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Abstract 
We overview the development of first-order auto­
mated reasoning systems starting from their early 
years. Based on the analysis of current and poten­
tial applications of such systems, we also try to pre­
dict new trends in first-order automated reasoning. 
Our presentation will be centered around two main 
motives: efficiency and usefulness for existing and 
future potential applications. 

This paper expresses the views of the author on past, 
present, and future of theorem proving in first-order logic 
gained during ten years of working on the development, im­
plementation, and applications of the theorem prover Vam­
pire, see [Riazanov and Voronkov, 2002a]. It reflects our re­
cent experience with applications of Vampire in verification, 
proof assistants, theorem proving, and semantic Web, as well 
as the analysis of future potential applications. 

1 Theorem Proving in First-Order Logic 
The idea of automatic theorem proving has a long history both 
in mathematics and computer science. For a long time, it was 
believed by many that hard theorems in mathematics can be 
proved in a completely automatic way, using the ability of 
computers to perform fast combinatorial calculations. The 
very first experiments in automated theorem proving have 
shown that the purely combinatorial methods of proving first-
order theorems are too week even for proving theorems re­
garded as relatively easy by mathematicians. 

Provability in first-order logic is a very hard combinato­
rial problem. First-order logic is undecidable, which means 
that there is no terminating procedure checking provability of 
formulas. There are decidable classes of first-order formulas 
but formulas of these classes do not often arise in applica­
tions. Due to undecidability, very short formulas may turn out 
to be extremely complex, while very long ones rather easy. 
Sometimes first-order provers find proofs consisting of sev­
eral thousand steps in a few seconds, but sometimes it takes 
hours to find a ten-step proof. The theory of first-order rea­
soning is centered around the completeness theorems while in 
practice completeness is often not an issue due to the intrinsic 
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complexity of first-order reasoning and is often compromised 
in favor of a faster inference mechanism. 

However, despite the complexity of theorem proving in 
first-order logic, an impressive progress in the area has been 
achieved in recent years. This progress is due to several fac­
tors: development of theory, implementation techniques, and 
experience with applications. Modern theorem provers are 
very powerful programs able to find in a few seconds very 
complex combinatorial proofs which would require several 
man-month to be solved by mathematicians. Many ideas de­
veloped in theoretical papers in this area are on their way 
to implementation. There is extensive research on aspects 
of theorem proving vital for applications, such as proof-
checking and interfacing with proof assistants. The next gen­
eration of theorem provers will incorporate some of these 
ideas and become even more powerful tools increasingly used 
for applications which are currently beyond their reach. 

The aim of this paper is to give a brief overview of first-
order provers and point out new trends in theorem proving 
which are likely to be implemented in theorem provers of the 
next generation. 

Currently, theorem provers are used in the following way. 
The user specifies a problem by giving a set of axioms (a set 
of first order formulas or clauses) and a conjecture (again, a 
first-order formula or a set of clauses). If the input is given 
by first-order formulas, the prover should check whether the 
conjecture logically follows from the axioms. If the input is 
given by a set of clauses, the prover should check whether the 
set of clauses is inconsistent. In either case, for many appli­
cations it is desirable that the prover output a proof, if the log­
ical consequence or inconsistency has been established. The 
proofs should either be human-readable (for example, when 
the provers are used for proving theorems in mathematics), 
or machine-checkable (for example, when provers are used 
as subsystems of proof assistants or verification systems). 

2 Applications 
The main application area of theorem provers has been, and 
continues to be, verification of software and hardware. Full 
applications of this kind usually cannot be directly repre­
sented in the first-order form, so provers are normally used 
to prove subgoals generated by other systems, for example 
VHDL-to-first-order transformation systems or proof assis­
tants based on higher-order logic or type theories. There are 
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too many papers on this subject to be mentioned here. Finite-
state model checkers and interactive proof assistants are cur­
rently prevailing in verification, but with the growing com­
plexity of hardware first-order logic and its extensions are 
likely to play an increasingly important role. 

Theorem proving in mathematics has been the first appli­
cation area for theorem provers. Provers are not very good at 
working in structured mathematical theories but they are very 
efficient in fields of mathematics where combinatorial rea­
soning is required, for example, in algebra. Applications of 
provers in algebra are numerous. The monograph [McCune 
and Padmanabhan, 1996] gives an example of how algebra 
can be developed with the help of a theorem prover. 

Symbolic computation and computer algebra systems need 
help from theorem provers, for example, when side condi­
tions for applying a simplification rule have to be checked. 
However, these systems are already very complex and either 
do not use provers at all or use very primitive ones. Inter­
facing theorem provers and symbolic computation systems is 
becoming an important application of theorem provers. 

Knowledge bases play a significant role in the semantic 
web project. Some of these knowledge bases use first-order 
logic or its simple extensions, see, for example, [IEEE SUO-
KIF project, 2002]. 

Teaching logic and mathematics is an area where first-
order provers can serve as valuable tools. The first experi­
ments in teaching mathematics using first-order provers are 
reported in [McMath et al., 2001]. 

Other application of first-order provers include retrieval of 
software components [Schumann and Fischer, 1997], reason­
ing in non-classical logics (e.g., fde Nivelle et al., 2000]), and 
program synthesis [Stickel et ai, 1994]. First-order theorem 
provers arc in practice used much more than it is reported in 
the literature, since many companies and organizations do not 
disclose proprietary use of provers. 

3 Modern Theorem Provers 
The main currently supported systems are given in Figure 1. 
Among these systems, Setheo is based on model elimination, 
while other provers are based on resolution. In the rest of this 
paper we will overview resolution theorem provers only. 

In the early papers, e.g., [Robinson, 1965; Robinson and 
Wos, 1969] resolution is defined as a logical system consist­
ing of several inference rules operating on clauses, for exam­
ple, resolution and paramodulation: 

where mgu denotes the most general unifier. Since these rules 
are local, i.e., their applicability is identified only by a small 
number of clauses and the result of a rule application does not 
change the previously generated clauses, resolution is imple­
mented using saturation algorithms. 

These algorithms operate on a set of clauses 5, initially the 
set of input clauses. Roughly speaking, they are based on the 
following loop. 

1. Apply inferences to clauses in 5, adding to 5 the con­
clusions of these inferences. 

2. If the empty clause is proved, terminate with success. 
If no inference rule is applicable, terminate with failure. 

The set S is the current search space. However, a simple 
implementation of this loop would hardly solve even some of 
the problems considered trivial by modern theorem provers 
due to the fast growth of the search space. Already in the first 
paper on resolution [Robinson, 1965J it was noted that some 
clauses can be removed from the search space without losing 
completeness. 

More precisely, it has been observed that clauses sub­
sumed by other clauses can be removed from the search space 
without losing completeness and thus regarded as redundant. 
Later, several other notions of redundancy were discovered. 
For example, [Brand, 1975] proved that the function reflexiv-
ity inferences and paramodulation into a variable are redun­
dant. Modern theorem provers use many redundancy criteria 
to prune the search space. These criteria can be divided in 
two categories: redundant inferences and redundant clauses. 
Many useful notions of redundancy are based on simplifica­
tion orders introduced in [Knuth and Bendix, 19701. These 
orders are orders on terms which can be extended to literals 
and clauses. An example of an inference which is redundant 
due to the orderings restrictions is a paramodulation inference 

for which In the 1970s-1980s many notions of 
redundant inferences and clauses were investigated. In the 
1990s a general theory of redundancies was described in 
[Bachmair and Ganzinger, 1994al. Nearly all state-of-the-art 
resolution theorem provers are based on this theory. Reso­
lution with redundancy is based on the following saturation 
algorithm. 

1. Apply all non-redundant inferences to clauses in S, 
adding to S those conclusions of these inferences that 
are non-redundant. 

2. If the empty clause is proved, terminate with success. 
If no inference rule is applicable, terminate with failure. 

3. Remove all clauses that become redundant due to the 
addition of these conclusions of inferences. 

In addition to standard inference rules, these algorithms also 
operate with simplifications. An inference is called a simpli­
fication if it makes at least one clause in 5 redundant. Many 
modern provers implement an eager search for simplifying 
inferences, while ordinary generating inferences are applied 
lazily. 

In modern provers inference selection is performed via 
clause selection. For this reason saturation algorithms im­
plemented in such provers are called the given clause algo­
rithms. There are two main concretisations of the saturation 
algorithm based on the clause selection: the Otter algorithm 
[Lusk, 1992; McCune, 1994] and the Discount algorithm 
[Denzinger et al, 1997]. These algorithms are described and 
analyzed in more detail in [Riazanov and Voronkov, 2002b]. 
The simple description of these algorithms given above may 
create an illusion of their simplicity, but in fact, some of these 
algorithms are extremely complex, and problems related to 
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prover 

Otter 
Setheo 
Spass 
Vampire 
Gandalf 
SCOTT 
E 
Snark 
Bliksem 

affiliation references 
General-purpose provers 

Argonne National Laboratory 
Munich University of Technology 
Max-Planck Institute 
University of Manchester 
Tallinn University of Technology 
Australian National University 
Munich University of Technology 
SRI 
Max-Planck Institute 

IMcCune, 1994J 
[Moser et al, 1997] 
[Weidenbach ef al., 1996] 
[Riazanov and Voronkov, 2002a] 
[Tammet, 1997] 
[Slaney et al., 1994] 
lSchulz,2001] 
[Stickel et al., 2001] 
[de Nivelle, 2000] 

Figure 1: First-order theorem provers 

Figure 2: A Given Clause Algorithm of Vampire 

the memory management for these algorithms have not been 
properly solved. For example, one of the given clause algo­
rithms of Vampire is schematically shown in Figure 2 (taken 
from [Riazanov and Voronkov, 2002a]). 

Even proof-search in inference systems with redundancy 
creates enormously large such spaces. For example, storing 
10fi clauses is not unusual. Of these clauses 105 can par­
ticipate in inferences. Some operations on clauses are very 
expensive if implemented naively. For example, subsumption 
on multi-literal clauses is NP-complete and must ideally be 
performed between each pair of clauses in the search space. 
It is difficult to imagine an implementation able to perform 
1012 operations in reasonable time. 

In the state-of-the-art theorem provers all expensive op­
erations are implemented using term indexing [Graf, 1996; 
Sekar et al, 2001]. The problem of term indexing can be 
formulated abstractly as follows. Given a set L of indexed 
terms or clauses, a binary relation R over terms or clauses 
(called the retrieval condition) and a term or clause t (called 
the query term or clause), identify the subset M of L that con­
sists of the terms or clauses I such that R(l, t) holds. A typical 
retrieval condition used in theorem proving is subsumption: 
retrieve all clauses in L subsumed by t. In order to support 
rapid retrieval of candidate clauses, we need to process the in­
dexed set into a data structure called the index. Modern the­
orem provers maintain several indexes to support expensive 
operations. For example, Vampire [Riazanov and Voronkov, 

2002a] uses flatterms in constant memory for storing tempo­
rary clauses, code trees [Voronkov, 1995] for forward sub­
sumption, code trees with precompiled ordering constraints 
for forward simplification by unit equalities, perfectly shared 
terms for storing clauses, shared terms with renaming lists 
for backward simplification by unit equalities, path index with 
compiled database joins for backward subsumption and some 
other indexes. 

Serious work with theorem provers requires extensive ex­
periments. Every simple modification to a prover should be 
tested both for bugs and for efficiency. A typical experiment 
with Vampire consists of running it for several hours on over 
5,000 TPTP problems in a number of modes on a network of 
around 50 computers. Such experiments require good infras­
tructure, both software and hardware, to facilitate debugging 
and evaluation, so Vampire is augmented by a number of pro­
grams intended for performing large-scale experiments. The 
necessity of having such programs and interfacing them with 
Vampire adds to the complexity of the system. 

4 History of Development 
Since the early work on automated theorem proving, the area 
witnessed an impressive progress. This progress is due to 
several factors described below: 

1. Development of theory, both of the saturation-based 
theorem proving with redundancy, see [Bachmair and 
Ganzinger, 2001; Nieuwenhuis and Rubio, 2001], and 
of the tableau and model elimination proof-search, see 
[Hahnle, 2001; Letz and Stenz, 2001; Degtyarev and 
Voronkov, 2001]. 

2. Development of implementation techniques (term index­
ing, new algorithms) [Graf, 1996; Sekar et al, 2001; 
Nieuwenhuis et al, 2001]. 

3. Growing experience, including experiments with appli­
cations, the development of TPTP [Sutcliffe and Suttner, 
1998], and the annual competitions of theorem provers 
CASC [Sutcliffe et al, 2002]. 

Even a naively implemented theorem prover may be powerful 
enough to solve many problems collected in the TPTP library 
or created automatically by proof assistants. However, there 
have been a considerable progress in solving difficult prob­
lems. Every ten years enhancements in the theory and im-
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plementation techniques resulted in a large number problems 
which could be solved several orders of magnitude faster than 
by the previous generations of theorem provers. Provers im­
plemented around 1970 were very inefficient, especially for 
equality reasoning. In 1980 the paramodulation rule has been 
generally adopted and the general architecture of saturation-
based provers understood. By 1990 provers started to use 
routinely simplification orderings and term indexing. The 
provers used in 2000 employ the general theory of resolution 
with redundancy, and in particular literal selection Junctions. 
The provers of 2010 are likely to benefit from a better clause 
selection, built-in theories, and maybe from parallel or con-
current architectures. 

5 Future Generation Theorem Provers 
Theorem proving is a very hard problem. The next gener­
ation of theorem provers will incorporate new theory, data 
structures, algorithms, and implementation techniques. Their 
development will be driven by the quest for flexibility and ef­
ficiency. Flexibility is required to adapt provers to new appli­
cations. Efficiency can be reformulated as controlling redun­
dancy in large search spaces [Lusk, 1992]. 

It is unreasonable to expect future theorem provers to be 
much faster on all possible problems. However, if we can 
increase performance of provers by several orders of magni­
tude for a large number of problems coming from applica­
tions, many of these problems will be routinely solved, thus 
saving time for application developers. The development of 
next generation provers will require: 

1. development of new theory, 
2. addition of new features; 
3. development of new algorithms and data structures; 
4. understanding how the theory developed so far can be 

efficiently implemented on top of the existing architec­
tures of theorem provers; 

This development is impossible without considerable imple­
mentation efforts and extensive experiments. 

There is a large number of research areas to be pursued in 
automated reasoning in the near future, let me mention some 
of them. 

Built-in theories. Already in the case of equality the naive 
addition of equality axioms is too inefficient for solving even 
very simple problems. Development of superposition-based 
equality reasoning resulted in an impressive improvement of 
theorem provers. There are important theories other than 
equality which arise in many applications. Development of 
specialized reasoning methods for these theories will be a 
central problem in theorem proving. This problem is dif­
ferent from the problem of designing decision procedures 
for theories such as Presburger arithmetic because relations 
and functions used in these theories could be used together 
with other relations and functions and arbitrary quantifiers. 
Procedures for the combination of decision and unification 
algorithms can be of some help [Nelson and Oppen, 1979; 
Shostak, 1984; Baader and Schulz, 1996; RueB and Shankar, 
2001]. 

The following built-in theories arise in many application 
and are likely to attract attention in automated reasoning. 

• AC (the theory of associative and commutative func­
tions). These axioms occur in axiomatizations very of­
ten. There are many results related to building-in AC 
in theorem provers but implementation techniques, in­
cluding term indexing modulo AC, are still in their in­
fancy. Associativity and commutativity were built in the 
EQP theorem prover [McCune, 1997] with a consider­
able success but essentially without term indexing. Term 
indexing modulo AC was considered in [Bachmair et al, 
1993] but only for a very special case. 

• Theories of transitive relations and orders [Bachmair 
and Ganzinger, 1994b]. 

• Various first-order theories of arithmetic. 

• Term algebras and other constructor-based structures. 

As a first step toward building-in important theories one 
can consider creation of libraries of axioms/theorems about 
commonly used data types. An example of such a project 
is the Standard Upper Ontology [IEEE SUO-KIF project, 
20021. One can also enhance theorem provers by constructs 
for specifying built-in theories, for example, by constraints or 
by additional inference rules. 

Inductively defined types. In many applications of inter­
active proof assistants one has to deal with inductively de­
fined types and functions on these types. The proof assis­
tants such as Isabelle [Paulson, 2002], HOL [Gordon and 
Melham, 1993], COQ [The Coq Development Team, 2001 ], 
Twelf [Pfenning and Schuermann, 1998] have facilities to de­
fine data types and functions inductively. First-order theo­
rem provers have no such facilities. The work on building-in 
inductively defined types can be developed in the following 
directions: 

• First-order reasoning on data types given by inductive 
definitions. 

• First-order reasoning on functions defined over such 
data types. 

• Limited forms of inductive reasoning. 

Working with large axiomatizations. Very often theo­
rem provers must work with large axiomatizations contain­
ing many irrelevant axioms. This is typical for applica­
tions such as reasoning with ontologies, assisting proof assis­
tants, and verification using hierarchically defined theories. 
Recognition of irrelevant axioms is one of the most impor­
tant problems in theorem proving. Many of these axioms 
are definitions of relations and functions in various forms. 
Recognition of the most typical definitions and efficient work 
with them play a major role in the future provers. The first 
steps in this direction are reported in [Ganzinger et al, 2001; 
Afshordel et al, 2001; Degtyarev et al, 2002]. 

Ontology-based knowledge representation. First-order 
formulations of many applied problems, if not created man­
ually, often refer to large axiomatizations. This situation is 
common for knowledge-base reasoning, proof assistants, and 
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theorem proving in mathematics. Using these large axiom-
atizations and trying to extract only a small number of rele­
vant axioms can be a hopeless task. The problem arises of 
structuring these large axiomatizations in a such a way that 
a relevant subset of them could be easily extracted automati­
cally and that particular properties of the axiomatization can 
be exploited by provers. For example, provers could use a 
fact that a subset of axioms axiomatize properties of a rela­
tion in terms of other relations. Development of knowledge 
representation formalisms suitable for representing large ap­
plied theories and adaptation of provers to such formalisms 
could become an important problem in automated reasoning. 

Proof checking. Strangely enough, modern theorem 
provers are not always good at producing proofs. Some 
of them print detailed resolution and paramodulation proofs 
but none gives a proof of the preprocessing steps, such 
as skolemisation. Without proof-checking one cannot use 
provers in verification and in assisting proof assistants. We 
expect that in the near future proof-checking components 
will be added to all major first-order provers. We conjecture 
that the main approaches to proof-checking will be similar to 
those used in proof-carrying code [Necula and Lee, 2000], 
so that a proof is built using a number of inference rules, 
and foundational proof-carrying code [Appel, 2001], so that 
a proof will given in a system whose language is rich enough 
to prove even the preprocessing steps, such as HOL. 

Reasoning with nonstandard quantifiers, such as those 
specifying restrictions on the number of elements satisfying 
a relation, for example, (there exists at most 77). Such 
quantifiers are familiar to the description logic community. 
One can translate formulas with such quantifiers into first-
order logic with equality but the translation will create for­
mulas of a prohibitive size. It is interesting to develop special 
ways of reasoning with such quantifiers, although this is not 
an obvious task. 

Distributed and other non-standard architectures. It 
has been observed that cooperating heterogeneous theorem 
provers can perform much better than the mere sum of their 
components [MP. Bonacina, 1994; Denzinger and Fuchs, 
19991. However, modern theorem prover architectures are 
not suited for cooperative or distributed theorem proving. 

Non-resolution inference system. The recent rapid 
progress of the DPLL-based satisfiability checkers [Zhang 
and Malik, 2002] suggests that non-resolution systems could 
also play a significant role in first-order theorem proving. 
The first implementation of first-order DPLL [Baumgartner, 
2000] was not very encouraging, but so were the first imple­
mentations of resolution. To be more generally applicable, 
non-resolution system musts find an efficient solution to the 
problem of built-in theories [Degtyarev and Voronkov, 2001]. 

Satisfiability-checking and model building. For many 
applications it is desirable to be able to establish satisfiability 
of sets of clauses and build models for satisfiable sets. Sat­
isfiability of first-order is conceptually a much harder prob­
lem than unsatisfiability. The set of satisfiable formulas is not 
recursively enumerable, which means that there is no semi-
decision procedure for satisfiability-checking. 

Other features. There are other features required of the 
next generation first-order theorem provers. For example, for 

the naive users who do not know (and usually do not want 
to know) much about theorem proving, theorem provers must 
have a strong auto-mode which will try to select automati­
cally a strategy or strategies best suited for solving the given 
problem. For more advanced users, there should be options to 
specify term orderings, literal selection, and clause selection. 
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