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Abstract 

Collective choice settings are the heart of soci­
ety. Game theory provides a basis for engineering 
the incentives into the interaction mechanism (e.g., 
rules of an election or auction) so that a desirable 
system-wide outcome (e.g., president, resource al­
location, or task allocation) is chosen even though 
every agent acts based on self-interest. 
However, there are a host of computer science is­
sues not traditionally addressed in game theory that 
have to be addressed in order to make mechanisms 
work in the real world. Those computing, commu­
nication, and privacy issues are deeply intertwined 
with the economic incentive issues. For example, 
the fact that agents have limited computational ca­
pabilities to determine their own (and others') pref­
erences ruins the incentive properties of established 
auction mechanisms, and gives rise to new issues. 
On the positive side, computational complexity can 
be used as a barrier to strategic behavior in settings 
where economic mechanism design falls short. 

Novel computational approaches also enable new 
economic institutions. For example, market clear­
ing technology with specialized search algorithms 
is enabling a form of interaction that I call expres­
sive competition. As another example, selective in­
cremental preference elicitation can determine the 
optimal outcome while requiring the agents to de­
termine and reveal only a small portion of their 
preferences. Furthermore, automated mechanism 
design can yield better mechanisms than the best 
known to date. 

*This material is based upon work supported by the National Sci­
ence Foundation under CAREER Award IRI-9703122, Grant IIS-
9800994, ITR IIS-0081246, and ITRIIS-0121678. 

1 Introduction 
Collective choice settings are the heart of society. Citizens 
voting determines a president, producers and consumers bid­
ding determines a set of trades, and surfers hitting links in 
web browsers determines a bandwidth allocation. A key dif­
ficulty in collective choice is that the agents generally have 
conflicting preferences over the outcomes (e.g., presidents, 
resource allocations, or task allocations). Work in mechanism 
design, a subfield of game theory, provides a basis for engi­
neering the incentives into the interaction mechanism (e.g., 
rules of an election or auction) so that a desirable—according 
to some objective—outcome is chosen even though every 
party acts based on self-interest. 

However, there are a host of computer science issues not 
traditionally addressed in game theory that have to be ad­
dressed in order to make mechanisms work in the real world. 
Those computing, communication, and privacy issues have 
to be handled while simultaneously handling the economic 
incentive issues. This is a particularly exciting research area 
because those issues are intimately intertwined, as I hope to 
convey. For example, the fact that agents have limited com­
putational capabilities can ruin the incentive properties of es­
tablished auction mechanisms, and give rise to new game-
theoretic issues. On the positive side, computational com­
plexity can be used as a barrier to insincere strategic behavior 
in settings where economic incentive engineering is known to 
fall short. 

Novel computational approaches and algorithms can also 
enable new economic institutions. For example, sophisti­
cated market clearing technology with specialized search al­
gorithms enables a new form of interaction that I call ex­
pressive competition: empowering market participants with 
potent expressiveness akin to human-to-human negotiation 
while at the same time harnessing the forces of competition, 
the global scale of the Internet, and the speed and accuracy 
of algorithmic market clearing with all relevant information 
in hand. Furthermore, even the mechanism itself (such as the 
rules of an auction) can be designed automatically—in many 
cases yielding better mechanisms than the best known to date. 
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This writeup begins from distributed peer-to-peer negotia­
tion (Section 2), and transitions to markets that have have a 
mediator such as an auction server (Section 3). In this context 
1 will lay out the vision and technology for expressive com­
petition. Section 4 discusses multiagent preference elicitation 
in auctions and voting settings: can the mediator elicit the 
information needed to determine the optimal outcome with­
out requiring the agents to determine and reveal their prefer­
ences about impertinent aspects of the problem? The issue of 
how carefully computationally constrained agents should de­
termine their preferences is addressed in Section 5. It turns 
out that the computational constraint undermines desirable 
incentive properties in established auction mechanisms, and 
gives rise to new game-theoretic issues, in particular a phe­
nomenon which I call strategic computing: using one's lim­
ited computing to approximate others' preferences at the cost 
of approximating one's own. The reverse is shown in Sec­
tion 6: computational complexity can be used as a barrier to 
undesirable strategic behavior. I illustrate this in voting. 

Section 7 discusses a new idea which I call automated 
mechanism design: designing the interaction mechanism 
computationally for the specific setting at hand. Section 8 
shows how mechanism design can not only be used to lead to 
a desirable outcome in a multiagent system, but also to deter­
mine a way to execute the outcome. In particular, the writeup 
looks at safe exchange mechanisms for carrying out trades 
among anonymous parties on the Internet. Finally, conclu­
sions, perspective, and promising avenues for future research 
are presented. 

2 A first tack: Peer-to-peer negotiation 
Work on automated negotiation began in peer-to-peer con­
texts where the negotiating agents (humans or software) make 
deals with each other. A key insight for analyzing such ne­
gotiation is to think about the negotiation process as an AI 
search algorithm where the outcome is characterized by deci­
sion variables to which the negotiation assigns values [Sathi 
and Fox, 1989; Sandholm, 1991; Corny et al., 1991;Sycara et 
a/., 1991; Sandholm, 1993]. For example, in task allocation 
negotiation there is a decision variable for each task, and the 
variable's value is the name of the agent that the task is allo­
cated to. There are several high-level families of peer-to-peer 
negotiation search algorithms. For example, the agents might 
negotiate one variable at a time, committing to the assign­
ment before moving on to the next variable. This is analogous 
to constructive search in AI. As another example, the search 
might start from a status quo assignment of values to vari­
ables (for example, the initial assignment of tasks to agents 
before any negotiation begins), and then the agents might iter-
atively change the variable assignments whenever the agents 
relevant to the variables in question agree [Sandholm, 1991; 
1993]. (For example, the current holder of a task can real­
locate the task to another agent if they both agree.) This is 
analogous to iterative refinement search in AI. 

2.1 Contracting based on marginal cost 
calculations 

In the original contract net framework [Smith, 1980], agents 
allocated tasks among themselves. However, the frame-

work was for cooperative agents only: an agent was as­
sumed to take on a task whenever that was feasible. For self-
interested agents, more sophisticated methods are needed. 
A key idea toward this direction was contracting based on 
marginal costs [Sandholm, 1991; 1993; 1996]. When a con-
tract is proposed to an agent, the agent evaluates the cost of 
taking on the contract obligations (e.g., tasks) by solving its 
local planning problem once with the new obligations and 
once without. The difference in the costs of those two lo­
cal plans is the marginal cost of the obligations. An agent 
using this scheme accepts the proposal if the proposer pays 
it more than its marginal cost. Similarly, when proposing a 
contract, an agent computes its marginal value of unloading 
some obligations, and pays another agent up to that amount 
for the other agent to take on those obligations. A desirable 
engineering facet of this framework is that it separates the 
domain specific marginal cost calculator (planner) from the 
agent's domain independent negotiation module. 

One practical consideration is that in many settings the lo­
cal planning problems are intractable, so the marginal costs 
have to be approximated. For example, in the TRACONET 
system for automatically reallocating trucking tasks among 
dispatch centers, the local planning problems were J\fP-
complete vehicle routing problems with several side con­
straints. The TRACONET work included heuristic meth­
ods for deciding how carefully to approximate marginal 
costs [Sandholm, 1991; 1993; 1996; Sandholm and Lesser, 
1995b]. This issue is revisited more formally in Section 5. 

2.2 Iterative reallocation and combinatorial 
contracts 

Another early idea in automated negotiation was to have 
the agents iteratively reallocate the items (tasks) [Sandholm, 
1991; 1993]. An agent that had accepted a task could later 
contract out that task to some other agent, who in turn could 
contract it out, and so on. This proved to be highly effective 
in the TRACONET system. Marginal cost based contract­
ing guarantees that every contract improves the utilities of 
the contract parties. Therefore, every agent's utility increases 
monotonicaliy in the distributed negotiation that keeps real­
locating tasks. It follows that the agents can enter and exit the 
negotiation dynamically without risking a loss. 

The marginal cost based iterative reallocation negotiation 
can be viewed as a distributed hill-climbing search where the 
height on the hill is the sum of the agents' utilities [Sand­
holm, 1998]. Under this interpretation it is easy to show 
that contracting one item (task) at a time against a payment 
(aka. original (O) contract) does not generally lead to an 
optimal outcome: the search gets stuck in a local optimum. 
This can be addressed by combinatorial contracts that enlarge 
the neighborhood in the hill-climbing search: contracts where 
multiple items are exchanged for a payment (cluster (C) con­
tracts),1 where items from one agent are exchanged against 
items from another—potentially with a side payment—(swap 
(S) contracts), and where the contract can involve more than 

lThe TRACONET system was the first to use combinatorial bid­
ding to allocate trucking tasks—an approach widely used commer­
cially for procuring trucking services today. 
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two agents (multiagent (M) contracts). If all of these con­
tract types are allowed in a single contract (OCSM contract), 
then agents that contract using the marginal cost principle will 
reach a global optimum (that is, a task allocation that maxi­
mizes social welfare, which is simply the sum of the agents' 
utilities) in a finite number of contracts—and no subset of 
those contract types suffices [Sandholm, 1998; 2000a]. Thus 
the agents can myopically make contracts in any order.' From 
a hill-climbing search perspective, the neighborhood is large 
enough that from any allocation of tasks, a profitable con­
tract exists that takes the agents to any other task allocation. 
Therein also lies a key weakness. Especially in a distributed 
setting, it can be difficult to find a combinatorial contract (in­
volving multiple items and multiple agents) that will improve 
the current solution. Also, the sequence of hill-climbing con­
tracts can be exponentially long in the worst case. There­
fore, in practice, the optimal outcome is not found. Nev­
ertheless, the combinatorial contracts help reach better out­
comes than O-contracts [Andersson and Sandholm, 1999; 
2000]. 

Another approach for avoiding local optima in search is 
backtracking. It turns out that a backtracking instrument can 
be constructed for negotiation as well, as the next section 
shows. It can easily be applied to the reallocation negotiation 
discussed in this section, instead—or in conjunction with— 
the combinatorial contract types [Andersson and Sandholm, 
1998]. With that instrument, a backtracking option can be 
added to each (or only some) of the contracts. However, the 
backtracking instrument applies to basically any negotiation 
setting, and I will discuss it in that broader context. 

2.3 Leveled commitment contracts to enable 
backtracking 

Negotiating agents usually have to act under uncertainty, 
yielding behavior that is suboptimal in hindsight. For the 
purposes of the ensuing discussion, I divide the uncertainties 
faced by agents in negotiation into two high-level classes: 

• Domain uncertainty stems from an agent not knowing 
how its local situation will change. Such changes affect 
the value (cost) and feasibility of the deals that the agent 
has made. For instance, which of an agent's resources 
will break (or become available) that affect the agent's 
costs—or even feasibility—of handling different combi­
nations of its tasks?2 

• Negotiation process uncertainty stems from an agent 
not knowing what future negotiation events will occur. 
Consider, for instance, the following uncertainties that 
an agent may face. Which of my pending bids will get 
accepted? Which (parts) of my tasks will I be able to 
subcontract out in the future, and at what prices? What 
tasks will I be offered and at what prices? The answers 
to all of these questions affect the cost of taking on (or 
letting go of) other obligation due to complementarity 

2An additional source of uncertainty arises through the other 
agents' non-negotiation actions. Specifically, how will the others 
act regarding aspects that have not been contractually bound (this 
is pertinent in domains where those actions can affect the agent's 
utility by hindering or helping the agent)? 

and substitutability: the cost of taking on an obligation 
usually depends on what other obligations one has. 

In automated negotiation systems for self-interested 
agents, contracts have traditionally been binding. They do not 
allow agents to accommodate future events that are uncertain 
due to domain uncertainty or negotiation process uncertainty. 
Both of these classes of uncertainty may also include subjec­
tive uncertainty due to an agent's limited capability to pro­
cess information—for example computationally limited ca­
pability to do mental lookahead in a (sequential) negotiation 
process. If, in a negotiation, an agent has made a commitment 
that turns out unprofitable in hindsight, the agent would like 
to backtrack that commitment. For example, more lucrative 
offers can arrive later, or handling a task can turn out more 
costly than anticipated. 

Backtracking in negotiation search can be enabled using an 
instrument called a leveled commitment contract, where each 
contract party can unilaterally decommit from the contract 
by paying a predetermined penalty [Sandholm and Lesser, 
1995b; 2001; 2002]. This mitigates both domain uncertainty 
and negotiation process uncertainty, whether objective or sub­
jective.3 A concern with this is strategic breach: a rational 
self-interested agent is reluctant to decommit because there 
is a chance that the other party will decommit, in which case 
the former agent gets freed from the contract, does not have 
to pay a penalty, and collects a penalty from the breacher. 
(This is an example issue that arises due to self-interest, and 
renders inapplicable traditional backtracking techniques like 
distributed constraint satisfaction (e.g., [Yokoo, 2000]) which 
assume that all parties execute the distributed algorithm faith­
fully.) Given the contract price, decommitting penalties, and 
the agents' prior distributions of the value of the contract, one 
can conduct a Nash equilibrium analysis of the decommitting 
game (in other words, one can find decommitting strategies 
for the agents such that each agent's strategy is a best re­
sponse to the other's). Each agent's best-response strategy is 
defined by a threshold on the value of the contract for that 
agent. If the value is below that threshold, the agent will 
decommit. It turns out that strategic breach indeed occurs: 
an agent does not decommit when the contract's value drops 
below the point where paying the decommitting penalty is 

3A practical type of subjective uncertainty stems from the fact 
that computing the value (cost) of taking on the obligations of a con­
tract is often intractable—as discussed—so the agents have to resort 
to approximate marginal value calculation. Leveled commitment al­
lows an agent to bid based on a rough value calculation. If the agent 
wins the bid, the agent can invest a more thorough value calculation. 
If the contract no longer looks beneficial in light of this more refined 
calculation, the agent can decommit. The fact that only the winning 
bidders carry out a refined calculation can save computation system 
wide. Also, the negotiations can be carried out faster because agents 
can bid based on less computation. 

Leveled commitment can be used to increase the speed of ne­
gotiation in an additional way as well. An agent can make (low-
commitment) offers to multiple recipients although those offers are 
mutually exclusive from the agent's perspective. In case more than 
one recipient accepts, the agent can backtrack from all but one. This 
allows the agent to address the recipients in parallel instead of ad­
dressing them one at a time and blocking to wait for an answer be­
fore addressing the next. 
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worth it; rather it needs to drop to a level further down before 
the agent decommits. However, despite such strategic breach, 
leveled commitment contracts improve the expected payoffs 
of all contract parties compared to any contract where back­
tracking is not an option [Sandholm and Lesser, 2001]. It 
follows that leveled commitment also enables contracts that 
would not be mutually beneficial without the backtracking 
option. 

Leveled commitment contracts differ based on whether 
agents have to declare their decommitting decisions sequen­
tially or simultaneously, and whether or not agents have to 
pay the penalties if both decommit. These mechanisms lead 
to different Nash equilibria. It is easy to see that in the se­
quential mechanisms the second mover never decommits if 
the first mover does; if the first mover does not, then the sec­
ond mover will decommit if the value of the contract to him 
turns out to be so low that it is worth paying the penalty. In 
the simultaneous game where both pay the penalties if both 
decommit, as an agent's penalty approaches zero, the agent 
becomes truthful. On the contrary, in the simultaneous game 
where neither pays if both decommit, as an agent's penalty 
approaches zero, the agent does not become truthful but the 
other contract party does! Despite the fact that the equilibria 
of these mechanisms differ, surprisingly, among risk-neutral 
agents each of the mechanisms leads to the same expected 
payoffs to the agents if the contract price and decommitting 
penalties are optimized for each mechanism separately [Sand-
holm and Zhou, 2002]. For agents with risk attitudes, the dif­
ferent mechanisms yield a different sum of utilities, and the 
relative ranking of the mechanisms varies based on the exact 
utility functions. 

Computing plays a key role in operationalizing the idea 
of leveled commitment. Given the contract price, the de-
committing penalties, and piecewise linear prior distributions 
on the contract's value for the different contract parties, the 
Nash equilibrium decommitting thresholds for each mecha­
nism can be computed in polynomial time in the number of 
pieces [Sandholm et al, 1999]. Furthermore, given the piece-
wise linear priors, it turns out that the contract price and de-
committing penalties that maximize the sum of the contract 
parties' payoffs can be determined in polynomial time in the 
number of pieces for each of the leveled commitment mech­
anisms. The reader is invited to try a leveled commitment 
contract optimizer prototype, eCommitter, on the web [Sand-
holm, 2002b]. Leveled commitment contracts and the algo­
rithms also generalize to deals that involve more than two 
agents. 

The theoretical results discussed above pertain to a single 
contract. In negotiation there is usually a web of contracts, 
and an agent's breach can cause the victim of the breach to 
want to breach on another contract, and so on. There is gen­
erally a tradeoff between allowing enough backtracking to 
sufficiently explore the space for a good outcome and not 
wasting time in deep cascades of decommits—or even infi­
nite loops of decommitting and recommitting. That trade­
off can be controlled by carefully increasing the decommit­
ting penalties over time [Andersson and Sandholm, 2001; 
1998]. 

3 A paradigm shift to mediated clearing 
The Achilles heel of peer-to-peer negotiation is negotiation 
process uncertainty. Agents make commitments without vis­
ibility into what is going to occur later on in the negotia­
tion process (and what has already transpired in negotiation 
among other agents). Leveled commitment contracts reduce, 
but do not eliminate, the negative impact of such uncertainty. 
This uncertainty also introduces strategic problems. For ex­
ample, if an agent expects a better deal in the future (which 
it cannot profitably handle if it takes on the contract currently 
offered to it), the agent may want to pass on the current offer. 
So, the agent is not best off acting myopically—not even in 
marginal cost based contracting or leveled commitment con­
tracts as the basic analysis discussed in the previous section 
assumes. Rather, a rational agent would want to look ahead 
into the future, which in turn requires speculating what the 
other agents will do. Acting rationally equates to solving for 
the agent's best strategy in a game tree whose depth is at least 
the number of contracts that can occur in the system. Such 
lookahead is intractable in practice (although leveled com­
mitment contracts have been studied in this context with a 
small number of tasks to allocate [Andersson and Sandholm, 
2001]). Even if an agent can conduct such lookahead, un­
certainty about the other agents' private information (their 
preferences, tasks, resources, etc.) causes the agent to make 
commitments that are suboptimal—in light of later negotia­
tion events—for the agent and for social welfare [Andersson 
and Sandholm, 2001]. As discussed, there is an additional 
problem in peer-to-peer negotiation: it can be prohibitively 
complex to find a contract that improves the current solution, 
especially when using combinatorial contracts involving mul­
tiple items and multiple agents. 

In light of these problems, it is clear that in many settings, 
economically better solutions can be obtained by collecting 
the agents' information to a mediated clearing point such as 
an auction server, and conducting a search (aka. a clearing) 
there to determine the outcome, rather than conducting a dis­
tributed "negotiation" search. The reason is that the mediated 
clearing has all the information in hand while the distributed 
search makes decisions based on incomplete views. Further­
more, the mediated clearing can be programmed to execute 
the search algorithm faithfully while in the distributed search 
the agents will act based on self-interest—potentially caus­
ing the search not to find an optimal outcome.4 The mediated 
approach can be structured so that it motivates the agents to 
reveal their information truthfully; this will be discussed in 
Section 3.6. In short, the mediated approach removes the 
negotiation process uncertainty. (The domain uncertainty re­
mains, and the leveled commitment methodology can be used 
to mitigate it.) In most electronic commerce applications the 
mediated approach also saves communication because there 
is many-to-one communication instead of many-to-many, and 
because each issue needs to be communicated only once— 
rather than repeatedly as is commonly the case in peer-to-peer 

4In the distributed search it can even be difficult to identify 
when an optimal solution has been found, and special termination 
detection algorithms are usually needed [Sandholm, 1993; 1996; 
Walsh and Wellman, 2000]. 
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negotiation. 
The shift to mediated clearing introduces the need for tech­

nology for conducting the clearing. The following subsec-
tions describe the mediated approach in more detail, different 
forms of the clearing problem, and algorithms for solving it. 

3.1 A canonical example: Combinatorial auction 
Consider a setting where multiple distinguishable items (e.g., 
a right shoe and a left shoe) are auctioned sequentially, and a 
bidder's valuation for a bundle of items is not the sum of those 
items' valuations. Most multi-item allocation settings exhibit 
such nonadditivity, for example, strategic sourcing, alloca­
tion of trucking lanes, electricity markets, as well as many 
task and resource allocation problems in computer science. 
To bid appropriately for the item that is auctioned first (right 
shoe), a bidder needs to guess which other items he will win 
in the later auction(s). This requires lookahead in a game tree, 
which is intractable if numerous items are auctioned. Even 
with exact lookahead, the bidder generally does not know de-
terministically what will transpire in the auction—due to in­
complete information about the other bidders' valuations of 
the items. For example, some other bidder could be a col­
lector of left shoes who also likes right shoes somewhat, but 
less than our bidder. "This can cause our bidder to win just the 
right shoe that has no value to him, that is, a bundle of items 
that is undesirable to the bidder given the prices. While un­
desirable to our bidder, the outcome (that is, allocation of the 
items to the agents) also does not maximize social welfare. It 
would have been better to give both shoes to the other bidder. 
In general, the outcome might not maximize social welfare 
even if each bidder wins a bundle that is worth more than the 
bidder had to pay for it: an even better allocation of the items 
to the bidders might exist. 

These problems, that are due to the negotiation process un­
certainty of a sequential auction, can be overcome via a com­
binatorial auction where bids can be submitted on combina­
tions (bundles) of items [Rassenti et al., 1982]. For exam­
ple, a bidder can say: "I am willing to pay up to $100 for 
items 2,3, and 7 together". This removes the need for looka­
head and for speculation about others because the bidder can 
evaluate the value of item 2 in the known context where the 
bidder hypothetical^ receives items 3 and 7 as well The bid­
der cannot get stuck with item 2 in an unprofitable way. This 
removal of the so called exposure risk makes bidding easier. 
It also causes the bidders to bid more aggressively because 
they do not have to factor in the potential downside of getting 
stuck with undesirable bundles; the aggressive bidding makes 
the seller better off. Finally, social welfare is maximized be­
cause the goods are allocated to the bidders that value them 
the most. 

3.2 Substitutability and XOR-constraints 
The model discussed above, and most other work on com­
binatorial auctions (see for example [Rothkopf et al, 1998; 
DeMartini et al., 1999]), are based on a setting where each 
bidder can bid on bundles of items, and any number of a bid­
der's bids can be accepted (except, of course, that bids on 
overlapping bundles cannot be accepted). This works well 
when bids are superadditive: 
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where bi is the bid of agent i, and S and S' are disjoint sets 
of items. In other words, the current techniques focus on cap­
turing synergies (complementarities) among items. However, 
in many auctions in practice, some items can at least partially 
substitute for others (e.g., when bidding for an umbrella and 
a raincoat). For instance when bidding for landing slots for 
a given airplane flight, the bidder is wi l l ing to take any one 
of a host of slots, but getting more than one adds only slight 
value because extra slots beyond the first one obtained only 
serve as backup. Substitutability causes bids to be subaddi­
tive: This can lead to problems. 
For example, what happens if agent i bids = 

= and = a n d there are no other 
bidders? The auctioneer could allocate items 1 and 2 to agent 
1 separately, charging + = instead of 

This problem can be removed by using a bidding language 
where the bidders can submit XOR-bids, that is, bids on bun­
dles such that only one of the bids can get accepted [Sand-
holm, 2002a], This allows the bidders to express general 
preferences with both complementarity and substitutability. 
In other words, the bidder can express any value function 

where m is the number of items for sale in 
the auction. For example, a bidder in a 4-item auction may 
submit the following input to the auctioneer 

While XOR-bids are ful ly expressive, representing one's 
preferences in that language often leads to large numbers of 
bids that are all combined with XOR. To maintain ful l ex­
pressiveness, but at the same time to make the representa­
tion more concise, one can use a bidding language called 
OR-of-XORs [Sandholm, 2002b; 2000b]. In this language, 
a set of bids can be combined with XOR, forming an XOR-
disjunct. Multiple XOR-disjuncts can then be combined with 
non-exclusive ORs to represent independence (much like a 
lack of an edge represents independence in a Bayes net). For 
example, a bidder who wants to submit the same offer as in 
the example above, can do so by submitting the following 
more concise input to the auctioneer: 

The XOR-bidding language is a special case of the OR-
of-XORs language. Therefore, the shortest way to repre­
sent any particular value function in the OR-of-XORs lan­
guage is never longer than in the simple XOR-bidding lan­
guage. The reader is invited to try out XOR bidding and 



OR-of-XORs bidding in our Internet auction server pro­
totype, eMediator (see h t t p : / / www. cs. cmu. edu/ " 
amem/eMediator). Later other logical bidding languages 
were proposed, namely the XOR-of-ORs language where 
XORs combine OR-disjuncts, and the OR" language where 
XOR-constraints can be submitted between arbitrary pairs of 
bids [Nisan, 2000]. Recently, recursive logical bidding lan­
guages have also been proposed [Hoos and Boutilier, 2001; 
Boutilier, 2002]. 

3.3 Expressive competition beyond combinatorial 
auctions 

One can view combinatorial auctions as an extremely special 
case of a broader approach that I call expressive competition. 
The vision is to empower market participants with potent ex­
pressiveness akin to human-to-human negotiation while at the 
same time harnessing the forces of competition (rather than 
1-to-l negotiation), the global scale of Internet auctions, and 
the speed and accuracy of algorithmic market clearing with 
all relevant information in hand. 

Market types 
There are three high-level market types for expressive com­
petition, each of which can involve bidding on bundles, and 
expressions of substitutability (for example with XOR con­
straints using the OR-of-XORs language). In a combina­
torial auction, there is one seller, and multiple buyers who 
bid. The clearing problem (aka. winner determination prob­
lem) is that of determining which bids win and which lose 
so as to maximize the sum of the winning bids* prices— 
under the constraint that every item can be allocated to at 
most one bid. In a combinatorial reverse auction, there is 
one buyer with a set of items he wants to procure, and mul­
tiple sellers who bid [Sandholm, 2002b; Sandholm et al, 
2002]. The clearing problem is that of determining which 
bids win and which lose so as to minimize the sum of the 
winning bids' prices—under the constraint that every item 
in the set gets procured. In a combinatorial exchange (aka. 
combinatorial double auctions) there are multiple buyers and 
multiple sellers [Sandholm, 2002b; Sandholm et al., 2002; 
Walsh et al., 2000]. A bidder can also act both as a buyer 
and as a seller, even in one bid. For example, one of his bids 
may state: "I want to buy a car, sell a boat, buy a bike, and 
get paid $150". There are two natural clearing objectives for 
exchanges [Sandholm and Suri, 2003]. In surplus maximiza­
tion, the goal is to maximize the sum of the payments col­
lected from winning bids that offer a payment, minus the sum 
of the payments paid to winning bids that require a payment. 
In liquidity maximization, the goal is to maximize the number 
or dollar volume of trades. In an exchange, the constraint on 
the clearing is that among the winning bids, supply meets de­
mand on every item (if the exchange sells an item to someone, 
it also has to buy it from someone). 

For each of these market types, there are two variants: the 
single-unit variant (described above), and the multi-unit vari­
ant. In the latter, there are multiple indistinguishable units of 
each distinguishable item in the market [Sandholm, 2002b; 
Sandholm and Suri, 2003; Leyton-Brown et al, 2000b; 
Gonen and Lehmann, 2000; Sandholm et al, 2002]. For ex­

ample in a reverse auction, a buyer may want 200,000 nuts 
and 100,000 bolts. A bidder's bid may state: "I offer 50,000 
nuts and 20,000 bolts for $2,500". 

Finally, markets differ based on whether or not extra units 
can be thrown away for free. This is called free disposal 
Most markets have free disposal. It makes the clearing prob­
lem easier because any solution where supply equals or ex­
ceeds demand is feasible. Without free disposal, supply needs 
to equal demand on every item. 

Side constraints on the clearing: A form of extremely 
concise expressiveness 
Expressive bidding enables the bidders to express their 
strengths and to avoid the exposure problem. Bidding on bun­
dles (potentially with a language such as OR-of-XORs to en­
able substitutability to be expressed) is a simple form of ex­
pressive bidding, but representing one's preferences in such 
a language may require an expression of exponential length 
in the number of items. More concise forms of expressive­
ness can be used instead—or better, in addition. A key ap­
proach for accomplishing this is to allow bidders to express 
side constraints on the clearing [Sandholm and Suri, 2001b; 
Kalagnanam et al., 2001]. For example in a reverse auction, a 
bidder could submit a number of bids (maybe on bundles, and 
potentially with XOR constraints), but in addition he could 
state that his capacity to produce tomatoes is only 60 tons. 
This would render infeasible all clearing solutions in which 
he is allocated more than 60 tons of tomato production. This 
is an instance of a class of constraints that I call unit con­
straints. Similarly, in an auction, a bidder could submit a 
number of bids (maybe on bundles, and potentially with XOR 
constraints), but in addition he could state that he has a bud­
get constraint of $35,000,000. This is an instance of a class 
of constraints that I call cost constraints. Yet another form of 
concise expressiveness is to allow bidders to submit discount 
schedules, e.g., "If I get to supply at least $9,000,000 of toma­
toes to you, I will give you a 2% discount. At $15,000,000, 
I will raise the discount to 3%." Or the bidder could sub­
mit a supply (demand) curve where the per-unit price of 
tomatoes is a function of the quantity [Sandholm, 2002b; 
Sandholm and Suri, 2001a; 2002]. 

While work on combinatorial auctions has traditionally fo­
cused on increasing the expressiveness for the bidders, I view 
expressive competition as having two equally important parts, 
expressive bidding and expressive bid taking. A key approch 
toward expressive bid taking is to allow the bid taker to sub­
mit side constraints on the clearing. This allows him to model 
and honor legal constraints, for example the following cost 
constraint: "minority bidders have to win 10% of the auc­
tion". It also allows the bid taker to honor contractual obli­
gation. For example, the buyer in a reverse auction for trans­
portation services may have a contract that states that Joe's 
Trucking has to get at least $30,000,000 of business. This can 
be modeled as a side constraint in the clearing, and the clear­
ing algorithm will decide exactly what services are procured 
from Joe's Trucking and what services from other providers. 
This approach allows one to reap the benefits of both long-
term contracts and dynamic pricing—modes of trade tradi­
tionally considered mutually exclusive. Finally, the bid taker 
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can submit his business rules as side constraints. He may use 
counting constraints such as "I don't want to deal with more 
than 200 winning suppliers, and I do not have the capability 
to handle more than 3 at my plant in Chicago". He may also 
use cost constraints like "I don't want any one supplier to win 
more than 15% of the business (so that my supply chain stays 
competitive for the long run)". 

The use of side constraints allows one to find a market 
clearing solution that is implementable in the world because 
the real-world constraints are honored. By changing side con­
straint and running the clearing algorithm again, the bid taker 
can also conduct quantitative what-if analyses. For example, 
"How much would my procurement cost in this reverse auc­
tion increase if I decrease my supply base down to 17 sup­
pliers?" Or, "How much more would I save in this reverse 
auction if I did not go with a sole-source contract for elec­
trical supplies in my Cincinnati plant, but rather allowed 2 
suppliers?" 

In the 70 markets with expressive competition that we have 
fielded to date (see, e.g., [CombineNet, Inc., 2003e; 2003c; 
2003b; 2003d; 2003a]), we have seen hundreds of side con­
straint types. We abstracted them into seven general classes, 
the most prevalent of which are cost constraints, unit con­
straints, and counting constraints. This abstraction allows the 
clearing algorithm to be designed for a few classes rather than 
for hundreds of constraint types. 

Non-price attributes in the clearing 
An additional form of expressive competition stems from the 
fact that in many markets there are non-price attributes that 
are pertinent to the clearing problem, such as color, width, 
delivery date, quality, insurance terms, and so on. There are 
at least two reasons for introducing multi-attribute techniques 
into the clearing problem. First, in a basic combinatorial auc­
tion (or reverse auction or exchange), each item has to be 
completely specified. In many settings, this is overly restric­
tive. It is more desirable to leave some of the item attributes 
unspecified, so that each bidder can propose in his bids the 
attribute vector that is most suitable to him. Each bidder can 
also submit multiple bids with alternative attribute vectors, 
which is desirable because different attribute vectors are gen­
erally not equally valuable to the bid taker. Second, a bid 
from one bidder can be more valuable than the same bid from 
another bidder (due to bidder attributes such as historical data 
on timeliness and quality), and this should be taken into ac­
count in the clearing. 

Multiattribute considerations can be integrated into combi­
natorial auctions and reverse auctions as follows [Sandholm 
and Suri, 2001b]. Let be a vector of attributes. These can 
be item attributes and/or bidder attributes. Some of the at­
tributes can be specific to one bid (say j) while others might 
not (such as quality of a certain line of products). The vec­
tor can include attributes revealed by the bidder as well as 
attributes whose values the bid taker gets from other sources 
such as historical performance databases. The bid prices can 
be re-weighted based on the additional attributes. The new 
price of any bid where is the origi-
nal price of that bid. The re-weighting function / is usually 
expressed by the bid taker (seller in an auction, buyer in a re­

verse auction)—either before or after the auction to character­
ize his preferences. (For example, the buyer of sea freight ser­
vices may give a 4% advantage to bids that include less than 
3 interim ports on the route from source to destination.) The 
clearing problem is then solved using these revised prices. 

Unlike in auctions and reverse auctions where multiple at­
tributes can be handled in a preprocessor to the clearing prob­
lem as shown above, in exchanges multiple attributes cannot 
be handled in a preprocessor. The reason is that in an ex­
change there are multiple bid takers (each buyer and each 
seller is a bid taker in this sense), and they may have dif­
ferent preference functions / over attribute vectors. Multiple 
attributes can still be handled, but their handling has to be 
incorporated into the clearing problem itself. This can be ac­
complished as follows. Treat items that have different values 
of the item attributes as different items. Then use a separate 
decision variable not just for each such item, but for each ( 
item, buyer, seller ) tuple. This way each buyer (seller) can 
condition his bid price on the item attributes and on whom he 
is buying from (selling to). Conditioning on whom he is buy­
ing from (selling to) is pertinent when bidder attributes have 
to be taken into account.5 

3.4 Complexity of the clearing problem 
Expressive competition is a new way of conducting business, 
and has a host of advantages as discussed above. However, 
it requires solving the clearing problem—a combinatorial op­
timization problem. Many variants of it are hard, and the 
variants span an intriguing spectrum of worst-case complex­
ity when it comes to the complexity of finding a feasible so­
lution, an approximately optimal solution, or an optimal so­
lution: 

• As discussed, in the canonical combinatorial auction 
there is one unit of each item, bids can be submitted 
on bundles (and bids on overlapping bundles cannot 
both win), there is free disposal, and there are no XOR-
constraints or other side constraints. Optimal clearing in 
this setting is NP-complete [Rothkopf et a/„ 1998]. 

• That problem is also inapproximable: no polynomial-
time algorithm can guarantee a solution that is better 
than a bound from optimal, where n is the num­
ber of bids (unless P=ZPP) [Sandholm, 2002a]. 

• Optimal clearing in a combinatorial reverse auction and 
a combinatorial exchange is NP-complete even if there 
is only one unit of each item, free disposal, and no XOR-
constraints or other side constraints [Sandholm et al., 
2002]. 

• Combinatorial reverse auctions are not as inapprox­
imable as combinatorial auctions: a bound (1 + InM) 
can be obtained in polynomial time even in the multi-
unit case, where M is the largest number of units that 

5There also exist auctions and reverse auctions where the multi-
attribute aspects cannot be handled in a preprocessor. This occurs if 
the bid taker's way of evaluating attributes depends on which bids 
win. In such cases, as in exchanges, the way in which the attributes 
are to be taken into account can be modeled in the clearing problem 
itself. 
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any bid contains [Sandholm et al., 2002]. (This assumes 
the canonical setting where there is free disposal, and no 
XOR-constraints or other side cosntraints.) 
Finding a feasible solution is trivial in combinatorial 
auctions (accept no bids, or any one bid) and in com­
binatorial reverse auctions (accept all the bids; if this 
does not cover the demand, then nothing will). Without 
free disposal, even finding a feasible solution is MP-
complete in these variants, even in the single-unit case 
with no XOR-constraints or other constraints [Sandholm 
et al., 2002] (this implies inapproximability to any ra­
tio bound). The same results apply to combinatorial ex­
changes (the hardness applies if the trivial "no bids ac­
cepted" solution is excluded). 

» XOR-constraints do not change the approximability 
of canonical combinatorial auctions [Sandholm et al., 
2002]. However, XOR-constraints make finding a fea­
sible solution NP-complete in combinatorial reverse 
auctions (even in the single-unit case with free dis­
posal) [Sandholm et al., 2002]. In other words, com­
binatorial reverse auctions are more approximate than 
combinatorial auctions, but this ordering reverses when 
XOR-constraints are introduced. 

> Combinatorial exchanges inherit the inapproximability 
of both combinatorial auctions and combinatorial re­
verse auctions [Sandholm et al., 2002]. 

> Cost constraints and unit constraints do not affect the 
complexity class of the clearing problem when bids can 
be submitted on bundles: the basic case where bids have 
to be accepted all or nothing remains NP-complete, 
and the case where bids can be accepted fractionally 
can be solved in polynomial time using linear program­
ming [Sandholm and Suri, 2001b]. However, XOR-
constraints and other counting constraints make even 
the fractional case NP-complete [Sandholm and Suri, 
2001b]. There exist severe side constraints that restrict 
the search space enough so that even the case where bids 
have to be accepted all or nothing is optimally clearable 
in polynomial time [Sandholm and Suri, 2001b]. 

> If bids can be accepted fractionally, a combinatorial ex­
change (and auction and reverse auction) can be opti­
mally cleared by accepting a very small number of bids 
fractionally: m + 1 if the objective is to maximize sur­
plus, and m + 2 if the objective is to maximize liq­
uidity [Kothari et al, 2003]. Here m is the number of 
distinguishable items in the market. This clearing can 
be found using linear programming. However, if XOR-
constraints are allowed, finding the surplus-maximizing 
clearing is NP-complete even in the fractional case, 
even if there is just one item in the market with multi­
ple units of it [Kothari et al., 2003]. 
In an auction where bids can be submitted on indi­
vidual items only (not on bundles), winner determina­
tion is trivial: simply accept the highest bid on each 
item. Under budget constraints, optimal winner de­
termination becomes NP-complete. Curiously, if in­
stead of a budget constraint each bidder submits a con-
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straint on the number of items he wins, the auction 
can be optimally cleared in polynomial time using b-
matching [Tennenholtz, 2000]. If bids can be accepted 
fractionally, winners can be determined in polynomial 
time using linear programming even with budget con­
straints. Under XOR-constraints (or other counting con­
straints), clearing is NP-complete even if bids can be 
accepted fractionally [Sandholm and Suri, 2001b]. (If 
each bidder places an XOR-constraint between every 
pair of his bids—so that at most one of his bids can 
be accepted—then the problem becomes the assign­
ment problem [Sandholm and Suri, 2001b]. The assign­
ment problem can be solved in polynomial time [Kuhn, 
1955].) 

• Even if there is just one item in the market (multi­
ple units of it), piecewise linear supply/demand curves 
are NP-complete to clear optimally (in an exchange, 
auction, and reverse auction), but with linear sup­
ply/demand curves, optimal clearing can be done in 
polynomial time [Sandholm and Suri, 2001a; 2002]. 

In summary, there is a tradeoff between expressiveness 
(with its economic and usability advantages) and the com­
putational complexity of clearing the market. While many 
variants of the clearing problem are hard in the worst case, in 
practice problems of real-world sizes can usually be solved. 
(This is most likely due to the co-evolution of clearing tech­
nology and expressive markets.) Experiments show that com­
binatorial reverse auctions tend to be easier to clear optimally 
than combinatorial auctions, which in turn are easier than 
combinatorial exchanges [Sandholm et al., 2002]. 

3.5 Algorithms for the clearing problem 
While the idea of a basic canonical combinatorial auction is 
two decades old, combinatorial auctions have traditionally 
not been used. The main reason is that the clearing problem 
is tough. In the last few years, hardware and especially clear­
ing algorithms, have reached a level of scalability that enables 
combinatorial auctions of real-world sizes to be cleared opti­
mally. As a consequence, numerous combinatorial auctions 
have emerged in industry. 

The rest of this section focuses solely on clearing algo­
rithms that find an optimal solution. Optimal clearing is im­
portant because real money is at stake, because approximate 
clearing yields solutions extremely far from optimal (at least 
in the worst case), because a large change in the winners can 
occur even if the solution changes slightly from optimum, and 
because suboptimal clearing ruins the incentive properties of 
the market (as will be discussed in the next subsection). 

The first-generation special-purpose clearing algorithms 
for the canonical combinatorial auction used a search tree 
where branching was on items (Figure 1 left) [Sandholm, 
2002a; 2000b; Fujishima et al., 1999]. The newer, and sig­
nificantly faster, clearing algorithms use a search tree where 
branching is on bids instead (Figure 1 right) [Sandholm and 
Suri, 2003; Sandholm et at,, 2001]. It has the advantage that 
there is more flexibility in variable ordering: at each branch 
point, commitment occurs on only one bid rather than on 
all of the bids that include a specific item. Another ben-
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efit is that, unlike the branch-on-items tree, the branch-on-
bids tree easily supports all of the market designs for expres­
sive competition discussed above [Sandholm and Suri, 2003; 
Sandholm et a/., 2002]. 

Figure 1: Branching on items vs. branching on bids. 

Interestingly, although the problem is NP-complete, both 
the branch-on-items tree [Sandholm, 2002a] and the branch-
on-bids tree [Sandholm and Suri, 2003] are of polynomial 
size in the number of bids even in the worst case (and expo­
nential in the number of items). This is desirable because the 
auctioneer usually controls the number of items for sale, but 
not the number of bids that happen to be submitted. 

The techniques that make the branch-on-bids search fast 
in practice include bid ordering heuristics that dynamically 
choose the next bid to branch on, techniques for dynam­
ically choosing the bid ordering heuristic itself based on 
context, upper bounding based on a linear programming re­
laxation of the remaining subproblem (and intelligent ad­
dition of cutting planes that reduce the size of the linear 
programming polytope, but do not cut out the optimal in­
teger solution), lower bounding based on rounding tech­
niques, decomposition of the problem when the bid graph 
(Figure 1 right) splits into independent components, tech­
niques for enhancing upper and lower bounding based on in­
formation from sibling components, and methods for iden­
tifying and solving potential polynomially-solvable special 
cases at each node. In the interest of flow, I will not go fur­
ther into those techniques here. Many of them are described 
in detail in specialized papers [Sandholm and Suri, 2003; 
Sandholm et al, 2001]. 

Suffice it to say that the CABOB algorithm [Sandholm et 
al, 2001] is, by and large, the fastest algorithm for the canon­
ical combinatorial auction clearing problem currently, based 
on the widely adopted approach of evaluating clearing al­
gorithms on standard randomly generated benchmark distri­
butions [Sandholm, 2002a; Fujishima et al., 1999; Leyton-
Brown et al, 2000a; Andersson et al, 2000]. Interest­
ingly, economically motivated random distributions (specif­
ically the ones from CATS [Leyton-Brown et al, 2000a]) 

tend to be very easy compared to totally random distribu­
tions [Sandholm et al., 2001]. Similarly, real clearing prob­
lems are often easier than totally random ones. Our fielded 
algorithms systematically solve real reverse auctions with up 
to tens of thousands of items, hundreds of thousands of bids, 
and hundreds of thousands of side constraints to optimum. 

3.6 Incentives to b id t ru th fu l ly : The 
Vickrey-Clarke-Groves (VCG) mechanism 

One concern is that bidders may bid insincerely. For example, 
in an auction where each winning bidder is charged the sum 
of the prices of his winning bids, the bidders are motivated to 
bid less than their true valuations of the items. 

This issue can be overcome under the traditional assump­
tion that each bidder i has a quasilinear utility function: 

where S is the bundle that bidder i 
wins, and pt is the price that he has to pay. It turns out that un­
der this assumption, a fully expressive bidding language com­
bined with an optimal clearing algorithm is sufficient [Sand-
holm, 2002b; 2000b] and necessary [Nisan and Ronen, 2000] 
for being able to design auction mechanisms that yield a so­
cial welfare maximizing allocation and where every bidder's 
dominant strategy is to bid truthfully.6 With such technology, 
bidding truthfully can be made a dominant strategy by using 
the Vickrey-Clarke-Groves (VCG) mechanism [Vickrey, 1961; 
Clarke, 1971; Groves, 1973]. This means that each bidder is 
motivated to bid truthfully regardless of how others bid—thus 
rendering speculation about others futile.7 

The VCG mechanism can be applied to markets with ex­
pressive bidding as follows. The optimal clearing outcome is 
first computed as usual. The amount that an agent needs to 
pay is the sum of the others' winning bids had the agent not 
participated, minus the sum of the others' winning bids in the 
actual optimal outcome. So, the clearing problem has to be 
solved once overall, and once per winning agent without any 
of that agent's bids or side constraints.8 

4 Preference elicitation in multiagent systems 
Most, but not all, game-theoretic interaction mechanisms are 
so called direct-revelation mechanisms, where each partici­
pant reveals all of his private information (e.g., bundle valu­
ations in combinatorial auctions) completely up front. There 

6Under extremely strong assumptions about the bidders' util­
ity functions, truth-dominance can be accomplished with approxi-
mate clearing (see e.g., [Lehmann et al., 2002; Mu'aJem and Nisan, 
2002]), but because the clearing problem is inapproximable, the al­
location is extremely far from optimal in the worst case. 

7The VCG mechanism has also been used in mediated plan­
ning among software agents [Ephrati and Rosenschein, 1991; 1993; 
Ephrati, 1994]. 

8In auctions, the mechanism is budget balanced: the seller col­
lects the nonnegative amounts paid by the bidders. In exchanges, an 
external benefactor is usually needed. In fact, with private valuation 
information on both the buy side and the sell side of the market, there 
is no mechanism for general quasilinear utility functions—even with 
just one unit to trade and only one buyer and one seller—that mo­
tivates the parties to participate in the mechanism, yields the social 
welfare maximizing outcome, and is budget balanced [Myerson and 
Satterthwaite, 1983]. 
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are fundamental results that show that, in the absence of com­
putation/communication limitations, this restriction comes at 
no loss in any sense (c/ the revelation principle [Mas-
Colell etal, 1995]). However, in practice such mechanisms 
are problematic because the agents may need to determine 
their own preferences via costly deliberation (e.g., comput­
ing [Sandholm, 1993; 1996; 2000c; Larson and Sandholm, 
2001b; 2001c]) or information gathering, and communicat­
ing complete preferences may be undesirable from the per­
spective of privacy or conserving bandwidth. 

This issue can be addressed using a methodology where the 
mediator incrementally elicits the agents* private information 
on an as-needed basis in a manner directed to being able to 
determine the outcome (that would have come about had the 
agents revealed all of their private information to the medi­
ator) [Conen and Sandholm, 2001]. It turns out that often 
the outcome can be determined while eliciting only a small 
portion of the agents' private information. A key insight is 
that in multiagent systems, what information is needed from 
a party depends on what information the other parties have 
revealed. This is a central motivation for interleaved prefer­
ence elicitation from multiple agents. The approach offers 
the advantages of incremental problem solving (as in peer-
to-peer negotiation) while reaping the benefits of mediated 
clearing discussed earlier. The rest of this section studies this 
approach as applied to combinatorial markets and voting. 

4.1 Preference elicitation in combinatorial 
auctions 

Preference elicitation is crucial in combinatorial markets be­
cause each agent has an exponential number of bundles 
to evaluate (and again, each such evaluation problem can 
be hard [Sandholm, 1993; Sandholm and Lesser, 1995b; 
Sandholm, 2000c; Larson and Sandholm, 2001b; 2001c]). 
Each agent would like to focus on a small number of bun­
dles in order to minimize evaluation effort, communication, 
and loss of privacy. On the other hand, the social welfare 
among the agents, the seller's revenue, and the agent's utility 
will usually suffer if the agent's evaluation of a bundle that 
he would win is not communicated to the auctioneer. In a 
usual combinatorial auction it is difficult for the agent to de­
cide which bundles to bid on because others' bids determine 
what bundles the agent would be competitive on. 

To address this problem, we developed a methodology 
where an elicitor software, residing at the auctioneer, incre­
mentally builds a model of the agents' valuation functions 
vi [Conen and Sandholm, 2001]. The elicitor queries the 
agents about vi, and fully assimilates the answers into its 
model. The next query to be asked is always chosen based 
on the answers so far. The elicitor in a sense opens up the 
clearing algorithm and elicits the inputs needed for determin­
ing the optimal outcome (allocation of items to agents). The 
agents are never asked for information that the elicitor can 
already infer from the answers, or that is known to be im­
pertinent for determining the optimal allocation. The elicitor 
terminates the process when it has found a provably optimal 
allocation. 

The rest of this section will focus on combinatorial auc­
tions under the usual free disposal assumption, which almost 

always holds in practice. It gives structure to the elicita­
tion problem because for each agent, the value of a bundle 
is no greater than the value of any superbundle of that bundle 

The general case 
Even with free disposal, the worst-case communication com­
plexity for even approximately optimally clearing the market 
is exponential in the number of items, regardless of the query 
types or the elicitation policy [Nisan and Segal, 2003]. The 
discussion below will focus on natural value queries: "what is 
your valuation of bundle ST (Other query types can increase 
the efficiency of elicitation [Conen and Sandholm, 2001; 
Hudson and Sandholm, 2002; Conen and Sandholm, 2002b; 
2002a].9) It turns out that in practice elicitation is very 
promising: only a vanishing fraction of all the queries are 
asked before the elicitor can clear the auction provably opti­
mally [Hudson and Sandholm, 2002]! The preference elici­
tation methodology is also very promising in combinatorial 
reverse auctions [Hudson and Sandholm, 2003a] and combi­
natorial exchanges [Smith et al., 2002]. 

One may also ask whether there exists a universal revela­
tion reducer for combinatorial auctions, that is, a general elic­
itor algorithm that saves some elicitation (finishes finding an 
optimal outcome and proving its optimality without asking all 
value queries) on all instances where some instance-specifc 
elicitor saves some elicitation (that is, where the shortest cer­
tificate for verifying that a proposed outcome is optimal is 
shorter than the number of agents times the number of bun­
dles). It turns out that a deterministic universal revelation 
reducer cannot exist, but randomized ones are easy to con­
struct [Hudson and Sandholm, 2003b]. 

Restricted preferences for which the worst-case number 
of queries is polynomial in items 
For restricted classes of vi functions, the worst-case number 
of value queries needed is polynomial in the number of items 
being sold. Many of these classes are rich enough to exhibit 
both complementarity and substutitability. This subsection 
will present classes like that, which are also arguably natural 
for capturing valuation functions. 

First, consider read-once formulas. A read-once formula 
is a function that can be represented as a tree, where the 
items for sale in the auction are at the leaves, together with 
the bidder's valuations for the individual items. The for­
mula's output value is obtained by feeding in a bundle S 
of items to the leaves and reading the valuation vi(S) from 
the root A leaf sends the item's valuation up the tree if 
the item is included in 5, otherwise the leaf sends 0. Dif­
ferent types of gates can be used in the nodes of the tree. 
A SUM node sums the values of its inputs; a MAX node 
takes the maximum value of its inputs; an ALL node sums 
its inputs unless one of the inputs is zero, in which case 

9Ascending combinatorial auctions (e.g., [Bikhchandani et al., 
2001; Parkes and Ungar, 2000; Wurman and Wellman, 2000]) can 
be viewed as a special case of the preference elicitation framework 
where the queries are of the form: "Given these prices on items 
(and possibly also on bundles), which bundle would you prefer the 
most?". 
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the output is 0. For example, a legal function on 3 inputs 
might be which gives value 12 
to the bundle {1,2}, 6 to bundle {1,3}, and 0 to bundle {2,3}. 
Read-once formulas of this type allow for many natural pref-
erences. For example, suppose items are flights and hotel 
rooms in different locations (e.g., input represents the 
ith flight to location j, and represents the ith hotel room 
in location j) and we want to take just one trip. Then for 
each location j we could compute 

and then at the root of the tree we would 
take a MAX over the different destinations. More general 
gates are also possible. Let MAX* output the sum of the k 
highest inputs, and ATLEAST* output the sum of its inputs 
if there are at least k positive inputs, and 0 otherwise. Finally, 
let GENERALk. l be a parameterized gate capable of repre­
senting all the above types of gates. For instance, imagine that 
on a vacation to the Bahamas, Alice wanted entertainment. If 
she got to go out on at least three nights, then the trip would 
be worthwhile. Otherwise, she would rather stay home. Each 
night, she takes the maximum valued entertainment option. 
Then there is an ATLEAST3 node combining all of the dif­
ferent nights. In a different situation, imagine that Joe wants a 
more relaxing vacation in Hawaii, where he does not want to 
go out more than three nights. In this case, a MAX3 gate will 
be useful. For each night, he chooses the best possible enter­
tainment given to him. Then, he takes the best three nights of 
entertainment. Finally, imagine that Maggie wants a moder­
ately active vacation, and is interested in going to Paris for a 
week, and wants at least three but no more than four nights of 
entertainment. Then a GENERAL3,4 gate will describe her 
preferences. It turns out that if the user's valuation function 
vi can be expressed as a read-once formula with these gates 
(even if the user is not aware of that), then Vi can be elicited 
with a number of value queries that is polynomial in the num­
ber of items in the auction even in the worst case [Zinkevich et 
al., 2003].10 Furthermore, if a bidder's valuation function vt 
is close to some read-once function with the gates discussed 
above, then a close model of vi can be constructed with a 
polynomial number of value queries. 

Second, consider the class of preferences that can be ex­
pressed as monotone polynomials. For example, 

This class is called Toolbox DNF 
because it captures settings where each agent has a set of tasks 
to accomplish (one per term in the polynomial), each task re-

An analogous issue arises with shopping agents. Consider the 
following scenario. Alice goes to her software agent and asks it 
to help her purchase a vacation. In order to act on her behalf, the 
agent first needs to find out Alice's preferences (how much is a trip 
to Hawaii worth compared to a trip to the Bahamas, does it sub­
stantially increase the value to her if she can get some entertainment 
booked in advance, etc.). Then, after scouring the Internet, the agent 
needs to solve the computational problem of deciding on the best 
vacation package—the one that maximizes Alice's valuation minus 
the cost of the trip. In this scenario, there is no auctioneer. Rather, 
the elicitor is the buyer's helper. Again, the amount of querying can 
be prohibitively large when the buyer has general (monotone) pref­
erences, but with these types of read-once preferences, Alice's val­
uation function can be determined in a polynomial number of value 
queries. 

quiring a specific set of tools (the variables in the term) and 
each having its own value (the coefficient on that term). For 
example, the tools may be medical patents, and producing 
each medicine requires a specific set of patents. The value of 
a set of items to the agent is the sum of the values of the tasks 
that the agent can accomplish with those items. It turns out 
that any toolbox DNF valuation function v{ can be elicited 
in a polynomial number of value queries [Zinkevich et a/., 
2003]. 

The power of interleaved preference elicitation from 
multiple parties 
The above two example classes of valuation functions can be 
elicited efficiently even if there is only one party whose pref­
erences are to be elicited. So, the efficiency does not derive 
from the fact that information from other agents restricts the 
amount of information needed. The next class, on the other 
hand, derives its ease of elicitation from this phenomenon. 

Consider a combinatorial auction with two buyers that have 
their valuation functions in the form of the XOR bidding lan­
guage discussed earlier, where each bidder can submit bids 
on bundles, and all of the bidder's bids are mutually exclu­
sive. It turns out that if no bid includes more than log2 m 
items (where m is the number of items in the auction), then 
the provably optimal allocation of items to the bidders can 
be determined in a worst-case polynomial number of value 
queries [Blum et al., 2003]. 

Interestingly, there are classes of vi;, functions where learn­
ing the functions requires an exponential number of value 
queries, while the provably optimal allocation can be con­
structed in a polynomial number of value queries [Blum et 
al., 2003]. For other classes of vt, being able to elicit enough 
to find the provably optimal allocation in a polynomial num­
ber of value queries implies that the vi functions themselves 
can be learned in a polynomial number of value queries. So, 
sometimes there is an exponential benefit to interleaving the 
queries made to the different parties, while at other times the 
benefit between that and eliciting each agent's preferences 
separately is polynomially bounded. 

Incentives to answer truthfully: Ex post equilibrium in an 
incremental push-pull multiagent elicitation mechanism 
Motivating the bidders to answer queries truthfully is another 
key issue, and is exacerbated by the fact that the elicitor's 
queries leak information to the bidder about the answers that 
other bidders have given. Recently, a methodology was pro­
posed by which elicitors can be made incentive compatible 
in the sense that every bidder (with a quasilinear utility func­
tion) answering the queries truthfully is an ex post equilib­
rium [Conen and Sandholm, 2001]. This means that bidding 
truthfully is each bidder's best strategy (for any prior proba­
bility distribution that he may hold about the other bidders) 
given that the other bidders bid truthfully. In other words, 
truthful bidding strategies form a (Bayesian) Nash equilib­
rium even in hindsight. (This does not mean that bidding 
truthfully is a dominant strategy; if some of the other agents 
bid insincerely and conditional on the elicitor's query stream 
to them, one may do better by bidding insincerely. In sum­
mary, implementation in ex post equilibrium is stronger than 
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implementation in (Bayesian) Nash equilibrium, but weaker 
than implementation in dominant strategies.) 

The methodology is the following. The mechanism is 
structured so that if all the bidders answer truthfully, the final 
allocation and payments follow the VCG mechanism. The 
amount a bidder has to pay is the sum of the others' re­
vealed valuations for the bundles they get had the bidder not 
been given any of the items, minus the sum of the others' 
revealed valuations for the bundles they get in the actual op­
timal allocation. The elicitor can determine these payments 
by asking enough queries to be able to determine the welfare 
maximizing allocation overall, and by asking extra queries 
to determine the welfare maximizing allocation for the auc­
tions where each agent is ignored in turn. The extra queries 
needed to determine the VCG payments are a negligible frac­
tion of the queries needed to determine the optimal allocation 
in practice [Hudson and Sandholm, 2003a], and in some elic-
itation policies that information comes purely as a side effect 
with no extra queries at all [Conen and Sandholm, 2002b; 
2002a]. 

Truthful answering is an ex post equilibrium even in elici-
tation mechanisms where the bidders are allowed to pass on 
some queries (as long as they answer enough queries to de­
termine the optimal allocation and the VCG payments) and to 
answer queries that were never asked [Conen and Sandholm, 
2001]. This yields a pull-push mechanism where the elici­
tor guides the preference revelation, but each bidder can also 
proactively reveal values on bundles on which it thinks it is 
competitive. 

4.2 Preference elicitation in voting 
Multiagent preference elicitation can also improve the effi­
ciency of running elections [Conitzer and Sandholm, 2002d]. 
To determine the optimal outcome for a given voting proto­
col, it is generally not necessary to elicit complete preferences 
from all voters, and some voters' preferences may not need 
to be elicited at all. Selective preference elicitation increases 
privacy, and reduces the cost of voting (traveling to the vot­
ing site, spending time, etc.). Again, what, if any, information 
should be elicited from an agent depends on what other agents 
have revealed about their preferences so far. 

However, it turns out that effective vote elicitation gives 
rise to challenging computational problems. In the Sin­
gle Transferable Vote protocol (defined later), even knowing 
when enough has been elicited to determine the provably opti­
mal outcome is NP-complete, while this is easy for all other 
common voting protocols (defined later). Even for these pro­
tocols, determining whose votes to elicit is NP-complete, 
even with perfect suspicions about how the agents will vote. 
(The exception is the plurality protocol—the most common 
voting protocol. There, everyone votes for one candidate and 
the candidate with the largest number of votes wins. In that 
protocol, effective elicitation is easy.) If the elicitor's sus­
picions are imperfect, then effective elicitation can even be 
VSPACE-hard. 

Elicitation can also introduce additional opportunities for 
strategic manipulation by the voters because the elicitor's 
queries leak information among the voters. In coarse elic-
nation (where each voter's entire ranking of candidates is 

elicited if the voter is queried at all) this can be avoided by 
making sure that the voter does not know how many voters 
have been queried before him. In fine elicitation (where a 
voter is asked pairwise preferences one pair of candidates at 
a time) this can be avoided by making sure that the voter does 
not know what/how many queries have been made to others, 
and by making sure that the order in which queries are made 
to this voter is fixed up front rather than dependent on others' 
answers. 

5 Hard valuation problems 
As discussed in the previous section, preference elicitation 
can significantly reduce the agents' effort of evaluating bun­
dles in combinatorial auctions. However, it cannot eliminate 
the need to evaluate at least some bundles to some extent. In 
this section I present a deeper look into an agent's evaluation 
problem with an explicit model of computation, and illustrate 
new strategic issues that stem from it. 

In many markets, even computing one's valuation for a sin­
gle bundle (or individual item) is complex. For example when 
bidding for trucking lanes (i.e., tasks), this involves solving 
two NP-complete local planning problems: the vehicle rout­
ing problem with the new lanes of the bundle and the problem 
without them [Sandholm, 1993]. The difference in the costs 
of those two local plans is the cost (valuation) of taking on 
the new lanes. 

However, in practice bidders (humans or their software 
agents) have limited computation and time, so they cannot 
exactly evaluate all, or even any, bundles—at least not with­
out cost! 

This leads to interesting incentive issues. For example, 
even in an auction where one object is being sold, should a 
bidder evaluate the object if there is a cost to doing so? Ac­
cording to traditional auction theory, truthful bidding is the 
dominant strategy in the celebrated Vickrey auction where the 
object is given to the highest bidder at the price of the second-
highest bid [Vickrey, 1961] (this is the VCG mechanism, dis­
cussed earlier, applied to single-object auctions). However, it 
turns out that the Vickrey auction loses its dominant-strategy 
property if the bidder has the option to evaluate the object or 
not [Sandholm, 2000c]. Whether or not the bidder should pay 
the evaluation cost depends on the other bidders* valuations. 

The issues run even deeper. If a bidder has the opportunity 
to approximate its valuation to different degrees, how much 
computing time should the bidder spend on refining its val­
uation? If there are multiple items for sale, how much com­
puting time should the bidder allocate on different bundles? 
A bidder may even allocate some computing time to evaluate 
other bidders' valuations (e.g., how much it would cost for a 
competing trucking company to take on a given set of lanes) 
so as to be able to bid more strategically; I call this strategic 
computing. 

To answer these questions, we developed a deliberation 
control method called a performance profile tree for pro­
jecting how an anytime algorithm (a blackbox from the per­
spective of the deliberation controller) will change the valu­
ation if additional computing is allocated toward refining (or 
improving) it [Larson and Sandholm, 2001c; 2001b; 2001a; 
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2002]. Unlike earlier deliberation control methods for any­
time algorithms, the performance profile tree is a ful ly nor­
mative model of bounded rationality: it takes into account all 
the information that an agent can use to make its deliberation 
control decisions. (This is necessary in the game-theoretic 
context; otherwise a self-interested agent could take into ac­
count some information that the model does not.) Specifi-
cally, the projection of the anytime algorithm's performance 
is conditioned on the path of the run on the current problem 
instance, as well as static instance features. 

Using this deliberation control method, the auction can be 
modeled as a game, where computing actions are part of the 
game. At every point, each agent can decide on which bun­
dle to allocate its next step of computing as a function of the 
agent's computing results so far (and in open-cry auction for­
mat also the others' bids observed so far). At every point, 
the agent can also decide to submit bids. One can then solve 
this model for the (Bayesian) Nash equilibrium, where each 
agent's (deliberation and bidding) strategy is a best-response 
to the others' strategies. I call this a deliberation equilibrium. 
Table 1 shows in which settings strategic computing can and 
cannot occur in equilibrium. First, this depends on the auction 
mechanism.11 Interestingly, this also depends on whether the 
agent has limited computing (such as a free desktop computer 
on which it can run until the auction's deadline) [Larson and 
Sandholm, 2001b] or costly computing (such as being able 
to buy any amount of supercomputing time where each cycle 
comes at a cost) [Larson and Sandholm, 2001c].12 

Table 1: Does strategic computing occur? The most interest­
ing results are in bold As a benchmark from classical auction 
theory, the table also shows whether or not perfectly rational 
agents, that can determine their valuations instantly without 
cost, would benefit from considering each others' valuations 
when deciding how to bid 

11The Vickrey and VCG mechanisms were discussed earlier. 
The first-price auctions are sealed-bid auctions where the winning 
bidders pay their winning bid prices. The Dutch auction is a 
descending-price auction where the first bidder gets the object at the 
current price. The English auction is an open-cry ascending auction 
where the highest bidder wins and pays the price of his bid. 

12In these settings one can also determine how much such self­
ish computing hurts social welfare in the worst deliberation equilib­
rium [Larson and Sandholm, 2003]. 

6 Using computational complexity as a 
barrier to strategic manipulation 

As the discussion of valuation computation in the previous 
section shows, agents' computational limitations can have ad­
verse effects on the incentive properties of interaction mech­
anisms. This section demonstrates that the reverse can also 
be made to be true: one can use the fact that agents are com­
putationally limited to achieve things that are not achievable 
via any mechanism among perfectly rational agents. In par­
ticular, I illustrate in a voting context that computational in­
tractability can be used as a barrier to undesirable strategic 
behavior, thus circumventing a seminal economic impossibil­
ity result. 

One key problem voting mechanisms are confronted with 
is that of manipulation by the voters. An agent is said to 
manipulate (vote strategically) when it does not rank the al­
ternatives according to its true preferences, but rather so as to 
make the eventual outcome most favorable to itself. For ex­
ample, if an agent prefers Nader to Gore to Bush, but knows 
that Nader has too few other supporters to win, while Gore 
and Bush are close to each other, the agent would be better 
off by declaring Gore as its top candidate. Manipulation is an 
undesirable phenomenon because collective choice schemes 
are tailored to aggregate preferences in a socially desirable 
way, and if the agents reveal their preferences insincerely, a 
socially undesirable candidate may be chosen. 

The issue of strategic voting has been studied extensively. 
A seminal negative result, the Gibbard-Satterthwaite theo­
rem, states that if there are three or more candidates, then in 
any nondictatorial voting scheme, there are candidate rank­
ings of the other voters, and preferences of the agent un­
der which the agent is better off voting strategically than 
sincerely [Gibbard, 1973; Satterthwaite, 1975]. (A voting 
scheme is called dictatorial if one of the voters dictates the 
outcome no matter how the others vote). So, a reasonable 
general nonmanipulable voting protocol does not exist! One 
approach around this impossibility is to construct desirable 
general nondictatorial voting protocols (under which manip­
ulations exist by the impossibility theorem), but under which 
finding a beneficial manipulation is prohibitively hard com­
putationally. 

In order to discuss specific hardness results, I first review 
the most common protocols. In each protocol, each voter ex­
presses his preferences as a linear order over candidates. The 
protocol then takes those expressions and imposes one of the 
candidates as the chosen outcome. In the protocols that are 
based on scores, the candidate with the highest score wins. In 
each of the listed protocols (even the ones that have multiple 
rounds), the voters submit their preferences up front. That is, 
the voters are not allowed to change their preference revela­
tions during the execution of the protocol. 

• scoring protocols. Let be a vector of 
integers such that For each voter, 
a candidate receives points if it is ranked first by 
the voter, if it is ranked second etc. The score 
of a candidate is the total number of points the candi­
date receives. The Borda protocol is the scoring proto­
col with The plurality pro-
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tocol (aka. majority rule) is the scoring protocol with 
= (1,0,.. •, 0). The veto protocol is the scoring pro­

tocol with = ( 1 , 1 , . . . , 1,0). 
• maximin (aka. Simpson). For any two distinct candidates 

i and j, let N ( i , j) be the number of voters who prefer i 
to j. The maximin score of i is 

• single transferable vote (STV). The protocol proceeds 
through a series of c - 1 rounds. At each round, the 
candidate with the lowest plurality score (i.e., the least 
number of voters ranking it first among the remaining 
candidates) is eliminated. The winner is the last remain­
ing candidate. 

• plurality with run-off. In this protocol, a first round elim­
inates all candidates except the two with the highest plu­
rality scores. Then votes are transferred to these (as in 
the STV protocol). After that, a second round determines 
the winner among these two. 

• cup (sequential binary comparisons). The cup is defined 
by a balanced binary tree T with one leaf per candidate, 
and an assignment of candidates to leaves (each leaf gets 
one candidate). Each non-leaf node is assigned the win­
ner of the pairwise election of the node's children; the 
candidate assigned to the root wins. The cup protocol 
assumes that the assignment of candidates to leaves is 
known by the voters before they vote. In the random­
ized cup protocol [Conitzer and Sandholm, 2002b], the 
assignment of candidates to leaves is chosen uniformly 
at random after the voters have voted. 

There are two natural alternative goals of manipulation. In 
constructive manipulation, the manipulator tries to find an or­
der of candidates that he can reveal so that his favorite candi­
date wins. In destructive manipulation, the manipulator tries 
to find an order of candidates that he can reveal so that his 
hated candidate does not win. These are special cases of the 
utility-theoretic notion of improving one's utility, so the hard­
ness results cany over to that setting. 

6.1 Complexity of manipulation when the number 
of voters and the number of candidates grows 

Unfortunately, finding a constructive manipulation is in V for 
the plurality, Boida, and maximin voting protocols [Bartholdi 
et aL, 1989], which are commonly used. The only voting 
protocol for which constructive manipulation is known to be 
NP-hard is the STV protocol [Bartholdi and Orlin, 1991].13 

However, by slightly tweaking the voting protocols that 
are easy to manipulate, they can be changed into ones that 
are hard to manipulate. In particular, we revise them so 

l3It is NP-hard also for the Second Order Copeland proto­
col [Bartholdi et aL, 1989], but the baldness is driven solely by the 
tie-breaking rule. 
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that before the original protocol is executed, one pairwise 
elimination round is executed among the candidates, and 
only the winning candidates survive to the original proto­
col (so, about half of the candidates are eliminated in the 
preround). This makes the protocols AfP-hard, #P-hard, 
or PSPACE-hard to manipulate constructively, depending 
on whether the schedule of the preround is determined be­
fore the votes are collected, after the votes are collected, or 
the scheduling and the vote collecting are carefully inter­
leaved, respectively [Conitzer and Sandholm, 2003e]. We 
proved general sufficient conditions on voting protocols for 
this tweak to introduce the hardness, and showed that the 
plurality, Boida, maximin, and STV protocols satisfy those 
conditions. So, these commonly used voting protocols can 
be made hard to manipulate by simply using one elimination 
round. 

6.2 Complexity of manipulation when the number 
of candidates is constant 

All of the hardness results discussed above rely on both the 
number of voters and the number of candidates growing. The 
number of candidates can be large in some domains, for ex­
ample when voting over task or resource allocations, but in 
many elections—such as presidential elections—the number 
of candidates is small. If the number of candidates is a con­
stant, both constructive and destructive manipulation are in 
V, regardless of the number of voters [Conitzer and Sand-
holm, 2002b]. This holds even if the voters are weighted, or 
if a coalition of voters tries to manipulate, but not both. When 
a coalition of weighted voters tries to manipulate, complexity 
can arise even for a constant number of candidates, as sum­
marized in Tables 2 and 3 [Conitzer and Sandholm, 2002b; 
Conitzer et aL, 2003]. One lesson is that randomizing over 
instantiations of the mechanisms (such as schedules of a cup) 
can be used to make manipulation hard. 

Table 2: Complexity of constructive weighted coalitional ma­
nipulation. 

Table 3: Complexity of destructive weighted coalitional ma­
nipulation. 
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All of the hardness results discussed above hold even if the 
manipulators know the nonmanipulators' votes exactly. Un­
der weak assumptions, if weighted coalitional manipulation 
with complete information about the others' votes is hard in 
some voting protocol, then individual and unweighted ma­
nipulation is hard when there is uncertainty about the others' 
votes [Conitzer and Sandholm, 2002b]. 

Computation not only serves as a means to circumventing 
incentive problems as dicussed above, but it can also serve as 
the means for designing appropriate incentives as discussed 
in the next section. 

7 Automated mechanism design 
The aggregation of conflicting preferences for choosing an 
outcome is a central problem in multiagent systems, be the 
agents humans or software. The key difficulty is that the 
agents may report their preferences insincerely (i.e., manip­
ulate, as we just discussed in a voting setting). Mechanism 
design is the art of designing the rules of the game so that the 
agents are motivated to report their preferences truthfully and 
a desirable outcome is chosen.14 The desirability objective 
can be, for example, social welfare, seller's revenue, fairness, 
or some tradeoff among these. 

Mechanism design has traditionally been a manual en­
deavor. The designer uses experience and intuition to hy­
pothesize that a certain rule set is desirable in some ways, and 
then tries to prove that this is the case. Alternatively, the de­
signer formulates the mechanism design problem mathemat­
ically and characterizes desirable mechanisms analytically in 
that framework. These approaches have yielded a small num­
ber of canonical mechanisms over the last 40 years, each of 
which is designed for a class of settings and a specific objec­
tive. For example, the VCG and dAGVA [d'Aspremont and 
G6rard-Varet, 1979; Arrow, 1979] maximize social welfare 
among the agents in the class of settings where the agents 
have quasilinear utility functions. Mechanism design re­
search has also yielded impossibility results that state that no 
mechanism works across a class of settings (for varying def­
initions of "works" and varying classes). For example, the 
Gibbard-Satterthwaite theorem discussed in the previous sec­
tion states that for the class of general preferences, no mech­
anism works in the sense that 1) the mechanism's outcome 
can be any one of at least three candidates, 2) the mechanism 
is nondictatorial, and 3) every agent's dominant strategy is to 
reveal his preferences truthfully. 

In sharp contrast to manual mechanism design, I envision 
a systematic approach where the mechanism is automatically 
created for the setting and objective at hand. This has sev­
eral advantages. First, it can be used even in settings that do 
not satisfy the assumptions of the classical mechanisms. Sec­
ond, it may allow one to circumvent the impossibility results: 
when the mechanism is designed to the setting (instance) at 
hand, it does not matter that it would not work on prefer­
ences beyond those in that setting {e.g., for a class of settings). 

A central result in game theory, the revelation principle, allows 
the designer to restrict attention to such truthful mechanisms without 
loss in the objective [Mas-Coleli et al., 1995]. 

Even when the optimal mechanism—created automatically— 
does not circumvent the impossibility, it always minimizes 
the pain entailed by impossibility. Third, it may yield better 
mechanisms (in terms of stronger nonmanipulability guaran­
tees and/or better outcomes) than the canonical mechanisms 
because the mechanism capitalizes on the particulars of the 
setting (the probabilistic information that the mechanism de­
signer has about the agents' preferences). Given the vast 
amount of information that parties have about each other to­
day, it is astonishing that the canonical mechanisms (such as 
first-price reverse auctions), which largely ignore that infor­
mation, have prevailed thus far. I foresee an imminent revolu­
tion, where future mechanisms will be created automatically. 
For example, imagine a Fortune 1000 company automatically 
creating its procurement mechanism based on its statistical 
knowledge about its suppliers (and potentially also the public 
prices of the suppliers* inputs, etc.). I call this vision auto­
mated mechanism design [Conitzer and Sandholm, 2002c].15 

7.1 The computational problem 
As a first step toward fulfilling this vision, we modeled mech­
anism design as an optimization problem, and studied its 
complexity. In the model, each agent can have any one of 
a finite number of utility functions. An agent's utility func­
tion is private information. The mechanism designer has a 
prior probability distribution over each agent's possible util­
ity functions. The first constraint to the problem (the incen­
tive compatibility constraint) is that each agent has to be moti­
vated to reveal its utility function truthfully regardless of what 
utility function the agent has. This comes in two variants. In 
the first (called dominant strategy implementation), the agent 
has to be no worse off by revealing his true utility function 
regardless of what utility functions the other agents reveal. 
In the second, the agent has to be no worse off, in expec­
tation, by revealing his true utility function. (The expecta­
tion is taken as a weighted average over the possible truth­
ful utility function revelations of the other agents). The sec­
ond constraint to the problem (the participation constraint) is 
that each agent has to be no worse off by participating in the 
mechanism than not participating (otherwise a rational agent 
would not participate). This again comes in two variants. In 
the first, the agent has to be no worse off regardless of what 
utility functions the other agents reveal. In the second, the 
agent has to be no worse off in expectation. The input to the 
optimization also includes the designer's objective. The out­
put is a mapping from utility function revelations to outcomes 
(or in the case of randomized mechanisms, to probability dis­
tributions over outcomes). 

In settings without side payments, such as voting, design­
ing an optimal (e.g., expected social welfare maximizing) de­
terministic mechanism is NP-complete [Conitzer and Sand­
holm, 2002c].16 If side payments are allowed, designing a 

15Note that automated mechanism design is completely different 
from so called algorithmic mechanism design [Nisan and Ronen, 
2001]. In the latter, the mechanism is designed manually with the 
goal that executing the mechanism is computationally tractable. On 
the other hand, in automated mechanism design, the mechanism it-
self is designed automatically. 

16This actually holds for any solution concept from noncoopera-
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deterministic mechanism is easy if the designer's objective 
is social welfare, but AfP-complete more generally (for ex­
ample, if the objective is to maximize the expected revenue 
collected from the bidders—as is the objective in some auc­
tions) [Conitzer and Sandholm, 2003b]. Interestingly, if one 
allows randomized mechanisms, the mechanism design prob-
lem becomes solvable in polynomial time using linear pro-
gramming.17 In other words, the designer can tackle the com­
putational complexity, introduced by its uncertainty about the 
agents, by making the agents face additional uncertainty. This 
comes at no loss, and in some cases at a gain, in the mecha­
nism designer's objective. 

If the agents' utility functions are additively decomposable 
into independent issues, the input to automated mechanism 
design can be represented (potentially exponentially) more 
concisely. In that representation it is NP-complete (even 
under strong restrictions) to design a mechanism that maxi­
mizes one of the following objectives: 1) expected social wel­
fare when payments are not possible, 2) a general objective 
function even when payments are possible, and 3) expected 
revenue collected from the agents [Conitzer and Sandholm, 
2003c]. Again, a randomized mechanism can be designed in 
polynomial time. So, the complexity as a function of the input 
length is the same in the concise representation as it is in the 
flat representation. In other words, due to its potentially ex­
ponentially shorter input length, the structured representation 
allows potentially exponentially faster automated mechanism 
design. 

7.2 Applications 
In initial experiments, automated mechanism design pro­
duced the following highlights [Conitzer and Sandholm, 
2003a]: 

• It reinvented the celebrated Myerson auction [Myerson, 
1981], which maximizes the seller's expected revenue in 
a 1-object auction. 

• It created expected revenue maximizing combinatorial 
auctions. This has been a long-standing recognized open 
research problem in (manual) mechanism design [Av­
ery and Hendershott, 2000; Vohra, 2001]. The general 
form for such an auction is still unknown, but automated 
mechanism design created prior-specific optimal mecha­
nisms. (In the manual mechanism design literature, even 
the problem with only two objects for sale is open; only 
a case with very special form of complementarity and no 
substitutability has been solved [Armstrong, 2000].) 

• It created optimal mechanisms for divorce settlements, 
both with a benevolent arbitrator that tries to maximize 
the sum of the divorcees' utilities (with and without side 
payments), and an arbitrator that tries to maximize rev­
enues collected from the divorcees. 

• It created optimal mechanisms for a public good prob­
lem (deciding whether or not to build a bridge). The 

tive game theory [Conitzer and Sandholm, 2002a], not just the ones 
discussed through the constraints above. All of the hardness results 
discussed in this section hold even with just 2 agents. 

17This holds for any mechanism design objective that is linear in 
the outcome probabilities. 
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VCG mechanism could be used in this setting as long 
as each agent's utility function is quasilinear. However, 
in the VCG mechanism, nonnegative payments arc col­
lected from the voters (intuitively, the payments are col­
lected in order to avoid the free rider problem), and those 
payments have to be burned. According to a seminal 
impossibility result, this problem plagues any mecha­
nism that applies to general quasilinear utility functions, 
yields a social welfare maximizing decision, and makes 
truthful reporting of utility functions a dominant strat­
egy [Green and Laffont, 1979]. The automated mecha­
nism design approach allowed us to incorporate money 
burning as a loss in the social welfare objective, and 
maximize that revised objective. We had automated 
mechanism design create an optimal mechanism for the 
bridge building scenario under each variant of the incen­
tive compatibility constraint discussed above (with the 
deterministic participation constraint). In neither vari­
ant was money ever burned. In the probabilistic variant, 
the bridge was always built if and only if that was best 
for the agents. (In the deterministic variant this was not 
always the case.) For the probabilistic variant of incen­
tive compatibility, the general-purpose dAGVA mecha­
nism could be used to yield the social welfare maximiz­
ing choice without burning money [d'Aspremont and 
Gerard-Varet, 1979; Arrow, 1979]. However, a seminal 
economic impossibility result shows that no mechanism 
for general quasilinear utility functions yields the social 
welfare maximizing choice, maintains budget balance, 
and satisfies the participation constraint (even the prob­
abilistic variant) [Myerson and Satterthwaite, 1983]. As 
the experiment above showed, automated mechanism 
design can circumvent this impossibility. It constructed 
a mechanism that satisfies all these desiderata, and actu­
ally the deterministic (i.e., stronger) variant of the par­
ticipation constraint. 

• It created optimal mechanisms for public goods prob­
lems with multiple goods. This is the public goods ana­
log of combinatorial auctions. 

8 Safe exchange mechanism design 
Mechanism design is not only needed for deciding on an out­
come among agents. It is also key for executing the outcome. 
For example, if the outcome is a joint plan, how should it be 
executed so that no agent is motivated to deviate along the 
way [Braynov, 1994; Braynov and Sandholm, 1999]? From 
the perspective of markets, an important type of joint plan 
is the plan for exchanging items and payments between par­
ties. Nondelivery is a major problem in exchanges, especially 
in electronic commerce: the supplier might not deliver the 
goods or the demander might not pay. A recent study shows 
that 6% of consumers with on-line shopping experience re­
ported products or services that were paid for, but never re­
ceived [National Consumers League, 1999]. 

8.1 Deal chunking 
In some settings, mechanism design can be used to enable 
safe exchanges without legal enforcement or escrow compa-

COMPUTERS AND THOUGHT AWARD PAPER 



nies. One such approach is our methodology where the ex­
change is split into chunks which the agents deliver in alterna­
tion [Sandholm, 1996; 1997].18 The mechanism is practical 
when such splitting incurs little cost, as is the case with digital 
goods, computation time, many web services, and many in­
vestment instruments, for instance. eExchangeHouse, a safe 
exchange planner prototype, automatically determines a safe 
exchange plan for the exchange setting at hand such that nei­
ther party has incentive to vanish before completing the ex­
change [Sandholm and Ferrandon, 2000]. Only some ways 
of splitting the exchange into chunks and some sequences of 
delivering the chunks are safe in this sense [Sandholm, 1996; 
Sandholm and Lesser, 1995a]. The planner's algorithms for 
chunking and chunk sequencing provably find a safe ex­
change plan if one exists, and determine the shortest safe 
plan. The algorithms, as well as the amount of input that is 
solicited from the users, vary based on whether the exchanged 
items and units of each item are dependent or independent in 
terms of their value to the exchange parties. 

8.2 A general model for safe exchange 
In order to more broadly study the possibilities of using 
mechanism design to enable safe exchange, we developed 
a unified model of exchange mechanisms [Sandholm and 
Wang, 2002]. A key idea behind the model is that at any point 
of the exchange, each agent has a (potentially empty) set of 
items that he possesses, and a (potentially empty) allocation 
set that includes the items that he can reallocate—except not 
to himself—or destroy. The two sets need not be the same. 
An item can simultaneously be in one agent's possession set 
and in another agent's allocation set. Other aspects of the 
model include transfer costs and defection costs (how much 
of a reputation loss or risk would an agent face if he defaulted 
before completing the exchange). 

The model captures the disparate earlier safe exchange 
approaches such as cryptographic coin ripping [Jakobsson, 
1995], digital signatures, and our game-theoretic chunking 
mechanism discussed above. It also allows one to creatively 
and systematically think about, and analyze, novel exchange 
mechanisms. For example, our reputation locking mechanism 
stemmed from this model. It works as follows: 1) agent A al­
lows agent B to encrypt As reputation in the public database 
(e.g., eBay), 2) agent B delivers to A, 3) agent A delivers to 
B, and 4) B decrypts As reputation back into plaintext. In 
this mechanism, As reputation is used as a virtual item that 
is is temporarily transferred into B's allocation set If A does 
not deliver, B does not give back the reputation. 

Being an overarching framework, the model also allows 
one to study what is inherently possible and impossible in 
safe exchange (with and without a trusted third party, and 
with an offline third party that only gets involved if the ex­
change fails). 

9 Conclusions and perspective 
Collective choice settings are ubiquitous and important, 
whether the agents are humans or software. Game theory 

18Similar protocols have recently been studied by others, 
e.g., [Matsubara and Yokoo, 2000]. 

provides a basis for engineering the incentives into the inter­
action mechanism so that a desirable outcome is chosen even 
though every agent acts based on self-interest However, a 
host of computer science issues not traditionally addressed 
in game theory have to be addressed in order to make mech­
anisms work in the real world. Those computing, commu­
nication, and privacy issues are deeply intertwined with the 
economic incentive issues, as this writeup has illustrated. 

Here, I would like to draw some high-level conclusions 
from the results presented above. Peer-to-peer negotiation 
suffers from negotiation process uncertainties that can be 
eliminated by using a mediator, such as an auction server, that 
collects the agents' private information and runs a clearing 
algorithm on that data to determine the outcome.19 Domain 
uncertainty remains even in this approach, and leveled com­
mitment contracts can be used to mitigate it to the economic 
benefit of all contract parties,20 Expressive competition is a 
new form of interaction that empowers market participants 
with potent expressiveness akin to human-to-human negotia­
tion (this has economic advantages and makes bidding easier) 
while at the same time harnessing the forces of competition, 
the global scale of the Internet, and the accuracy of market 
clearing with all relevant information in hand. The mediated 
approach with optimal clearing is feasible at a grand scale 
even with expressive competition, despite the fact that most 
variants of the clearing problem are hard and inapproximable 
in the worst case. The economic and computational efficien­
cies that mediated expressive competition offers suggest that 
in the future, marketplaces will merge into larger ones. To a 
certain extent this trend is already underway. For example, 
in the last couple of years large corporations have undergone 
a massive transition from plant-based procurement to global 
procurement. 

The mediated approach can be made to require dramati­
cally less information from the agents—especially in combi­
natorial markets—by using selective incremental multiagent 
preference elicitation. This decreases the agents' valuation 
determination costs (and other preference determination ef­
forts) and communication costs. It also enhances privacy. It 
can be made into an incentive-compatible push-pull mecha­
nism where the information revelation is guided by both the 
elicitor (auctioneer) and each agent. This makes sense be-

,9The clearing algorithm—usually a specialized tree search—can 
run on multiple machines. This is usually the case in large-scale 
applications, but the machines are usually co-located rather than at 
each agent's location. Also, there is no notion of one machine repre­
senting one agent. So, the distribution that is motivated by compu­
tational efficiency does not correspond to the distribution of agents 
(that is, the distribution of self-interest and private information). 

20Leveled commitment can also mitigate the negotiation process 
uncertainty that arises if an agent participates in negotiations medi­
ated by different mediators, and the negotiations* outcomes are not 
independent from the perspective of the agent's valuation. In that 
sense, leveled commitment can serve as part of the "glue" needed 
between marketplaces. Furthermore, leveled commitment can be 
used to mitigate the uncertainty that arises if one mediator runs mul­
tiple clearings over time, for example at fixed intervals or every 
time a new bid arrives. (For online algorithms for market clearing, 
see [Blum et al, 2002].) 
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cause each agent has private information that suggests what 
should be revealed by the agent, and the auctioneer accrues 
information about the other agents that affects what informa­
tion from the agent is pertinent. 

A deeper look into an agent's evaluation problem shows 
that valuation determination costs ruin the incentives of clas­
sical auction mechanisms, and give rise to a new phenomenon 
I call strategic computing: using one's limited computing to 
approximate others' preferences at the cost of approximating 
one's own. Whether strategic computing occurs depends on 
the auction mechanism and the type of computational con­
straint (costly computing vs. limited computing). 

While computational constraints can cause strategic prob­
lems, the reverse can also be made to be the case. Compu­
tational hardness can be used as the barrier to manipulation. 
This is especialy desirable in settings where economic mech­
anism design (incentive engineering) is known to fall short. 

Computing can also be used to automatically design the 
mechanism, for instance the rules of a divorce settlement, 
auction, or public goods problem. Because the mechanism is 
designed for the specific setting at hand (objective and infor­
mation about the agents), it often yields a better mechanism 
than the ones known to date. It can also circumvent seminal 
impossibility results. 

Carefully designed mechanisms are needed not only for 
choosing an outcome, but also for executing the outcome, 
such as a joint plan. I illustrated this in the context of de­
signing safe exchange mechanisms for anonymous parties in 
Internet commerce. 

10 Future research directions 
This is a fertile and relatively new area where AI and com­
puter science at large can have enormous theoretical and prac­
tical impact. Work on expressive competition includes the on­
going quest for faster clearing algorithms and the pursuit of 
concise—perhaps application-specific—forms of expressive 
bidding that are easy to use in bidding and elicitation, and fast 
to process by a clearing algorithm. Automated mechanism 
design is still in its infancy, and holds significant promise for 
future research. It should be tested on new classes of prob­
lems, and applied to real-world settings. It could also be ap­
plied to design safe exchange mechanisms (using the general 
safe exchange model that we introduced)—an endeavor that 
has traditionally taken considerable creativity, yet has not de­
livered mechanisms (or impossibility results) for all settings. 
Known game-theoretic results that characterize properties of 
mechanisms could be used to reduce the search space in au­
tomated mechanism design. Furthermore, automated mech­
anism design could be used on a variety of settings (real or 
artificially generated) to see whether new canonical mecha­
nisms and mechanism design principles can be inferred. 

Another significant research stream arises from the obser­
vation that mechanism design should take into account the 
agents' computational constraints. Our performance profile 
tree based deliberation control method together with the idea 
of deliberation equilibrium provide a normative model of 
bounded rationality in multiagent systems, which is needed 
to determine how computationally constrained self-interested 

agents would behave in a given mechanism. This allows 
one to evaluate mechanisms for computationally constrained 
agents, and hopefully paves the way to designing such mech­
anisms. Not only auction and voting mechanisms, but also 
multiagent preference elicitation mechanisms should be de­
signed with this methodology. This methodology could also 
be used to design mechanisms that are computationally hard 
to manipulate, where hardness is measured not in terms of 
worst-case complexity, but informed by game-theoretic delib­
eration control. (Other approaches to improving upon worst-
case measures include designing mechanisms where manipu­
lation is average-case hard, or even hard on every—carefully 
constructed—instance such as in factoring.) This methodol­
ogy could even yield new mechanism design principles. As 
discussed, the central design principle in mechanism design, 
the revelation principle, ceases to meaningfully hold under 
computational or communication constraints. In such set­
tings it can be better to use multi-stage mechanisms such 
as preference eliciation, unlike the principle suggests. Also, 
in such settings it has been theoretically demonstrated that 
there is some benefit to allowing for mechanisms where in-
sincere preference revelation occurs [Conitzer and Sandholm, 
2003d], unlike the principle suggests. Is there a significant 
practical benefit to be gained from such mechanisms? What 
would such mechanisms look like? Are there principles for 
constructing them? 

Finally, are there unforeseen novel ways—beyond enabling 
expressive competition, multiagent preference elicitation, and 
automated mechanism design—of using computing to en­
hance collective choice? 

References 
[Andersson and Sandholm, 1998] Martin Andersson and 

Tuomas Sandholm. Leveled commitment contracting 
among myopic individually rational agents. In Proceed-
ings of the Third International Conference on Multi-Agent 
Systems (ICMAS), pages 26-33, Paris, France, July 1998. 

[Andersson and Sandholm, 1999] Martin Andersson and 
Tuomas Sandholm. Time-quality tradeoffs in reallocative 
negotiation with combinatorial contract types. In Proceed-
ings of the National Conference on Artificial Intelligence 
(AAAI), pages 3-10, Orlando, FL, 1999. 

[Andersson and Sandholm, 2000] Martin Andersson and 
Tuomas Sandholm. Contract type sequencing for real-
locative negotiation. In Proceedings of the Twentieth 
International Conference on Distributed Computing 
Systems, Taipei, Taiwan, April 2000. 

[Andersson and Sandholm, 2001] Martin Andersson and 
Tuomas Sandholm. Leveled commitment contracts with 
myopic and strategic agents. Journal of Economic Dy­
namics and Control, 25:615-640, 2001. Special Issue on 
Agent-Based Computational Economics. Early version: 
National Conference on Artificial Intelligence (AAAI), p. 
38-45, Madison, WI, 1998. 

[Andersson et al, 2000] Arne Andersson, Mattias Ten-
hunen, and Fredrik Ygge. Integer programming for combi­
natorial auction winner determination. In Proceedings of 

1666 COMPUTERS AND THOUGHT AWARD PAPER 



the Fourth International Conference on Multi-Agent Sys­
tems (ICMAS), pages 39-46, Boston, MA, 2000. 

[Armstrong, 2000] Mark Armstrong. Optimal multi-object 
auctions. Review of Economic Studies, 67:455-481,2000. 

[Arrow, 1979] Kenneth Arrow. The property rights doctrine 
and demand revelation under incomplete information. In 
M Boskin, editor, Economics and human welfare. New 
York Academic Press, 1979. 

[Aveiy and Hendershott, 2000] Christopher Avery and Ter-
rence Hendershott. Bundling and optimal auctions of mul-
tiple products. Review of Economic Studies, 67:483-497, 
2000. 

[Bartholdi and Orlin, 1991] John J. Bartholdi, III and 
James B. Orlin. Single transferable vote resists strategic 
voting. Social Choice and Welfare, 8(4):341-354, 1991. 

[Bartholdi et al, 1989] John J. Bartholdi, UI, Craig A. 
Tovey, and Michael A. Trick. The computational difficulty 
of manipulating an election. Social Choice and Welfare, 
6(3):227-241,1989. 

[Bikhchandani et al., 2001] Sushil Bikhchandani, Sven 
de Vries, James Schummer, and Rakesh V. Vohra. Linear 
programming and Vickrey auctions, 2001. Draft. 

[Blum et al., 2002] Avrim Blum, Thomas Sandholm, and 
Martin Zinkevitch. Online algorithms for market clearing. 
In Annual ACM-SIAM Symposium on Discrete Algorithms 
(SODA), pages 971-980, San Francisco, 2002. 

[Blum et al, 2003] Avrim Blum, Jeffrey Jackson, Tuomas 
Sandholm, and Martin Zinkevich. Preference elicitation 
and query learning, 2003. 

[Boutilier, 2002] Craig Boutilier. Solving concisely ex­
pressed combinatorial auction problems. In Proceedings of 
the National Conference on Artificial Intelligence (AAAI), 
pages 359-366, Edmonton, Canada, 2002. 

[Braynov and Sandholm, 1999] Sviatoslav Braynov and 
Tuomas Sandholm. Power, dependence and stability in 
multiagent plans. In Proceedings of the National Con­
ference on Artificial Intelligence (AAAI), pages 11-16, 
Orlando, FL, July 1999. 

[Braynov, 1994] Sviatoslav Braynov. Deviation-proof plans 
in open multiagent environments. In Proceedings of the 
11th European Conference on Artificial Intelligence, pages 
274-278, August 1994. 

[Clarke, 1971] E H Clarke. Multipart pricing of public 
goods. Public Choice, 11:17-33,1971. 

[CombineNet, Inc., 2003a] CombineNet, Inc. Com-
bineNet improves negotiations, streamlines sea freight 
allocations, for international technology and re­
search corporation, 2003. Case study white paper at 
www.CombineNet.com/CUSTOMERS/caseJiistories/ 
seafreight_fortunel00chemicalco.pdf. 

[CombineNet, Inc., 2003b] CombineNet, Inc. CombineNet 
interoperability enhances sourcing systems for interna­
tional food manufacturer, 2003. Case study white paper at 
www.CombineNet.com/CUSTOMERS/case-histories/ in-
termodaljconsumerpackagegoodsco.pdf. 

[CombineNet, Inc., 2003c] CombineNet, Inc. CombineNet 
provides essential optimization to enhance sourcing for 
global food manufacturer, 2003. Case study white paper 
at www.CombineNet.com/CUSTOMERS/caseJiistories/ 
seafreight_consumerpackagegoodsco.pdf. 

[CombineNet, Inc., 2003d] CombineNet, Inc. Leading 
auto manufacturer enhances sea freight allocations 
with CombineNet, 2003. Case study white paper 
at www.CombineNet.com/CUSTOMERS/caseJiistories/ 
seafreight.big3automotiveco.pdf. 

[CombineNet, Inc., 2003e] CombineNet, Inc. Major indus­
trial manufacturer identifies best strategy for optimizing 
sourcing with CombineNet, 2003. Case study white paper 
at www.CombineNet.com/CUSTOMERS/caseJiistories/ 
directmaterialsJndustrialmfgco.pdf). 

[Conen and Sandholm, 2001] Wolfram Conen and Tiiomas 
Sandholm. Preference elicitation in combinatorial auc­
tions: Extended abstract. In Proceedings of the ACM Con­
ference on Electronic Commerce (ACM-EC), pages 256-
259, Tampa, FL, October 2001. A more detailed de­
scription of the algorithmic aspects appeared in the UCAI-
2001 Workshop on Economic Agents, Models, and Mech­
anisms, pp. 71-80. 

[Conen and Sandholm, 2002a] Wolfram Conen and Tuomas 
Sandholm. Differential-revelation VCG mechanisms for 
combinatorial auctions. In AAMAS-02 workshop on Agent-
Mediated Electronic Commerce (AMEC), Bologna, Italy, 
2002. 

[Conen and Sandholm, 2002b] Wolfram Conen and Tuomas 
Sandholm. Partial-revelation VCG mechanism for com­
binatorial auctions. In Proceedings of the National Con­
ference on Artificial Intelligence (AAAI), pages 367-372, 
Edmonton, Canada, 2002. 

[Conitzer and Sandholm, 2002a] Vincent Conitzer and Tuo­
mas Sandholm. Automated mechanism design: Complex­
ity results stemming from the single-agent setting, 2002. 
Draft. 

[Conitzer and Sandholm, 2002b] Vincent Conitzer and Tuo­
mas Sandholm. Complexity of manipulating elections 
with few candidates. In Proceedings of the National Con­
ference on Artificial Intelligence (AAAI), pages 314-319, 
Edmonton, Canada, 2002. 

[Conitzer and Sandholm, 2002c] Vincent Conitzer and Tuo­
mas Sandholm. Complexity of mechanism design. In Pro-
ceedings of the 18th Annual Conference on Uncertainty in 
Artificial Intelligence (UAI-02), pages 103-110, Edmon­
ton, Canada, 2002. 

[Conitzer and Sandholm, 2002d] Vincent Conitzer and 'Rio-
mas Sandholm. Vote elicitation; Complexity and strategy-
proofness. In Proceedings of the National Conference on 
Artificial Intelligence (AAAI), pages 392-397, Edmonton, 
Canada, 2002. 

[Conitzer and Sandholm, 2003a] Vincent Conitzer and Tuo­
mas Sandholm. Applications of automated mechanism de­
sign, 2003. 

COMPUTERS AND THOUGHT AWARD PAPER 1667 



[Conitzer and Sandholm, 2003b] Vincent Conitzer and Tuo-
mas Sandholm. Automated mechanism design for a self-
interested designer. In Proceedings of the ACM Confer­
ence on Electronic Commerce (ACM-EC), San Diego, CA, 
2003. Poster paper. 

[Conitzer and Sandholm, 2003c] Vincent Conitzer and Tuo-
mas Sandholm. Automated mechanism design with a 
structured outcome space, 2003. 

[Conitzer and Sandholm, 2003d] Vincent Conitzer and Tho­
mas Sandholm. Computational criticisms of the revelation 
principle, 2003. Draft. 

[Conitzer and Sandholm, 2003e] Vincent Conitzer and Tuo-
mas Sandholm. Universal voting protocol tweaks to make 
manipulation hard. In Proceedings of the Eighteenth In­
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), Acapulco, Mexico, 2003. 

[Conitzer et a/., 2003] Vincent Conitzer, Jerome Lang, and 
Thomas Sandholm. How many candidates are needed to 
make elections hard to manipulate? In Theoretical Aspects 
of Rationality and Knowledge (TARK IX), Bloomington, 
Indiana, USA, 2003. 

[Conry et al., 1991] Susan E Conry, K Kuwabara, Victor R 
Lesser, and R A Meyer. Multistage negotiation for dis­
tributed satisfaction. IEEE Transactions on Systems, Man, 
and Cybernetics, 21(6): 1462-1477,1991. 

[d'Aspremont and Gerard-Varet, 1979] C d'Aspremont and 
L A Gerard-Varet. Incentives and incomplete information. 
Journal of Public Economics, 11:25-45,1979. 

[DeMartini et al., 1999] C DeMaitini, A Kwasnica, J Led-
yard, and D Porter. A new and improved design for multi-
object iterative auctions. Technical Report 1054, Cali­
fornia Institute of Technology, Social Science, September 
1999. 

[Ephrati and Rosenschein, 1991] Eithan Ephrati and Jef­
frey S Rosenschein. The Clarke tax as a consensus mech­
anism among automated agents. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), pages 
173-178, Anaheim, CA, 1991. 

[Ephrati and Rosenschein, 1993] Eithan Ephrati and Jef­
frey S Rosenschein. Multi-agent planning as a dynamic 
search for social consensus. In Proceedings of the Thir­
teenth International Joint Conference on Artificial Intelli­
gence (IJCAI), pages 423-429, Chambery, France, 1993. 

[Ephrati, 1994] Eithan Ephrati. A non-manipulable meeting 
scheduling system. In Proc. 13th International Distributed 
Artificial Intelligence Workshop, Lake Quinalt, Washing­
ton, July 1994. AAAI Press Technical Report WS-94-02. 

[Fujishima et al., 1999] Yuzo Fujishima, Kevin Leyton-
Brown, and Yoav Shoham. Tuning the computational 
complexity of combinatorial auctions: Optimal and ap­
proximate approaches. In Proceedings of the Sixteenth In­
ternational Joint Conference on Artificial Intelligence (IJ­
CAI), pages 548-553, Stockholm, Sweden, August 1999. 

[Gibbard, 1973] A Gibbard. Manipulation of voting 
schemes. Econometrica, 41:587-602,1973. 

[Gonen and Lehmann, 2000] Rica Gonen and Daniel 
Lehmann. Optimal solutions for multi-unit combinatorial 
auctions: Branch and bound heuristics. In Proceedings of 
the ACM Conference on Electronic Commerce (ACM-EC), 
pages 13-20, Minneapolis, MN, October 2000. 

[Green and Laffont, 1979] J Green and J-J Laffont. Incen­
tives in Public Decision Making. Amsterdam: North-
Holland, 1979. 

[Groves, 1973] Theodore Groves. Incentives in teams. 
Econometrica, 41:617-631,1973. 

[Hoos and Boutilier, 2001] Holger Hoos and Craig Boutilier. 
Bidding languages for combinatorial auctions. In Proceed­
ings of the Seventeenth International Joint Conference on 
Artificial Intelligence (IJCAI), pages 1211-1217, Seattle, 
WA,2001. 

[Hudson and Sandholm, 2002] Benoit Hudson and Tuomas 
Sandholm. Effectiveness of preference elicitation in com­
binatorial auctions. In AAMAS-02 workshop on Agent-
Mediated Electronic Commerce (AMEC), Bologna, Italy, 
2002. Extended version: Carnegie Mellon University, 
Computer Science Department, CMU-CS-02-124, March. 
Also: Stanford Institute for Theoretical Economics work­
shop (SITE-02). 

[Hudson and Sandholm, 2003a] Benoit Hudson and Tuomas 
Sandholm. Generalizing preference elicitation in com­
binatorial auctions. In International Conference on Au­
tonomous Agents and Multi-Agent Systems, Melbourne, 
Australia, 2003. (Poster presentation.). 

[Hudson and Sandholm, 2003b] Benoit Hudson and Tuomas 
Sandholm. Using value queries in combinatorial auctions. 
In Proceedings of the ACM Conference on Electronic 
Commerce (ACM-EC), San Diego, CA, 2003. (Poster pre­
sentation.). 

[Jakobsson, 1995] M Jakobsson. Ripping coins for fair ex­
change. In EUROCRYPT, pages 220-230, Seattle, WA, 
1995. 

[Kalagnanam et al.,2001] Jayant Kalagnanam, Andrew 
Davenport, and Ho Lee. Computational aspects of 
clearing continuous call double auctions with assignment 
constraints and indivisible demand. Electronic Commerce 
Research Journal, 1(3), 2001. 

[Kothariera/.,2003] Anshul Kothari, Tuomas Sandholm, 
and Subhash Suri Solving combinatorial exchanges: 
Optimality via few partial bids. In Proceedings of the 
ACM Conference on Electronic Commerce (ACM-EC), 
San Diego, CA, 2003. Poster presentation. Early version 
was accepted to the AAAI-02 workshop on Artificial In­
telligence for Business. 

[Kuhn, 1955] Harold W Kuhn. The Hungarian method for 
the assignment problem. Naval Research Logistics Quar­
terly, 2:83-97,1955. 

[Larson and Sandholm, 2001a] Kate Larson and Tuomas 
Sandholm. Bargaining with limited computation: Deliber­
ation equilibrium. Artificial Intelligence, 132(2): 183-217, 
2001. Short early version appeared in the Proceedings of 

1668 COMPUTERS AND THOUGHT AWARD PAPER 



the National Conference on Artificial Intelligence (AAAI), 
pp. 48-55, Austin, TX, 2000. 

[Larson and Sandholm, 2001b] Kate Larson and Tuomas 
Sandholm. Computationally limited agents in auctions. In 
AGENTS-01 Workshop of Agents for B2B, pages 27-34, 
Montreal, Canada, May 2001. 

[Larson and Sandholm, 2001c] Kate Larson and Tuomas 
Sandholm. Costly valuation computation in auctions. In 
Theoretical Aspects of Rationality and Knowledge (TARK 
VIII), pages 169-182, Sienna, Italy, July 2001. 

[Larson and Sandholm, 2002] Kate Larson and Tuomas 
Sandholm. An alternating offers bargaining model for 
computationally limited agents. In International Con­
ference on Autonomous Agents and Multi-Agent Systems, 
Bologna, Italy, July 2002. 

[Larson and Sandholm, 2003] Kate Larson and Tuomas 
Sandholm. Miscomputing ratio: The social cost of selfish 
computing. In International Conference on Autonomous 
Agents and Multi-Agent Systems, Melbourne, Australia, 
2003. Early version appeared in the AAAI-02 workshop 
on Game-Theoretic and Decision-Theoretic Agents, Ed­
monton, Canada. 

[Lehmann et al.,2002] Daniel Lehmann, Lidian Ita 
O'Callaghan, and Yoav Shoham. Truth revelation in 
rapid, approximately efficient combinatorial auctions. 
Journal of the ACM, 49(5):577-602, 2002. 

[Leyton-Brown et al., 2000a] Kevin Leyton-Brown, Mark 
Pearson, and Yoav Shoham. Towards a universal test suite 
for combinatorial auction algorithms. In Proceedings of 
the ACM Conference on Electronic Commerce (ACM-EC), 
pages 66-76, Minneapolis, MN, 2000. 

[Leyton-Brown et al, 2000b] Kevin Leyton-Brown, Moshe 
Tennenholtz, and Yoav Shoham. An algorithm for 
multi-unit combinatorial auctions. In Proceedings of 
the National Conference on Artificial Intelligence (AAAI), 
Austin, TX, August 2000. 

[Mas-Colell et al., 1995] Andreu Mas-Colell, Michael 
Whinston, and Jerry R. Green. Microeconomic Theory. 
Oxford University Press, 1995. 

[Matsubara and Yokoo, 2000] Shigeo Matsubara and 
Makoto Yokoo. Defection-free exchange mechanisms for 
information goods. In Proceedings of the Fourth Inter­
national Conference on Multi-Agent Systems (ICMAS), 
pages 183-190, Boston, MA, July 2000. 

[Mu'alem and Nisan, 2002] Ahuva Mu'alem and Noam 
Nisan. Truthful approximate mechanisms for restricted 
combinatorial auctions. In Proceedings of the National 
Conference on Artificial Intelligence (AAAI), pages 379-
384, Edmonton, Canada, July 2002. 

[Myerson and Satterthwaite, 1983] Roger Myerson and 
Mark Satterthwaite. Efficient mechanisms for bilateral 
exchange. Journal of Economic Theory, 28:265-281, 
1983. 

[Myerson, 1981] Roger B Myerson. Optimal auction design. 
Mathematics of Operation Research, 6:58-73,1981. 

[National Consumers League, 1999] National Consumers 
League. New NCL survey shows consumers are both 
excited and confused about shopping online, 1999. 
www.natlconsumersleague.org/ BeEWisepr.html, Oct. 20. 
Survey conducted by Opinion Research Corporation. 

[Nisan and Ronen, 2000] Noam Nisan and Amir Ronen. 
Computationally feasible VCG mechanisms. In Proceed-
ings of the ACM Conference on Electronic Commerce 
(ACM-EC), pages 242-252, Minneapolis, MN, 2000. 

[Nisan and Ronen, 2001] Noam Nisan and Amir Ronen. Al­
gorithmic mechanism design. Games and Economic Be­
havior, 35:166-196,2001. Early version in STOC-99. 

[Nisan and Segal, 2003] Noam Nisan and Ilya Segal. The 
communication requirements of efficient allocations and 
supporting Lindahl prices, 2003. Working Paper (version: 
March 2003). 

[Nisan, 2000] Noam Nisan. Bidding and allocation in com­
binatorial auctions. In Proceedings of the ACM Confer­
ence on Electronic Commerce (ACM-EC), pages 1-12, 
Minneapolis, MN, 2000. 

[Parkes and Ungar, 2000] David C Parkes and Lyle Ungar. 
Iterative combinatorial auctions: Theory and practice. In 
Proceedings of the National Conference on Artificial Intel­
ligence (AAAI), pages 74-81, Austin, TX, August 2000. 

[Rassenti et al., 1982] S J Rassenti, V L Smith, and R L 
Bulfin. A combinatorial auction mechanism for airport 
time slot allocation. Bell J. of Economics, 13:402-417, 
1982. 

[Rothkopf et al, 1998] Michael H Rothkopf, Aleksandar 
Pekec, and Ronald M Harstad. Computationally man­
ageable combinatorial auctions. Management Science, 
44(8):1131-1147,1998. 

[Sandholm and Ferrandon, 2000] Tuomas Sandholm and 
Vincent Ferrandon. Safe exchange planner. In Pro­
ceedings of the Fourth International Conference on 
Multi-Agent Systems (ICMAS), pages 255-262, Boston, 
MA, July 2000. 

[Sandholm and Lesser, 1995a] Tuomas Sandholm and Vic­
tor R Lesser. Equilibrium analysis of the possibilities of 
unenforced exchange in multiagent systems. In Proceed­
ings of the Fourteenth International Joint Conference on 
Artificial Intelligence (IJCAI), pages 694-701, Montreal, 
Canada, August 1995. 

[Sandholm and Lesser, 1995b] Tuomas Sandholm and Vic­
tor R Lesser. Issues in automated negotiation and elec-
tronic commerce: Extending the contract net framework. 
In Proceedings of the First International Conference on 
Multi-Agent Systems (ICMAS), pages 328-335, San Fran­
cisco, CA, June 1995. Reprinted in Readings in Agents, 
Huhns and Singh, eds., pp. 66-73,1997. 

[Sandholm and Lesser, 2001] Tuomas Sandholm and Vic­
tor R Lesser. Leveled commitment contracts and strate­
gic breach. Games and Economic Behavior, 35:212-270, 
2001. Special issue on Al and Economics. Early versions 

COMPUTERS AND THOUGHT AWARD PAPER 1669 



appeared as Advantages of a Leveled Commitment Con­
tracting Protocol in the proceedings of the National Con­
ference on Artificial Intelligence (AAAI), pp. 126-133, 
Portland, OR, 1996, and as a University of Massachusetts 
at Amherst, Computer Science Department technical re­
port 95-72. 

[Sandholm and Lesser, 2002] Tuomas Sandholm and Victor 
Lesser. Leveled commitment contracting: A backtrack­
ing instrument for multiagent systems. AI Magazine, 
23(3):89-100,2002. 

[Sandholm and Suri, 2001a] Tuomas Sandholm and Sub-
hash Suri. Market clearability. In Proceedings of the Sev-
enteenth International Joint Conference on Artificial Intel­
ligence (IJCAI), pages 1145-1151, Seattle, WA, 2001. 

[Sandholm and Suri, 2001b] Tuomas Sandholm and Sub-
hash Suri. Side constraints and non-price attributes in mar­
kets. In IJCAI-2001 Workshop on Distributed Constraint 
Reasoning, pages 55-61, Seattle, WA, 2001. 

[Sandholm and Suri, 2002] Tuomas Sandholm and Subhash 
Suri. Optimal clearing of supply/demand curves. In 13th 
Annual International Symposium on Algorithms and Com­
putation (ISAAC), Vancouver, Canada, November 2002. 
Also appeared in the proceedings of the AAAI-02 work­
shop on Agent-Based Technologies for B2B Electronic 
Commerce (AAAI Technical Report WS-02-01), pp. 15-
22, Edmonton, Canada. 

[Sandholm and Suri, 2003] Tuomas Sandholm and Subhash 
Suri. BOB: Improved winner determination in combina­
torial auctions and generalizations. Artificial Intelligence, 
145:33-58,2003. Early version: Improved Algorithms for 
Optimal Winner Determination in Combinatorial Auctions 
and Generalizations. National Conference on Artificial In­
telligence (AAAI-00), pp. 90-97, Austin, TX, July 31 -
August 2. 

Sandholm and Wang, 2002] Tuomas Sandholm and Xi-
aofeng Wang. (Im)possibility of safe exchange mecha­
nism design. In Proceedings of the National Conference 
on Artificial Intelligence (AAAI), pages 338-344, Edmon­
ton, Canada, 2002. 

Sandholm and Zhou, 2002] Tuomas Sandholm and Yun-
hong Zhou. Surplus equivalence of leveled commitment 
contracts. Artificial Intelligence, 142:239-264, 2002. 
Early versions appeared in 1CMAS-00 and in the AAAI-99 
Workshop on Negotiation: Settling conflicts and identify­
ing opportunities. 

Sandholm et al, 1999] Tuomas Sandholm, Sandeep Sikka, 
and Samphel Norden. Algorithms for optimizing lev­
eled commitment contracts. In Proceedings of the Six­
teenth International Joint Conference on Artificial Intelli­
gence (IJCAI), pages 535-540, Stockholm, Sweden, 1999. 
Extended version: Washington University, Department of 
Computer Science technical report WUCS-99-04. 

Sandholm et al., 2001] Tuomas Sandholm, Subhash Suri, 
Andrew Gilpin, and David Levine. CABOB: A fast opti­
mal algorithm for combinatorial auctions. In Proceedings 

of the Seventeenth International Joint Conference on Arti­
ficial Intelligence (IJCAI), pages 1102-1108, Seattle, WA, 
2001. 

[Sandholm et al. ,2002] Tuomas Sandholm, Subhash Suri, 
Andrew Gilpin, and David Levine. Winner determina­
tion in combinatorial auction generalizations. In Interna­
tional Conference on Autonomous Agents and Multi-Agent 
Systems, pages 69-76, Bologna, Italy, July 2002. Early 
version appeared at the AGENTS-01 Workshop on Agent-
Based Approaches to B2B, pp. 35-41, Montreal, Canada, 
May 2001. 

[Sandholm, 1991] Tuomas Sandholm. A strategy for 
decreasing the total transportation costs among area-
distributed transportation centers. In Nordic Operations 
Analysis in Cooperation (NOAS): OR in Business, Turku 
School of Economics, Finland, 1991. 

[Sandholm, 1993] Ttiomas Sandholm. An implementation of 
the contract net protocol based on marginal cost calcula­
tions. In Proceedings of the National Conference on Ar­
tificial Intelligence (AAAI), pages 256-262, Washington, 
D.C., July 1993. 

[Sandholm, 1996] Tuomas Sandholm. Negotiation among 
Self-interested Computationally Limited Agents. PhD the­
sis, University of Massachusetts, Amherst, 1996. Avail­
able at http:// www.cs.cmu.edu/ sandholm/ disserta-
tion.ps. 

[Sandholm, 1997] Tuomas Sandholm. Unenforced E-
commerce transactions. IEEE Internet Computing, 
l(6):47-54, Nov-Dec 1997. Special issue on Electronic 
Commerce. 

[Sandholm, 1998] Ttiomas. Sandholm. Contract types for 
satisficing task allocation: I theoretical results. In AAAI 
Spring Symposium Series: Satisficing Models, pages 68-
75, Stanford University, CA, March 1998. 

[Sandholm, 2000a] Tuomas Sandholm. Agents in electronic 
commerce: Component technologies for automated nego­
tiation and coalition formation. Autonomous Agents and 
Multi-Agent Systems, 3(l):73-96, 2000. Special Issue on 
Best of ICMAS 98. 

[Sandholm, 2000b] Tuomas Sandholm. Approaches to win­
ner determination in combinatorial auctions. Decision 
Support Systems, 28:165-176,2000. 

[Sandholm, 2000c] Tuomas Sandholm. Issues in computa­
tional Vickrey auctions. International Journal of Elec­
tronic Commerce, 4(3): 107-129, 2000. Special Issue on 
Applying Intelligent Agents for Electronic Commerce. A 
short, early version appeared at the Second International 
Conference on Multi-Agent Systems (ICMAS), pages 
299-306,1996. 

[Sandholm, 2002a] Ttiomas Sandholm. Algorithm for opti­
mal winner determination in combinatorial auctions. Arti­
ficial Intelligence, 135:1-54, January 2002. First appeared 
as an invited talk at the First International Conference on 
Information and Computation Economies, Charleston, SC, 

1670 COMPUTERS AND THOUGHT AWARD PAPER 



Oct 25-28,1998. Extended version appeared as Washing­
ton Univ., Dept of Computer Science, tech report WUCS-
99-01, January 28th, 1999. Conference version appeared 
at the International Joint Conference on Artificial Intelli­
gence (IJCAI), pp. 542-547, Stockholm, Sweden, 1999. 

[Sandholm, 2002b] Tuomas Sandholm. eMediator: A next 
generation electronic commerce server. Computational 
Intelligence, 18(4):656-676, 2002. Special issue on 
Agent Technology for Electronic Commerce. Early ver­
sions appeared in the Conference on Autonomous Agents 
(AGENTS-00), pp. 73-96, 2000; AAAI-99 Workshop on 
AI in Electronic Commerce, Orlando, FL, pp. 46-55, July 
1999; and as a Washington University, St. Louis, Dept. 
of Computer Science technical report WU-CS-99-02, Jan. 
1999. 

[Sathi and Fox, 1989] A Sathi and Mark Fox. Constraint-
directed negotiation of resource reallocations. In 
Michael N. Huhns and Les Gasser, editors, Distributed Ar­
tificial Intelligence, volume 2 of Research Notes in Artifi­
cial Intelligence, chapter 8, pages 163-193. Pitman, 1989. 

[Satterthwaite, 1975] M A Satterthwaite. Strategy-proofhess 
and Arrow's conditions: existence and correspondence 
theorems for voting procedures and social welfare func­
tions. Journal of Economic Theory, 10:187-217,1975. 

[Smithsal,2002] Trey Smith, Tuomas Sandholm, and 
Reid Simmons. Constructing and clearing combinatorial 
exchanges using preference elicitation. In AAAI-02 work­
shop on Preferences in AI and CP: Symbolic Approaches, 
pages 87-93, 2002. 

[Smith, 1980] Reid G. Smith. The contract net protocol: 
High-level communication and control in a distributed 
problem solver. IEEE Transactions on Computers, C-
29(12): 1104-1113, December 1980. 

[Sycar et al., 1991] Katia Sycara, S Roth, Norman Sadeh, 
and Mark Fox. Distributed constrained heuristic search. 
IEEE Transactions on Systems, Man, and Cybernetics, 
Special issue on distributed artificial intelligence SMC-
21(6):1446-1461, Nov/Dec 1991. 

[Tennenholtz, 2000] Moshe Tennenholtz. Some tractable 
combinatorial auctions. In Proceedings of the National 
Conference on Artificial Intelligence (AAAI), Austin, TX, 
August 2000. 

[Vickrey, 1961] W Vickrey. Counterspeculation, auctions, 
and competitive sealed tenders. Journal of Finance, 16:8-
37, 1961. 

[Vohra, 2001] Rakesh V. Vohra. Research problems in com­
binatorial auctions. Mimeo, version Oct. 29, 2001. 

[Walsh and Wellman, 2000] William Walsh and Michael 
Wellman. Distributed quiescence detection in multiagent 
negotiation. In Proceedings of the Fourth International 
Conference on Multi-Agent Systems (ICMAS), pages 317-
324, Boston, MA, July 2000. 

[Walsh et al., 2000] William Walsh, Michael Wellman, and 
Fredrik Ygge. Combinatorial auctions for supply chain 
formation. In Proceedings of the ACM Conference on 

Electronic Commerce (ACM-EC), pages 260-269, Min­
neapolis, MN, 2000. 

[Wurman and Wellman, 2000] Peter R Wurman and 
Michael P Wellman. AkBA: A progressive, anonymous-
price combinatorial auction. In Proceedings of the ACM 
Conference on Electronic Commerce (ACM-EC), pages 
21-29, Minneapolis, MN, October 2000. 

[Yokoo, 2000] Makoto Yokoo. Algorithms for distributed 
constraint satisfaction: A review. Autonomous Agents and 
Multi-Agent Systems, 3(2): 189-212, 2000. 

[Zinkevich et al, 2003] Martin Zinkevich, Avrim Blum, and 
Tuomas Sandholm. On polynomial-time preference elici­
tation with value queries. In Proceedings of the ACM Con­
ference on Electronic Commerce (ACM-EC), San Diego, 
CA, 2003. 

COMPUTERS AND THOUGHT AWARD PAPER 1671 


