
Automated Verification: Graphs, Logic, and Automata 

Moshe Y. Vardi* 
Rice University 

Houston, TX, USA 
vardi@cs.rice.edu 

http://www.cs.rice/edu/~vardi 

Abstract 

Automated verification is one of the most success­
ful applications of automated reasoning in com­
puter science. In automated verification one uses 
algorithmic techniques to establish the correctness 
of the design with respect to a given property. Au­
tomated verification is based on a small number of 
key algorithmic ideas, tying together graph theory, 
automata theory, and logic. In this self-contained 
talk I will describe how this "holy trinity" gave rise 
to automated-verification tools, and mention some 
applications to planning. 

1 Introduction 
The recent growth in computer power and connectivity has 
changed the face of science and engineering, and is chang­
ing the way business is being conducted. This revolution is 
driven by the unrelenting advances in semiconductor man­
ufacturing technology. Nevertheless, the U.S. semiconductor 
community faces a serious challenge: chip designers arc find­
ing it increasingly difficult to keep up with the advances in 
semiconductor manufacturing. As a result, they are unable to 
exploit the enormous capacity that this technology provides. 
The International Technology Roadmap for Semiconductors 
suggests that the semiconductor industry wil l require produc­
tivity gains greater than the historical 20% per-year to keep 
up with the increasing complexity of semiconductor designs. 
This is referred to as the "design productivity crisis". As 
designs grow more complex, it becomes easier to introduce 
flaws into the design. Thus, designers use various validation 
techniques to verify the correctness of the design. Unfortu­
nately, these techniques themselves grow more expensive and 
difficult with design complexity. As the validation process 
has begun to consume more than half the project design re­
sources, the semiconductor industry has begun to refer to this 
problem as the "validation crisis". 

Formal verification is a process in which mathematical 
techniques are used to guarantee the correctness of a de­
sign with respect to some specified behavior. Automated 

* Supported in part by NSF grants CCR-9988322, CCR-0124077, 
IIS-9908435, IIS-9978135, and EIA-0086264, by BSF grant 
9800096, and by a grant from the Intel Corporation. 

formal-verification tools, based on model-checking technol­
ogy [Clarke et al, 1986; Lichtenstein and Pnueli, 1985; 
Queille and Sifakis, 1981; Vardi and Wolper, 1986] have en­
joyed a substantial and growing use over the last few years, 
showing an ability to discover subtle flaws that result from ex­
tremely improbable events [Clarke et al, 1999]. While until 
recently these tools were viewed as of academic interest only, 
they are now routinely used in industrial applications, result­
ing in decreased time to market and increased product in­
tegrity [Kurshan, 1997]. It is fair to say that automated verifi­
cation is one of the most successful applications of automated 
reasoning in computer science [Clarke and Wing, 1996]. 

2 Basic Theory 
The first step in formal verification is to come up with a for­
mal specification of the design, consisting of a description of 
the desired behavior. One of the more widely used specifica­
tion languages for designs is temporal logic LPnucli, 1977]. 
In linear temporal logics, time is treated as if each moment 
in time has a unique possible future. Thus, linear temporal 
formulas are interpreted over linear sequences, and we regard 
them as describing the behavior of a single computation of a 
system. (An alternative approach is to use branching time. 
For a discussion of linear vs. branching time, see [Vardi, 
2001].) 

In the linear temporal logic LTL, formulas are constructed 
from a set Prop of atomic propositions using the usual 
Boolean connectives as well as the unary temporal connec­
tive A" ("next"), F ("eventually"), G ("always"), and the bi­
nary temporal connective U ("until"). For example, the LTL 
formula G(request F grant), which refers to the atomic 
propositions request and grunt, is true in a computation pre­
cisely when every state in the computation in which request 
holds is followed by some state in the future in which grant 
holds. The LTL formula G(request —► (request U grant)) is 
true in a computation precisely if, whenever request holds in 
a state of the computation, it holds until a state in which grant 
holds is reached. 

LTL is interpreted over computations, which can be viewed 
as infinite sequences of truth assignments to the atomic 
propositions; i.e., a computation is a function 
2Prop that assigns truth values to the elements of Prop at 
each time instant (natural number). For a computation TT and 
a point i the notation indicates that a formula 

INVITED SPEAKERS 1603 



Designs can be described in a variety of formal description 
formalisms. Regardless of the formalism used, a finite-state 
design can be abstractly viewed as a labeled transition sys­
tem, i.e., as a structure of the form M = (W, W0, R, V), 
where W is the finite set of states that the system can be in, 

W is the set of initial states of the system, is 
a transition relation that indicates the allowable state transi­
tions of the system, and assigns truth values 
to the atomic propositions in each state of the system. (A la­
beled transition system is essentially a Kripke structure.) A 
path in M that starts at u is a possible infinite behavior of the 
system starting at a, i.e., it is an infinite sequence of 
states in W such that UQ = u, and for all The 
sequence is a computation of M that starts 
at u. It is the sequence of truth assignments visited by the 
path, The language of M, denoted L(Af) consists of all com­
putations of M that start at a state in WQ. Note that L{M) can 
be viewed as a language of infinite words over the alphabet 
2Prop. L(M) can be viewed as an abstract description of a 
system, describing all possible "traces". We say that M satis­
fies an LTL formula if all computations in L(M) satisfy 
that is, if models When M satisfies we also 
say that M is a model of which explain why the technique 
is known as model checking [Clarke et al.% 1999]. 

One of the major approaches to automated verification 
is the automata-theoretic approach, which underlies many 
model checkers, e.g., SPIN [Holzmann, 1997]. The key idea 
underlying the automata-theoretic approach is that, given an 
LTL formula it is possible to construct a finite-state au­
tomaton on infinite words that accepts precisely all com­
putations that satisfy The type of finite automata on infinite 
words we consider is the one defined by Buchi 1962. A Biichi 
automaton i s a t u p l e w h e r e i s a f i n i t e 
alphabet, S is a finite set of states, S is a set of initial 
states, f i s a nondeterministic transition func­
tion, and is a set of accepting states. A run of A over 
a n infinite w o r d i s a sequence where 

and for all A run 
is accepting if there is some accepting state that repeats in­
finitely often, i.e., for some there are infinitely many 
i's such that The infinite word w is accepted by A 
if there is an accepting run of A over w. The language of 
infinite words accepted by A is denoted L(A). The following 
fact establishes the correspondence between LTL and Buchi 
automata [Vardi and Wolper, 1994] (for a tutorial introduction 
for this correspondence, see [Vardi, 1996]): 

Theorem 1 Given an LTL formula one can build a Biichi 
automaton where and 

such that is exactly the set of computa­
tions satisfying the formula 

This correspondence reduces the verification problem to 

an automata-theoretic problem as follows [Vardi and Wolpcr, 
1986]. Suppose that we are given a system A/ and an LTL 
formula We check w h e t h e r m o d e l s as fol­
lows: (1) construct the automaton that corresponds to 
the negation of the formula (2) take the cross product of 
the system M and the automaton to obtain an automaton 

and (3) check 
whether the language is nonempty, i.e., whether 

accepts some input. 

Theorem 2 Let M be a labeled transition system and be 
an LTL formula. Then M satisfies 
If is empty, then the design is correct. Otherwise, 
the design is incorrect and the word accepted by 
is an incorrect computation. Model-checking tools use algo­
rithms for checking emptiness of Buchi automata [Emerson 
and Lei, 1985; Courcoubetis et al., 1992] to check emptiness 
of In case of nonemptiness, the incorrect computa­
tion is presented to the user as a finite trace, possibly followed 
by a cycle. Thus, once the automaton is constructed, the 
verification task is reduced to automata-theoretic problems, 
namely, intersecting automata and testing emptiness of au­
tomata, which have highly efficient solutions [Vardi, 1996]. 
Furthermore, using data structures that enable compact repre­
sentation of very large state space makes it possible to verify 
designs of significant complexity [Burch et al, 1992]. 

The linear-time framework is not limited to using LTL as 
a specification language. ForSpee is a recent extension of 
LTL, designed to address the need of the semiconductor in­
dustry [Armoni et aL, 2002]. There are those who prefer 
to use automata on infinite words as a specification formal­
ism [Vardi and Wolper, 1994]; in fact, this is the approach of 
COSPAN [Kurshan, 1994], In this approach, we are given a 
design represented as a finite transition system M and a prop­
erty represented by a Buchi (or a related variant) automaton 
P. The design is correct if all computations in L(M) are ac­
cepted by This approach is called the 
language-containment approach. To verify M with respect to 
P, we: (1) construct the automaton Pc that complements P, 
(2) take the product of the system M and the automaton Pc 

to obtain an automaton AM,P, and (3) check that the automa­
ton AM,P is nonempty. As before, the design is correct iff 
AM,P is empty. Thus, the verification task is again reduced to 
automata-theoretic problems, namely intersecting and com­
plementing automata and testing emptiness of automata. 

3 Concluding Remarks 
Over the last few years, automated formal verification tools, 
such as model checkers, have shown their ability to provide 
a thorough analysis of reasonably complex designs [Goer-
ing, 1997]. Companies such as AT&T, Cadence, Fujitsu, HP, 
IBM, Intel, Motorola, NEC, SGI, Siemens, and Sun are using 
model checkers increasingly on their own designs to reduce 
time to market and ensure product quality, cf. [Beer et al, 
1994]. 

There has recently also been an fruitful interaction between 
model checking and planning in A I . On one hand, the usage 
of satisfiability technology to solve planning problems [Kautz 
and Selman, 1992] has been adopted into model checking 

1604 INVITED SPEAKERS 



[Biere et al., 1999; Copty et al., 2001]. At the same time, 
symbolic techniques from model checking have been adopted 
into AI planning [Cimatti and Roveri, 2000]. Finally, tempo­
ral logic and the automata-theoretic perspective has shown to 
be useful for planning with temporally extended goals [Bac­
chus and Kabanza, 1998; 2000; Giacomo and Vardi, 1999; 
Calvanese et a/., 2002]. 

References 
[Armoni et al., 2002] R. Armoni, L. Fix, R. Gerth, B. Gins-

burg, T. Kanza, A. Landver, S. Mador-Haim, A. Tiemeyer, 
E. Singerman, M.Y. Vardi, and Y. Zbar. The ForSpec 
temporal language: A new temporal property-specification 
language. In Proc. 8th Int'l Conf. on Tools and Algorithms 
for the Construction and Analysis of Systems (TACAS'02), 
Lecture Notes in Computer Science 2280, pages 296-311. 
Springer-Verlag, 2002. 

[Bacchus and Kabanza, 1998] F. Bacchus and F. Kabanza. 
Planning for temporally extended goals. Ann. of Mathe­
matics and Artificial Intelligence, 22:5-27, 1998. 

[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza. 
Using temporal logics to express search control knowledge 
for planning. Al J., 116(1-2): 123-191, 2000. 

[Beer et al, 1994] I. Beer, S. Ben-David, D. Geist, 
R. Gcwirtzman, and M. Yoeli. Methodology and 
system for practical formal verification of reactive 
hardware. In Proc. 6th Conference on Computer Aided 
Verification, volume 818 of Lecture Notes in Computer 
Science, pages 182-193, Stanford, June 1994. 

[Biere et al, 1999] A. Biere, A. Cimatti, E.M. Clarke, 
M. Fujita, and Y Zhu. Symbolic model checking using 
SAT procedures instead of BDDs. In Proc. 36th Design 
Automation Conference, pages 317-320. IEEE Computer 
Society, 1999. 

[Buchi, 1962] J.R. Buchi. On a decision method in restricted 
second order arithmetic. In Proc. Internat. Congr. Logic, 
Method, and Philos. Sci. I960, pages 1-12, Stanford, 
1962. Stanford University Press. 

[Burch et al., 1992] J.R. Burch, E.M. Clarke, K.L. McMil­
lan, D.L. Dill, and L.J. Hwang. Symbolic model checking: 
1020) states and beyond. Information and Computation, 
98(2): 142-170, June 1992. 

[Calvanese et al., 2002] D. Calvanese, G. De Giacomo, and 
M.Y. Vardi. Reasoning about actions and planning in LTL 
action theories. In Proc. 8th Int 'L Conf on the Principles 
of Knowledge Representation and Reasoning, pages 593-
602. Morgan Kaufmann, 2002. 

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri. Con­
formant planning via symbolic model checking. J. of AI 
Research, 13:305-338, 2000. 

[Clarke and Wing, 1996] E.M. Clarke and J.M. Wing. For­
mal methods: State of the art and future directions. ACM 
Computing Surveys, 28:626-643, 1996. 

[Clarke et al., 1986] E.M. Clarke, E.A. Emerson, and A.P. 
Sistla. Automatic verification of finite-state concur­
rent systems using temporal logic specifications. ACM 

Transactions on Programming Languages and Systems, 
8(2):244-263, January 1986. 

[Clarke et al., 1999] E.M. Clarke, O. Grumberg, and 
D. Peled. Model Checking. MIT Press, 1999. 

[Copty etai, 2001] F. Copty, L. Fix, R. Fraer, 
E. Giunchiglia, G. Kamhi, A. Tacchella, and M.Y 
Vardi. Benefits of bounded model checking at an indus­
trial setting. In Computer Aided Verification, Proc. 13th 
International Conference, volume 2102 of Lecture Notes 
in Computer Science, pages 436-453. Springer-Verlag, 
2001. 

LCourcoubetis etai, 1992] C. Courcoubetis, M.Y. Vardi, 
P. Wolper, and M. Yannakakis. Memory efficient algo­
rithms for the verification of temporal properties. Formal 
Methods in System Design, 1:275-288, 1992. 

[Emerson and Lei, 1985] E.A. Emerson and C.-L. Lei. Tem­
poral model checking under generalized fairness con­
straints. In Proc. 18th Hawaii International Conference 
on System Sciences, North Holy wood, 1985. Western Pe­
riodicals Company. 

[Giacomo and Vardi, 1999] G. De Giacomo and M.Y. Vardi. 
Automata-theoretic approach to planning for temporally 
extended goals. In Proc. European Conf on Planning, 
volume 1809 of Lecture Notes in AI, pages 226-238. 
Springer-Verlag, 1999. 

[Goering, 1997] R. Goering. Model checking expands veri­
fication's scope. Electronic Engineering Today, February 
1997. 

LHolzmann, 1997] G.J. Holzmann. The model checker 
SPIN. IEEE Trans, on Software Engineering, 23(5):279-
295, May 1997. Special issue on Formal Methods in Soft­
ware Practice. 

[Kautz and Selman, 1992] H. Kautz and B. Selman. Plan­
ning as satisfiability. In Proc. European Conference on 
Artificial Intelligence, pages 359-379, 1992. 

[Kurshan, 1994] R.P Kurshan. Computer Aided Verification 
of Coordinating Processes. Princeton Univ. Press, 1994. 

[Kurshan, 1997] R.P. Kurshan. Formal verification in a com­
mercial setting. In Proc. Conf on Design Automation 
(DAC'97), volume 34, pages 258-262, 1997. 

[Lichtenstein and Pnueli, 1985] O. Lichtenstein and 
A. Pnueli. Checking that finite state concurrent pro­
grams satisfy their linear specification. In Proc. 12th ACM 
Symp. on Principles of Programming Languages, pages 
97-107, New Orleans, January 1985. 

[Pnueli, 1977] A. Pnueli. The temporal logic of programs. 
In Proc. 18th IEEE Symp. on Foundation of Computer Sci­
ence, pages 46-57, 1977. 

[Queille and Sifakis, 1981] J.R Queille and J. Sifakis. Speci­
fication and verification of concurrent systems in Cesar. In 
Proc. 5th International Symp. on Programming, volume 
137 of Lecture Notes in Computer Science, pages 337— 
351. Springer-Verlag, 1981. 

INVITED SPEAKERS 1605 



[Vardi and Wolper, 1986] M.Y. Vardi and P. Wolper. An 
automata-theoretic approach to automatic program verifi­
cation. In Proc. 1st Symp. on Logic in Computer Science, 
pages 332-344, Cambridge, June 1986. 

[Vardi and Wolper, 1994] M.Y. Vardi and P. Wolper. Reason­
ing about infinite computations. Information and Compu­
tation, 115(1): 1-37, November 1994. 

[Vardi, 1996] M.Y. Vardi. An automata-theoretic approach to 
linear temporal logic. In F. Moller and G. Birtwistle, edi­
tors, Logics for Concurrency: Structure versus Automata, 
volume 1043 of Lecture Notes in Computer Science, pages 
238-266. Springer-Verlag, Berlin, 1996. 

[Vardi, 2001] M.Y. Vardi. Branching vs. linear time: Fi­
nal showdown. In Proc. Tools and Algorithms for the 
Construction and Analysis of Systems (TACAS), volume 
2031 of Lecture Notes in Computer Science, pages 1-22. 
Springer-Verlag, 2001. 

1606 INVITED SPEAKERS 


