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Abstract

LRTA* is a real-time heuristic search algorithm
widely used. In each iteration it updates the
heuristic estimate of the current state. Here we
present LRTA*(k), a new LRTA*-based algorithm
that is able to update the heuristic estimates of
up to k states, not necessarily distinct. Based on
bounded propagation, this updating strategy main-
tains heuristic admissibility, so the new algorithm
keeps the good theoretical properties of LLRTA*.
Experimentally, we show that LRTA*(k) produces
better solutions in the first trial and converges faster
when compared with other state-of-the-art algo-
rithms on benchmarks for real-time search.

1 Introduction

LRTA* [Korf, 1990] is a real-time heuristic search algorithm
that interleaves planning and action execution in an on-line
manner. This allows LRTA* to face search problems on
unknown or changing environments, tasks that are not eas-
ily performed by off-line search. This algorithm works on
a search space where every state = has a heuristic estimate
h(z) of the cost from x to a goal. Itis complete under a set
of reasonable assumptions. In addition, LRTA* improves its
performance over successive trials on the same problem, by
recording better heuristic estimates. If ~(x) is admissible,
after a number of trials h(z) converges to their exact values
along every optimal path. At this point, only optimal paths
are traversed by LRTA*. Before convergence improvement is
not monotonic: after a near optimal path LRTA* could find a
worse path [Shimbo and Ishida, 2003].

In this paper we present LRTA*(%), an algorithm based on
LRTA* with its same structure. The only difference lies in
the updating strategy. L.RTA* updates the heuristic estimate
of a single state per iteration. LRTA* (%) updates the heuristic
estimate of up to &, not necessarily distinct, states per itera-
tion following a bounded propagation strategy. This updating
maintains heuristic admissibility, so LRTA*(k) converges to
exact heuristic values in optimal paths, just like LRTA*. In
fact, LRTA* is a particular case of LRTA*(k) with k = 1.

*Partially supported by the Spanish REPLI project TIC-2002-
04470-C03-03.

LRTA*(k) propagates the cost discovered by lookahead up
to k states. Because of that, better heuristic estimates are
propagated, causing the following benefits:

o First solution. The quality of the first solution is impor-
tant for real-time search algorithms. If the first solution
would involve no cycles, LRTA*(k) would behave like
LRTA*. However, this rarely happens. When LRTA* (k)
revisits a state, it finds a better heuristic estimate than
the one L.RTA* would have found, selecting a better ac-
tion. Experimentally, LRTA*(k) finds shorter solutions
in less computation time than LRTA*.

e Convergence. LRTA*(k) records heuristic estimates
that are closer to their exact values than those recorded
by LRTA*. This causes LRTA*(k) to converge faster
than LRTA* (in number of steps, in number of trials and
also in total CPU time) in the benchmarks tested. This
also happens for other algorithms (FALCONS).

e Solution stability. Getting generally better quality so-
lutions causes less differences between solutions and in-
creases stability. This was not initially pursued (we were
not bounding how bad a solution could be) but it has ap-
peared as a side-effect of improving solution quality.

These benefits come at the cost of extra computation per
planning step, required for bounded propagation. Limiting
computation up to & updates bounds this extra cost, which
could be adjusted (varying k) to the requirements of each ap-
plication. In our experiments, the time per planning step has
remained reasonable when compared with LRTA*.

The structure of the paper is as follows. In Section 2
we summarize related approaches. In Section 3 we present
the basic elements of LRTA*. In Section 4 we describe
LRTA*(k) and its new updating strategy, using the concepts
of bounded propagation and support. We provide experimen-
tal results in Section 5, showing the benefits of our approach
on classical real-time search benchmarks. Finally, Section 6
contains some conclusions and lines for further research.

2 Related Work

In his seminal work, Korf proposed LRTA* and RTA* (an
algorithm with a different updating strategy, able to find bet-
ter solutions in the first trial but without converging to opti-
mal routes) [Korf, 1990]. After that, several approaches have



been made to to improve LRTA* on the quality of the first so-
lution, convergence and stability. HLRTA* [Thorpe, 1994] is
a hybrid between RTA* and LRTA*. It finds better solutions
than LRTA* in the first trial and converges to optimal paths.
As RTA*, it avoids the ping-pong effect [Edelkamp and Eck-
erle, 1997] but requires more memory. The weighted and
bounded versions of LRTA* [Shimbo and Ishida, 2003] speed
up convergence and improve solution stability, but sacrifice
optimality. FALCONS [Furcy and Koenig, 2000] accelerates
convergence and keeps optimality by using g(z) + h(z) as
heuristic function, where g(x) is the cost from the start state
to z. FALCONS improves convergence but it may perform
a large amount of exploration in earlier trials. eFALCONS
[Furcy and Koenig, 2001] is a hybrid between HLRTA* and
FALCONS. It converges as FALLCONS, performing a smaller
amount of actions in earlier trials, although it may be greater
than LRTA*. A new version of LRTA* [Koenig, 2004] im-
proves convergence by increasing lookahead depth, caus-
ing to increase the planning time per step.y—Trap [Bulitko,
2004] uses adaptive lookahead depth and offers control on
the exploration vs. exploitation trade-off, but sacrifices op-
timality. Other approaches consider search with moving tar-
get [Ishida and Korf, 1991] and cooperative agents [Knight,
1993], [Goldenberg et al., 2003].

3 LRTA*

We assume a state space defined by the tuple (X, A, ¢, s, (i),
where (X, A) is a finite graph, ¢ : A — [0,00) is a cost
function that associates each arc with a finite cost, s is the
start state, and G C X is the set of goal states. X is a finite
set of states, and A C X x X —{(x, z)|# € X} is a finite set
of arcs. Each arc (v, w) represents an action whose execution
causes the agent to move from v to w. The state space is
undirected, that is, for any action (z,y) € A there exists its
inverse (y, ) € A with the same cost ¢(z, y) = ¢(y, «). The
successors of a state z are Suce(x) = {y|(z,y) € A}. A
path (g, 21, %2, ...) is a sequence of states such that every
pair (z;, z;+1) € A. The cost of a path is the sum of costs of
the actions in that path.

A heuristic function 2 : X — [0, o) associates with each
state # an approximation 2(z) of the cost of a path from » to a
goal. h(x) is called the heuristic estimate of z. The exact cost
h* () is the minimum cost to go from z toa goal. If Vo € X,
h(z) < h*(x) then h is admissible. A path (zg, 21, ..., %)
such that A(z;) = h*(z;), 0 < i < nis called optimal.

The LRTA* algorithm with lookahead at depth 1 (the case
considered in this paper) and converging to optimal paths
(with h admissible) appears in Figure 1. Like in [Korf, 19901,
we assume the existence of Succ and hgy functions, which
when applied to a state x generate its set of successors and
its initial heuristic estimate, respectively. Procedure LRTA*
initializes the heuristic estimate of every state using the func-
tion kg, and repeats the execution of LRTA*-trial until
convergence (h does not change). At this point, an opti-
mal path has been found. Procedure LRTA*-trial ini-
tializes the current state x with the start s. Then, the fol-
lowing loop is executed until a goal is found. First, func-
tion LookaheadUpdatel is executed ignoring its result. It

procedure LRTA* (X, A, ¢, s, G)
for eachz € X do h(z) < ho(z);
repeat

LRTA*-trial(X, A,c, s, G);
until 4 does not change;

/* initialization */

procedure LRTA*-trial(X, A, c,s, G)
T 8
while z ¢ G do
dummy + LookaheadUpdatel(z); /* look+upt*/
Y 4= argMiny e suce(x) ({2, w) + h(w)];  /* next state */
execute(a € A suchthata = (z,y)); /* action exec */
T =y,

function LookaheadUpdatel(z): boolean;
Y 4 argming ¢ suce(z) [c(w,v) + h(v)]; /* lookahead */
if h(z) < c(z,y) + h(y) then
h(z) < c(z,y) + h(y); return true;
else return false;

Figure 1: The LRTA* algorithm.

performs lookahead from z at depth 1, updating its heuristic
estimate accordingly. Second, the state y of Suce(z) with
minimum value of ¢(z,y) + h(y) is selected as next state
(breaking ties randomly). Third, an action that passes from x
to y is executed. After it, y is the new current state and the
loop iterates.

Function LookaheadUpdatel performs lookahead
from # at depth 1, and updates h(x) if it is lower than the
minimum cost of moving from z to one of its successors y
plus its heuristic estimate h(y). If h(x) changes it returns
true otherwise returns false.

In a state space like the one assumed here (finite, positive
costs, finite heuristic estimates) where from every state there
is a path to a goal it has been proved that LRTA* is complete.
In addition, if A is admissible, over repeated trials the heuris-
tic estimates eventually converge to their exact values along
every optimal path [Korf, 1990].

4 LTRA*(k)
4.1 Propagation of Changes of Heuristic Estimates

LRTA*(k) differs from LRTA* in the propagation of changes
of heuristic estimates, which is explained in the following.
For ease of presentation, first we describe unbounded propa-
gation, and second we present bounded propagation, which is
the one used in LRTA* (k).

Unbounded propagation works as follows. If it happens
that the current state heuristic is updated by the effect of
lookahead, LRTA* selects the next state and executes the
action that moves to that state, but it does not perform fur-
ther updates. The current iteration stops and future iterations
will be in charge of propagating that change (if needed). Un-
bounded propagation propagates this change to the successors
of the current state. Each successor is taken as the basis for
a new lookahead, and its heuristic is updated accordingly. If
this propagation causes further changes, the successors of the
states whose heuristic have changed will be considered for
further propagation, and so forth. The process iterates until
no further changes are performed.



To illustrate unbounded propagation, let us consider the ex-
ample of a 4 x 4 grid that appear in Figure 2, where m is
the start state and p is the goal. Initial heuristic estimates
are computed by Manhattan distance, and obstacles are rep-
resented by “-”. From state m, LRTA* performs lookahead,
updates h(m) to 5 (assuming that costs to move to succes-
sor states are equal to 1), and moves to ¢, terminating the
current iteration. Unbounded propagation performs further
propagation of the h(m) change. The successor of m is 4,
from which lookahead is performed and k(7) is updated to 6.
Again, this change causes to reconsider the successors of ¢, e
and m. h(e) is updated to 7, which causes to reconsider its
successors @ and ¢. h(m) is updated to 7, which causes to
reconsider its successor i. « is reconsidered but its heuristic
estimate does not change. h (i) is updated to 8, which causes
to reconsider its successors e and m. h(e) does not change.
h(m) is updated to 9, which causes to reconsider its successor
i. h(é) does not change. Unbounded propagation stops. This
propagation presents some drawbacks for real-time search,

1. Move in bounded time [Koenig, 20011[Koenig, 2004].
The number of states involved in unbounded propaga-
tion may differ in consecutive steps, so the computa-
tional effort required may change between steps. This
is against the requirement that real -time search must per-
form individual moves in bounded (appr. constant) time.

2. Acting on vicinity. Unbounded propagation can act very
far from the current state. This violates a basic assump-
tion of real-time search, that lookahead and update op-
erations can only be done in the vicinity of the current
state [Shimbo and Ishida, 2003].

To solve these drawbacks, we propose to limit unbounded
propagation. This new version, called bounded propagation,
limits to & the maximum number of states that can be updated
in one step. In this way, the computational effort devoted to
propagation is bounded, and individual moves are performed
within that bound. This is acceptable as far as the agent could
perform the extra computation required between successive
actions without disturbing its activity.

In addition, we require another condition: updating is lim-
ited to previously expanded states. In other words, only states
belonging to the path from the start to the current state can be
updated. This condition tries to prevent that heuristic updat-
ing to be scattered over the search space. Combined with the
condition of bounded propagation, the vicinity for updating
is limited to & previously visited states.

To illustrate bounded propagation updating expanded
states, the example of Figure 2 is executed with £ = 5. State
m is updated and h(m) changes to 5. Since there are no pre-
vious states in the path, no propagation is made. In this iter-
ation, 1 state (/) has been considered for update. The agent
moves to ¢, which is updated, ~(7) changes to 6 and state m
is reconsidered (the only successor in the path). m is updated
and h(m) changes to 7. This causes to reconsider state ¢, also
in the path, but this causes no changes. In this iteration, 3
states (¢, m, ¢) have been considered for update. The agent
moves to e, which is updated, ~(e) changes to 7 and state ¢
is reconsidered. h(7) changes to 8, and its successors in the
path, e and m are reconsidered. e causes no changes. m is
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Figure 2: A 4 x 4 grid. (A) States (i is the start and p is
the goal) and initial heuristic estimates (Manhattan distance).
Obstacles are represented by “-”. A number in bold indicates
the heuristic estimate of the state where the agent is located,
while numbers in ifalics represent states whose heuristic es-
timates should be reconsidered. (B) LRTA* with unbounded
propagation in the leftmost column, until the agent reaches
state a. (C) LRTA* with bounded propagation (¢ = 5) and
updating previously visited states in the leftmost column, un-
til the agent reaches state a.

updated, h(m) changes to 9 and causes its successor ¢ in the
path to be reconsidered. i causes no change. In this iteration,
5 states (e, ¢, e, m, ) have been considered for update. At this
point, agent moves to ¢ and continues towards the goal p.

Bounded propagation depends on %, the maximum num-
ber of previous states that can be updated. We believe
that bounded propagation is a suitable strategy for real-time
search. This is confirmed by the experiments of Section 5 on
different problems with several & values.

4.2 The Algorithm

The LRTA*(k) algorithm appears in Figure 3.  Pro-
cedure LRTA*(k)-trial is very similar to proce-
dure LRTA*-trial of Figure 1. They only dif-
fer in two points: LRTA*(k)-trial records the se-
quence of expanded states in path, and it executes the
procedure LookaheadUpdateK instead of the function
LookaheadUpdatel. Procedure LookaheadUpdateK
performs bounded propagation as follows. It maintains a se-
quence () of states candidates to update their heuristic esti-
mates. () is initialized with the current state. At most, k states
will be entered in ). This is controlled by the counter cont,
initialized to k£ — 1. Then, the following loop is executed until



procedure LRTA* (k) (X, A, c,s,G, k)
for eachz € X do h(z) < ho(z);
repeat

LRTA* (k)-trial(X, A, ¢, s, G, k);
until 4 does not change;

procedure LRTA* (k) -trial(X, A, c,s, G k)
z < s; path < (s);
while z ¢ G do

LookaheadUpdateK(z, k, path);

Y 4= argminy, ¢ succ(x) [c(w, w) + h(w)];
execute(a € Asuchthata = (z,y));
path < add-last(path, y); z < y;

procedure LookaheadUpdateK(z, k, path)
Q « (x);cont +— k — 1,
while Q@ # 0 do
v ¢ extract-first(Q);
if LookaheadUpdatel(v) then
for each w € Succ(v) do
if w € path A cont > 0 then
Q@ + add-last(Q, w); cont « cont — 1;

function LookaheadUpdatel(z): boolean;
Y 4 argming ¢ syce(x) [c(z, v) + h(v)];
ifh(z) < c(x,y)+ h(y) then
h(z) « c(z,y) + h(y); return true;
else return false;

Figure 3: The LRTA*(k) algorithm.

() contains no states. The first state v in () is extracted, from
which lookahead is performed and it is updated accordingly.
If ~(v) changes (LookaheadUpdatel of Figure 1 returns
true), this is propagated over its successors as follows. Any
w successor of v that belongs to path enters () in the last
position, provided that there is still room in ) (the limit of
k states has not been exhausted during the current execution
of the procedure). If ~(v) does not change, the loop iterates
processing the next state of (). The admissibility of & after
bounded propagation is guaranteed by the following lemma.

Lemma 1 (Lemma 2 of [Edelkamp and Eckerle, 1997]).
Let x € X — G and h admissible. Updating
h(z) + max(h(x), mingesuce(r)(c(x,v) + h(v)) implies
that h(x) < h*(z).

Proof. If h(x) > minyesuce(e)(c(x,v) + h(v)) there is
nothing to prove. Otherwise, there is an optimal path from z
to a goal that passes through a successor w. Then, h*(z) =
e(z,w) 4+ h*(w) > e(x, w) + h(w) . In particular, this is true
for the minimum ¢(x, v) + h(v) among successors of x, that
is, h™(x) > minyesuce(r)(c(®, v)+h(v)). Soh(x) < h*(x).

From this result, convergence of LRTA*(k) to optimal
paths is guaranteed in the same terms as LRTA*, because
Theorem 3 of [Korf, 1990] is also valid for LRTA* (k). The
new algorithm inherits the good properties of LRTA*.

4.3 Supports

Algorithm LRTA*(k) can easily be improved using the no-
tion of support of an heuristic estimate. Imagine the situa-
tion depicted in Figure 5, where each state has four succes-
sors (north, south, east, west) and the cost to move to any

procedure LRTA* (k) -trial(X, A,c,s,G k)

for each z € X do supp(z) < null;

x < s; path < (s);

while z ¢ G do
LookaheadUpdateK(z, k, path);
Y 4= ArgMiny, e suce() ({7, w) + h(w)];
execute(a € A suchthata = (z,y));
path < add-last(path, y); z < y;

procedure LookaheadUpdateK(z, k, path)
Q « (x); cont + k — 1,
while Q # 0 do
v ¢+ extract-first(Q);
if LookaheadUpdatel(v) then
for each w € Succ(v) do
if w € path A cont > 0 A v = supp(w) then
Q@ + add-last(Q, w); cont + cont — 1;

function LookaheadUpdatel(z): boolean;
Y 4 argming ¢ succe(z) [¢(w, v) 4+ h(v)]; supp(z) < y;
if h(z) < c(z,y) + h(y) then
h(z) < c(z,y) + h(y); return true;
else return false;

Figure 4: Adding supports to LRTA* (k).

of them is 1. e is the current state and the path is the se-
quence (...,b, ¢, e). If it happens that h(e) changes from 3
to 5, LRTA*(k > 1) will reconsider the heuristic estimate of
state c. However, no matter the change of h(e), h(c) will not
change because the minimum of its successors, state b, has
not changed its heuristic estimate. The value of A (b) justifies
the current value of h(c). State b is called a support for 2(c).

Formally, state y is support of h(xz), written y = sup(x),
iff y = argmingesyce(e)(c(®,v) + h(v)). The previous ex-
ample illustrates a simple property of bounded propagation:
if state y changes its heuristic estimate, only those states z
successors of y such that y is their support could change its
heuristic estimate. A successor state z not supported by y will
not change: z is supported by other state and as far this state
does not change its heuristic estimate, z will not change.

LRTA*(k) can benefit from this property, by entering in
@ only those states which are supported by the state that has
changed its heuristic estimate. This requires minor modifi-
cations that appear in Figure 5. In LookaheadUpdatel,
each time a state is expanded its support is recorded. In
LookaheadUpdatekK, only those states supported by the
state who has changed are considered for inclusion in ). The
use of supports requires a table that records for each expanded
state its corresponding support. This duplicates the memory
requirements of LRTA*.

a 6
blc|d 3 4 5
e 3—=5

Figure 5: A state space (left) and its heuristic estimates
(right). The path followed by the agent is (..., b, ¢, ¢e), e is
the current state and h(e) changes from 3 to 5. State ¢ does
not change because its support (state b) has not changed.



Grid35

k Cost% States% Time/Step%
68755.6=100% 7014.3=100% 0.00034=100%

1 (LRTA*) 100% 100% 100%
6 24% 89% 181%
15 17% 100% 237%
51 15% 117% 324%
500 14% 133% 523%
00 14% 86% 754%
RTA* 45% 66 % 91%
FALCONS 1402% 183% 126%

Grid70

k Cost% States% Time/Step%
146382.3=100% 1447.1=100% 0.00034=100%

1 (LRTA*) 100% 100% 100%
6 34% 99% 169%
15 18% 100% 222%
51 9% 102% 328%
500 4% 104% 708%
00 2% 108% 4668%
RTA* 29% 101% 97 %
FALCONS 53% 103% 105%

Maze

k Cost% States% Time/Step%
588001.0=100% 8218.7=100% 0.00035=100%

1 (LRTA*) 100% 100% 100%
6 29% 93% 171%
15 16% 90% 231%
51 8% 88% 387%
500 5% 89% 914%
00 2% 89% 7683 %
RTA* 6% 88% 96 %
FALCONS 15% 129% 106%

Table 1: Results for the first trial on Grid35, Grid70 and Maze
benchmarks, averaged over 1000 instances.

5 Experimental Results

We compare the performance of LRTA*(k), for different val-
ues of %, with RTA* (first trial only), LRTA* and FAL.CONS
(first trial, convergence and stability). As benchmarks we use
four-connected grids where an agent can move one cell north,
south, east or west. We use the following benchmarks:

1. Grid35. Grids of size 301x301 with a 35% of obstacles
placed randomly. In this type of grid heuristics tend to
be only slightly misleading.

2. Grid70. Grids of size 301x301 with a 70% obstacles
placed randomly. In this type of grid heuristics could be
misleading.

3. Maze. Acyclic mazes of size 181x181 whose corridor
structure was generated with depth-first search. In this
type of grid heuristics could be very misleading.

In each case, results are averaged over 1000 different in-
stances. In grids of size 301x301 the start and goal state are
chosen randomly with the restriction that there is a path from
the start state to the goal state. In mazes, the start state is (0,0),
and the goal state is (180,180). As initial heuristic between
two states we use the Manhattan distance.

Table 1 contains the results for the first trial, in terms of
solution cost, number of expanded states and time per step
(in milliseconds). The smallest solution cost is obtained by
LRTA*(k) with k& = oo, that is, propagation runs without
limit of states, updating states which are in the path connect-
ing the start with the current state. Comparing with LRTA*,
our algorithm produces better solutions for all values of %

Grid35

k Cost% Trials% MaxStates% Time/Step%
6493803.3=100% 2561.4=100% 7014.3=100% 0.00036=100%

1 (LRTA%) 100% 100% 100% 100%
6 48% 63% 89% 163%
15 36% 48% 100% 189%
51 29% 43% 117% 205%
500 26% 42% 133% 216%
00 25% 42% 136% 223%
FALCONS 62% 26% 245% 122%

Grid70

k Cost% Trials% MaxStates% Time/Step%
790030.4=100% 306.8=100% 1480.7=100% 0.00037=100%

1 (LRTA%) 100% 100% 100% 100%
6 44% 57% 100% 148%
15 27% 37% 103% 179%
51 18% 26% 105% 219%
500 10% 17% 107% 302%
00 2% 5% 111% 906%
FALCONS 81% 55% 104% 103%

Maze

k Cost% Trials% MaxStates% Time/Step%
27767147.9=100% 1584.3=100% 11360.7=100% 0.00035=100%

1 (LRTA%) 100% 100% 100% 100%
6 39% 48% 120% 169%
15 23% 24% 128% 232%
51 11% 11% 128% 360%
500 5% 7% 120% 663%
00 2% 6% 116% 1792%
FALCONS 78% 50% 134% 105%

Table 2: Results for convergence on Grid35, Grid70 and Maze
benchmarks, averaged over 1000 instances.

tested. Because of bounded propagation, LRTA* (k) requires
more computation than LRTA* per step. This can be adjusted
using the k parameter. If the agent has enough planning time
per step, it can use a high % because this largely increases the
solution quality. Otherwise, low values of & improve solu-
tion quality and differences with LRTA* in planning time per
step remain reasonable. With & between 6 and 15, LRTA* (k)
uses approximately twice the planning time per step required
by LRTA*, decreasing solution cost by a factor between 3
and 5. Comparing with RTA*, our algorithm finds better so-
lutions from & = 6 on in Grid35, & = 15 on in Grid70 and
k = 500 on in Maze. Comparing with FALCONS, our algo-
rithm always produces better solutions in Grid35 and Grid70.
In Maze, it works better from & = 51 on.

We compare the learning process of LRTA*(k) with
LRTA* and FALCONS (RTA* is excluded, it does not con-
verge to optimal routes). Table 2 contains the results for
convergence to optimal paths, in terms of total cost, number
of trials, maximum number of expanded states and planning
time per step. Considering solution cost, LRTA*(k) obtains
better results than LRTA* and FALCONS for the values of
k tested on the three benchmarks. Solution cost decreases
monotonically as & increases. We observe that the worse the
heuristic information is, the better LRTA*(k) behaves with
respect to its competitors (results are better in Maze than in
Grid70, and in Grid70 than in Grid35). Considering trials
to convergence, LRTA*(k) requires many fewer trials than
LRTA*. The number of trials decreases steadily as & in-
creases, from approximately half of the trials with £ = 6.
Comparing with FAL.CONS, it does not perform better for
Grid35, but gets better results in Grid70 and Maze. The good
results of LRTA*(k) come at the cost of extra computation,



Grid35

k IAE ISE ITAE ITSE SOD

x108 x10° x108 x10tt x10%
1 (LRTA*) 52 56.5 38.1 130.9 159
6 23 10.6 11.7 263 6.8
15 1.7 7.6 6.5 14.2 51
51 13 58 4.5 8.6 4.1
500 12 43 3.9 6.5 3.6
00 1.1 3.7 3.8 6.2 34
FALCONS 3.7 3898.1 6.3 883 10.6

Grid70

k IAE ISE ITAE ITSE SOD

x103 x108 x10% x107 x102
1 (LRTA*) 509.1 242277 2029.2 9145.2 1174.8
6 188.4 29314 702.6 1265.5 592.0
15 112.9 950.8 301.7 501.4 379.7
51 67.0 327.5 119.7 166.0 210.8
500 26.5 752 25.0 26.8 653
00 4.0 59 2.7 1.1 58
FALCONS 480.9 17268.5 4088.3 46665.2 1244.5

Maze

k IAE ISE ITAE ITSE SOD

x10% x10° x108 x1010 x10%
1 (LRTA*) 221.6 53383 6952.1 120297.1 1331.1
6 82.0 403.8 2109.0 4490.6 4124
15 50.7 2003 659.2 12429 188.8
51 25.1 934 157.0 340.7 104.0
500 9.6 284 34.8 66.6 48.6
00 1.5 1.6 42 1.6 7.0
FALCONS 1894 1136.2 7072.6 43695.6 680.8

Table 3: Results for solution stability on Grid35, Grid70 and Maze
benchmarks, averaged over 1000 instances.

that is, longer planning time. It is worth noticing that low
values of k£ generate large improvements in solution cost and
number of trials, with a limited effect in planning time per
step. For instance, with £ = 6, the total cost to converge to
optimal path is divided by a factor a bit higher than 2, the
number of trials is divided by a factor of appr. 2, at the cost
of increasing the time per step by a factor around 1.6.

In these algorithms the number of expanded states deter-
mines the amount of memory used. LRTA*(k) records for
each expanded state its heuristic estimate and its support,
while LRTA* records its heuristic estimate only. This means
that LRTA* (k) requires twice the memory used by LRTA*
per expanded state. FALCONS records for each expanded
state the values of g and A, so it has similar requirements as
LRTA*(k) per expanded state. On the benchmarks tested,
all the algorithms expand a relatively close number of states
(except FALLCONS in Grid35, that requires a larger amount).
Roughly speaking, we can say that LRTA* (k) requires from
two to two and a half times the memory required by LRTA*
on the same instances, and a similar (and in some cases larger)
amount of the memory is required by FAL.CONS.

To measure solution stability we computed the indices
IAE, ISE, ITAE, ITSE, and SOD [Shimbo and Ishida, 2003].
IAE provides the sum of the error in the convergence. ISE
provides the square of the sum of the error in the convergence,
it penalizes large overshoots. ITAE and ITSE are two time-
weighted versions of IAE and ISE, thatimpose large penalties
on sustained errors. SOD sums up the difference in solution
costs between two consecutive trials when the solution wors-
ens. If SOD is equal to O convergence is monotonic.

Table 3 contains the stability indices for LRTA*(k),
LRTA* and FALCONS for each grid. LRTA*(k) outper-

forms LRTA* for all k& values tested in all indices for the
three benchmarks. Something similar happens when com-
paring with FAL.CONS, except for index ITAE on Grid35 for
k = 6, 15, where FALCONS obtains better results. In Grid35
FALCONS have some advantage with respect to ITAE be-
cause it performs a great amount of moves in earlier trials (see
Tables 1 and 2), which are less penalized by the index. Solu-
tion stability improves monotonically as k increases. Again,
results of Table 3 suggest that LRTA* (k) is more robust than
its competitors in presence of misleading heuristics.

6 Conclusions

LRTA*(k) is a real-time search algorithm that converges to
optimal routes. Based on LRTA*, it performs bounded propa-
gation of heuristic changes up to % states, which causes longer
planning steps. Experimentally, LRTA*(%) shows a substan-
tial performance improvement with respect to LRTA* and
FALCONS, in terms of first trial, convergence and solution
stability. Improvements depend on k: the higher %, the better
results at the cost of longer planning steps. Small % values
cause moderate planning times but large benefits. LRTA* (k)
can be very useful when the agent has enough time between
actions to accommodate the planning time required. Future
research includes the setting of k& and the combination with
other heuristic techniques.
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