one or more pebbles, and a new
round of the game begins. The Duplicator wins the
pebble game if he has a winning strategy, that is to say, a

INVITED SPEAKERS 1591

systematic way that allows him to sustain playing "forever",
so that the Spoiler can never win a round of the game.

To illustrate this game, let Km be the complete undirected
graph with in nodes. For every the Duplicator wins the

-pebble game on Kk and K k + 1 , but the Spoiler wins
the -pebble game on Kk+1 and Kk. As another
example, let Ls be the s-element linear order, If m <
n, then the Duplicator wins the -pebble game on Lm

and L n , but the Spoiler wins the -pebble game on
and

Note that the above description of a winning strategy for
the Duplicator in the -pebble game is rather informal.
The concept of a winning strategy can be made precise, how­
ever, in terms of families of partial homomorphisms with ap­
propriate closure and extension properties, where a partial
homomorphism from A to B is a homomorphism from a sub­
structure of A to a substructure of B.

Definition 5.6: Let k be a positive integer. A winning strat­
egy for the Duplicator in the existential k-pebble game on A
and B is a nonempty family T of partial homomorphisms
from A to B such that:

1. For every the domain dom(/) of / has at most
k elements.

2. F is closed under subfunctions, which means that if
T and. then

3 . T has the k-forth property, which means that for every
with |dom and every on which

/ is undefined, there is a that extends / and is
defined on a.

Intuitively, the second condition provides the Duplicator
with a "good" move when the Spoiler removes a pebble from
an element A, while the third condition provides the Dupli­
cator with a "good" move when the Spoiler places a pebble
on an element of A.

For every positive integer k, let k-Datalog be the collection
of all Datalog programs such that each rule has at most A:
distinct variables. The next result describes the connection
between -pebble games and k-Datalog, and also gives
some of the algorithmic properties of -pebble games.

Theorem 5.7: [KV95; KVOOa] Let k be a positive integer.

• Assume that Q is a query definable by a k-Datalog pro­
gram. If A and B are two relational structures such that
A satisfies Q and the Duplicator wins the -pebble
game on A and B, then also B satisfies Q.

• There is a polynomial-time algorithm to decide whether,
given two finite structures A and B, the Spoiler or the
Duplicator wins the -pebble game on A and B.

• For every finite relational structure B, there is a k-
Datalog program B that expresses the query: given
a finite o -structure A, does the Spoiler win the
pebble game on A andB?

The preceding Theorem 5.7 can be used to characterize
when CSP(B) is expressible in Datalog.

Theorem 5.8: [KVOOa] Let k be a positive integer and B a fi­
nite relational structure. The following statements are equiv­
alent.

• CSP(B) is expressible in k-Datalog
• CSP(B) = {A : Duplicator wins the

-pebble game on A and B}.
Note that if a homomorphism from A to B exists, then the

Duplicator wins the -pebble game on A and B using the
values of the homomorphism as his strategy. Thus, Theorem
5.8 asserts that CSP(B) is expressible in k-Datalog if and
only if the following property holds: whenever the Duplicator
wins the -pebble on A and B, a homomorphism from
A to B exists.

A striking consequence of Theorems 5.7 and 5.8 is that
all non-uniform constraint satisfaction problems CSP(B) for
which CSP(B) is expressible in fc-Datalog can be solved
in polynomial time using the same algorithm, namely, the
polynomial-time algorithm for determining the winner in the
(3, fc)-pebble game. Moreover, since expressibility in Data-
log subsumes the tractable cases in which Pol(B) contains
a near unanimity function or a set function, it follows that
the algorithm for determining the winner in the (, fc)-pebble
game can also be used to solve CSP(B) in polynomial time
in these two major tractable cases.

Many heuristic algorithms for constraint satisfaction in­
volve "constraint propagation", which can be intuitively de­
scribed as the derivation of new constraints from the original
ones. This process has been formalized using various consis­
tency concepts that make explicit additional constraints im­
plied by the original constraints. The strong k-consistency
property is the most important one among them; in infor­
mal terms, this property holds when every partial solution on
fewer than k variables can be extended to a solution on k vari­
ables lDec92bl. Closely related to this is the process of estab­
lishing strong k-consistency, which is the question of whether
additional constraints can be added to a given instance of
the CONSTRAINT SATISFACTION PROBLEM in such a way
that the resulting instance is strongly k-consistent and has
the same space of solutions as the original one (see [Dec92b;
KVOOb] for the formal definitions). It turns out that the fol­
lowing tight connection exists between strong fc-consistency
properties and -pebble games.
Theorem 5.9: [KVOOb] The following are equivalent for a
CSP-instance(V,D,C).

• /t is possible to establish strong k-consistency for
(V,D,C).

• The Duplicator wins the -pebble game on A and
B, where A, B form the instance of the HOMOMOR­
PHISM PROBLEM associated with (V, D, C).

Furthermore, when this happens, the set of
all winning configurations for the Duplicator in the
pebble game gives rise to the largest (and, hence, least con­
strained) CSP-instance that establishes strong k-consistency
for

The preceding theorem provides a different perspective on
consistency properties and reinforces the usefulness of the

1592 INVITED SPEAKERS

-pebble games in the study of constraint satisfaction.
In particular, Theorem 5.9 implies that computing winning
strategies for the Duplicator in the -pebble game is the
most general form of constraint propagation. Moreover, as an
immediate consequence of Theorems 5.8 and 5.9, we obtain
another characterization of when CSP(B) is expressible in
k-Datalog.

Corollary 5.10: Let k be a positive integer and B be a fixed
finite relational structure. Then the following are equivalent.

• CSP(B) is expressible in k-Datalog
• For every finite relational structure A, establishing

strong k-consistency for A and B implies that there is a
homomorphism from A to B.

The results presented in this section make a strong case
for the importance of the property "CSP(B) in expressible
in Datalog" as a broad sufficient condition for tractability of
CSP(B), since this property subsumes numerous tractable
cases of non-uniform constraint satisfaction. In view of this,
one would like to have an efficient algorith to test whether,
given a relational structure B, we have that CSP(B) is ex­
pressible in Datalog. Such an algorithm could be used as a
building block in heuristic algorithms for constraint satisfac­
tion, where one first tests for expressibility in Datalog be­
fore resorting to some other exhaustive search procedure. At
present, however, no such efficient algorithm is known. In
fact, it is not even known whether expressibility of CSP(B)
in Datalog is a decidable property. More precisely, the fol­
lowing problem, originally posed by Feder and Vardi [FV98],
remains open.
Open Problem: Let be a fixed positive integer. Is
there an algorithm to decide whether, given B, we have that
CSP(B) is expressible in k-Datalog?

6 Uniform Constraint Satisfaction and
Bounded Treewidth

In Section 5, we focused on the pursuit of islands of tractabil­
ity of non-uniform constraint satisfaction, that is, islands of
the form

CSP(B) - CSP(A l l , {B }) ,

where B is a fixed relational structure. In particular, we saw
that substantial progress has been made towards obtaining a
complete classification of all relational structures B for which
CSP(B) is solvable in polynomial time. The state of affairs,
however, is different for constraint satisfaction problems of
the form CSP(A,B), where neither A nor B is a singleton
class. We call such problems uniform constraint satisfac-
tion problems, because an instance of CSP{A,B) is a pair
of structures and (unlike CSP(B), where an
instance is just a structure A) .

At present, we are far away from even coming close to a
characterization of all classes A and B such that CSP(A, B)
is solvable in polynomial time. Nonetheless, significant
progress has been made in the case in which B is the class All
of all relational structures over an arbitrary, but fixed, vocabu­
lary. In what follows, we present the main results concerning

islands of tractability of uniform constraint satisfaction of the
form CSP{A, All).

As is well known, many algorithmic problems that are
"hard" on arbitrary graphs become "easy" on trees. This mo­
tivated researchers to investigate whether the concept of a tree
can be appropriately relaxed while maintaining good compu­
tational behavior. As part of their seminar work on graph
minors, Robertson and Seymour introduced the concept of
treewidth and showed that graphs of bounded treewidth are
"tree-like" structures exhibiting such good behavior. The
monograph by Downey and Fellows [DF991 contains com­
plete definitions and characterizations of these concepts.
Here, instead of giving the standard definition of treewidth
in terms of tree compositions, we present an equivalent one
in terms of partial k-trees.

Definition 6.1: Let k be a positive integer.
• A graph H is a k-tree if either H is a Kk+1 -clique or

there are a k-tree G, nodes in G forming
a and a node b in H - G such that H is
obtained from G by connecting b to each of the nodes
a 1 , . . . , ak (thus, forming a -clique).

• A graph is a partial k-tree if it is a subgraph (not neces­
sarily induced) of a k-tree.

• The treewidth of a graph H, denoted by tw(H) , is the
smallest k such that H is a partial k-tree.

• We write to denote the class of all graphs H such
that tw(H) < k.

Clearly, if T is a tree, then tw(T) = 1. Similarly, if
and Cn is the n-element cycle, then tw(C) = 2. At the
other end of the scale, — 1, for every
Computing the treewidth of a graph is an intractable problem.
Specifically, the following problem is NP-complete: given a
graph H and an integer , is Nonetheless,
Bodlaender [Bod93] showed that for every fixed integer k >
1, there is a linear-time algorithm such that, given a graph H,
it determines whether or not

The notion of treewidth can be defined for arbitrary finite
relational structures A = using the Gaifi
man graph GA of the structure A. Specifically, tw(A) =
tw (G(A)) , where G (A) = (A,E) and

occur in a tuple of for some i.

In what follows, wil l denote the class of all relational
structures of treewidth less than k over a fixed relational vo­
cabulary.

Dechter and Pearl [DP891 and Freuder lFre90j showed that
the classes of structures of bounded treewidth give rise to
large islands of tractrability of uniform constraint satisfaction.
Theorem 6.2: [DP89; Fre90l If is a positive integer,
then CSP{T{k),All)isinP.

The polynomial-time algorithm for CSP(T(k), All) in the
above theorem is often described as a bucket elimination al­
gorithm [Dec99]. It should be noted that it is not a constraint
propagation algorithm. Instead, this algorithm uses the bound
on the treewidth to test if a solution to the constraint satisfac­
tion problem exists by solving a join evaluation problem in
which all intermediate relations are of bounded arity.

INVITED SPEAKERS 1593

Kolaitis and Vardi LKVOOb], and Dalmau, Kolaitis and
Vardi [DKV02] investigated certain logical aspects of the
treewidth of a relational structure and showed that this
combinatorial concept is closely connected to the canoni­
cal conjunctive query of the structure being definable in a
fragment of first-order logic with a fixed number of vari­
ables. This made it possible to show that the tractability of
CSP(T(k), All) can be explained in terms of expressibility
in k-Datalog. Moreover, it led to the discovery of larger is­
lands of tractability of uniform constraint satisfaction.

Definition 6.3: Let be a positive integer.

• FOk is the collection of all first-order formulas with at
most k distinct variables.

• Lk is the collection of all -formulas built using
atomic formulas, conjunction, and existential first-order
quantification only.

As an example, it is easy to see that if Cn is the n-element
cycle, then the canonical conjunctive query QCn is
expressible in L3. For instance, is logically equivalent
to

As mentioned earlier, for every we have that
tw(C n) = 2. The next result shows that this relationship
between treewidth and number of variables needed to express
the canonical conjunctive query is not an accident.
Theorem 6.4: [KVOOb; DKV02] Let be a positive
integer.

• // then the canonical conjunctive query QA

is expressible in Lk.
• If B is an arbitrary, but fixed, structure, then

is expressible in k-Datalog.
• CSP(T(k), All) can be solved in polynomial time by de­

termining whether, given a structure and an
arbitrary structure B, the Spoiler or the Duplicator wins
the (3, k)-pebble on A and B.

As a consequence of the above Theorem 6.4, we see that
CSP(T(A:),^4//) can be solved in polynomial time using a
constraint propagation algorithm that is quite different from
the bucket elimination algorithm in Theorem 6.2.
Definition 6.5: Let A and B be two relational structures.

• We say that A and B are homomorphically equivalent,
denoted if there are homomorphisms h :
B and h' :

• We say that B is the core of A, and write core(A) = B,
i f

1. B is a substructure of A.
2. There is no homomorphism h : B -> B' from B to

a proper substructure B ; of B.
Clearly, core and core Moreover,

if if H is a 2-colorable graph, then core(H) = It
should be note that cores play an important role in database
query processing and optimization (see [CM77]). The next
result shows that they can also be used to characterize when
the canonical conjunctive query is definable in Lk.

Theorem 6.6: Let be a positive integer and A a
relational structure. Then the following statements are equiv­
alent.

• QA is definable in Lk.

• There is a structure

Definition 6.7: If is a positive integer, then
is the class of all relational structures over some fixed vocab­
ulary that are homomorphically equivalent to a structure in
T(k).

Equivalently, is the class of all relational struc­
tures A such that core(A) has treewidth less than k.

It should noted that T(k) is properly contained in
. Indeed, it is known that there are 2-colorable

graphs of arbitrarily large treewidth. In particular, grids are
known to have these properties (see IDF991). Yet, these
graphs are members of since their core is K2 .

Theorem 6.& [DKV02] Let be a positive integer.

• If B is an arbitrary, but fixed, structure, then
CSP(H(T(k)),{B}) is expressible in k-Datalog.

• CSP {n(T(k)), All) is in P. Moreover,
CSPXri(T(k)),All) can be solved in polynomial
time by determining whether, given a structure

and an arbitrary structure B, the Spoiler
or the Duplicator wins the -pebble on A and B.

The preceding Theorem 6.8 yields new islands of tractabil­
ity for uniform constraint satisfaction that properly subsume
the islands of tractability constituted by the classes of struc­
tures of bounded treewidth. However, this expansion of the
tractability landscape comes at a certain price. Specifically,
as seen earlier, for every fixed k > 2, there is a polynomial-
algorithm for determining membership in T(k) [Bod93]. In
contrast, it has been shown that, for every fixed k > 2, deter­
mining membership in H(T(k)) is an NP-complete problem
[DKV021. Thus, these new islands of tractability are not as
easily accessible as the earlier ones.

Since H{T{k)) contains structures of arbitrarily large
treewidth, the bucket elimination algorithm cannot be used to
solve All) in polynomial time. Thus, Theo­
rem 6.8 also shows that determining the winner of the (3, k)-
pebble is a polynomial time algorithm that applies to islands
of tractability not covered by the bucket elimination algo­
rithm.

It is now natural to ask whether there are classes A of re­
lational structures over some fixed vocabulary such that they
are larger than the classes and CSP(\4, All) is solv­
able in polynomial time. A rather unexpected and remarkable
new result by Grohe [Gro03] essentially shows that no such
classes exist, provided a certain complexity-theoretic hypoth­
esis is true.

Theorem 6.9: [Gro03] Assume that FPT W[l]. If A is
a recursively enumerable class of relational structures over
some fixed vocabulary such that CSP(A,All) is in P, then
there is a positive integer k such that

1594 INVITED SPEAKERS

The hypothesis FPT W[l] is a statement in parametrized
complexity that is analogous to the hypothesis P NP, and
it is widely accepted as being true (see [DF99]). In effect,
Grohe's Theorem 6.9 is a converse to Theorem 6.8. Together,
these two theorems yield a complete characterization of all is­
lands of tractability of the form CSP(A, All). Moreover, they
reveal that all tractable cases of the form CSP(A, All) can
be solved by the same polynomial-time algorithm, namely,
the algorithm for determining the winner in the -pebble
game. In other words, all tractable cases of constraint sati-
faction of the form CSP(A, All) can be solved in polynomial
time using constraint propagation.

References
[Bib88] W. Bibel. Constraint satisfaction from a deductive view­

point. Artificial Intelligence, 35:401-413, 1988.

[Bod93] H.L. Bodlaender. A linear-time algorithm for finding
tree-decompositions of small treewidth. In Proc. 25th
ACM Symp. on Theory of Computing, pages 226-234,
1993.

[Bul02a] A. Bulatov. A dichotomy theorem for constraints on a
three-element set. In Proc. 43rd IEEE Symposium on
Foundations of Computer Science, pages 649-658, 2002.

[Bul02b] A. Bulatov. Maltsev constraints are tractable. Technical
Report PRG-RR-02-05, Oxford University, 2002.

[Bul03] A. Bulatov. Tractable conservative constraint satisfaction
problems. In Proc. 18th IEEE Symposium on Logic in
Computer Science, 2003.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation
of conjunctive queries in relational databases. In Proc.
9th ACM Symp. on Theory of Computing, pages 77-90,
1977.

[Dec92a] R. Dechter. Constraint networks. In S.C. Shapiro, editor,
Encyclopedia of Artificial Intelligence, pages 276-185.
Wiley, New York, 1992.

[Dec92b] R. Dechter. From local to global consistency. Artificial
Intelligence, 55(1):87-107, May 1992.

[Dec99] R. Dechter. Bucket elimination: a unifying framework
for reasoning. Artificial Intelligence, 113(1—2):41—85,
1999.

[DF99] R.G. Downey and M.R. Fellows. Parametrized Complex­
ity. Springer-Verlag, 1999.

[DKV02] V. Dalmau, Ph.G. Kolaitis, and M.Y. Vardi. Constraint
satisfaction, bounded treewidth, and finite-variable log­
ics. In Proc. of the Eighth Int. Conference on Princi­
ples and Practice of Constraint Programming (CP 2002),
Lecture Notes in Computer Science, pages 311-326.
Springer, 2002.

[DP89] R. Dechter and J. Pearl. Tree clustering for constraint
networks. Artificial Intelligence, pages 353-366, 1989.

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathemat­
ical Logic. Springer-Verlag, 2nd edition, 1994.

[Frc90] E.C. Freuder. Complexity of K-tree structured constraint
satisfaction problems. In Proc. of 8th National Confer­
ence on Artificial Intelligence, pages 4-9, 1990.

[FV98] T Feder and M.Y. Vardi. The computational structure
of monotone monadic SNP and constraint satisfaction:

a study through Datalog and group theory. SIAM J. on
Computing, 28:57-104, 1998. Preliminary version in
Proc. 25th ACM Symp. on Theory of Computing, May
1993, pp. 612-622.

[GJ79] M. R. Garey and D. S. Johnson. Computers and In-
tractability - A Guide to the Theory of NP-Completeness.
W. H. Freeman and Co., 1979.

[Gro03] M. Grohe. The complexity of homomorphism and con­
straint satisfaction problems seen from the other side.
Submitted for publication, 2003.

[JCC98] P. Jeavons, D. Cohen, and M.C. Cooper. Constraints,
consistency and closure. Artificial Intelligence, 101(1-
2):251-65, May 1998.

[JCG97] P. Jeavons, D. Cohen, and M. Gyssens. Closure proper­
ties of constraints. Journal of the ACM, 44(4):527-48,
1997.

[Jea98] P. Jeavons. On the algebraic structure of combinatorial
problems. Theoretical Computer Science, 200(1-2): 185-
204, 1998.

[KV90] Ph. G. Kolaitis and M. Y. Vardi. 0-1 laws for infinitary
logics. In Proc. 5th IEEE Symp. on Logic in Computer
Science, pages 156-167, 1990.

[KV95] Ph. G. Kolaitis and M. Y Vardi. On the expressive power
of Datalog: tools and a case study. Journal of Computer
and System Sciences, 51 (1): 11 0-1 34, August 1995.

[KVOOa] Ph.G. Kolaitis and M.Y Vardi. Conjunctive-query con­
tainment and constraint satisfaction. Journal of Com­
puter and System Sciences, pages 302-332, 2000. Ear­
lier version in: Proc. 17th ACM Symp. on Principles of
Database Systems (PODS '98).

[KVOOb] Ph.G. Kolaitis and M.Y Vardi. A game-theoretic ap­
proach to constraint satisfaction. In Proc. of the 17th Na­
tional Conference on Artificial Intelligence (AAAI2000),
pages 175-181,2000.

[Lad75] R. E. Ladner. On the structure of polynomial time re-
ducibility. Journal of the Association for Computing Ma­
chinery, 22(1): 155-171, 1975.

[Mon74] U. Montanari. Networks of constraints: fundamental
properties and application to picture processing. Infor­
mation Science, 7:95-132, 1974.

[PJ97] J. Pearson and P. Jeavons. A survey of tractable constraint
satisfaction problems. Technical Report CSD-TR-97-15,
Royal Holloway University of London, 1997.

[Sch78] T.J. Schaefer. The complexity of satisfiability problems.
In Proc. 10th ACM Symp. on Theory of Computing, pages
216-226, 1978.

[U1189] J. D. Ullman. Database and Knowledge-Base Systems,
Volumes I and II. Computer Science Press, 1989.

INVITED SPEAKERS 1595

