Reducing Checks and Revisionsin Coarse-grained MAC Algorithms*

D. Mehta® and M.R.C. van Dongen
Cork Constraint Computation Centre, Ireland

Abstract

Arc consistency algorithms are widely used to
prune the search space of Constraint Satisfaction
Problems (csps). Coarse-grained arc consistency
algorithms like Ac-3, AC-3; and AC-2001 are ef-
ficient when it comes to transforming a csp to its
arc-consistent equivalent. These algorithms repeat-
edly carry out revisions. Revisions require support
checks for identifying and deleting all unsupported
values from the domain of a variable. In revisions
for difficult problems most values have some sup-
port. Indeed, most revisions are ineffective, i.e.
they cannot delete any value and consume a lot
of checks and time. We propose two solutions to
overcome these problems. First we introduce the
notion of a Support Condition (sc) which guaran-
tees that a value has some support. Scs reduce sup-
port checks while maintaining arc consistency dur-
ing search. Second we introduce the notion of a
Revision Condition (RC) which guarantees that all
values have support. A RC avoids a candidate re-
vision and queue maintenance overhead. For ran-
dom problems, scs reduce the checks required by
MAC-3 (MAC-2001) up to 90% (72%). Rcs avoid
at least 50% of the total revisions. Combining the
two results in reducing 50% of the solution time.

1 Introduction

Arc consistency (AC) algorithms are widely used to prune
the search space of binary Constraint Satisfaction Problems
(csps). MAcC [Sabin and Freuder, 1994] is a backtrack al-
gorithm that Maintains Arc Consistency during search. It
reduces the thrashing behaviour of a backtrack algorithm,
which usually fails many times as a result of the same local
inconsistencies. MAC-x uses Ac-x for maintaining arc con-
sistency during search.

Many arc consistency algorithms have been proposed. On
the one hand there are algorithms such as Ac-3 [Mackworth,

*This work has received some support from Science Foundation
Ireland under Grant No. 00/PI.1/C075.

TThe fi rst author is supported by Boole Centre for Research in
Informatics.

1977] and Ac-3, [van Dongen, 2004]. These algorithms have
alow O(e + n d) space complexity but they repeat their sup-
port checks and have a non optimal bound of O(ed?) for
their worst-case time complexity. Here ¢ is the number of
constraints, n the number of variables and d the maximum
domain size of the variables. On the other hand there are al-
gorithms such as Ac-4 [Mohr and Henderson, 1986], Ac-6
[Bessiére and Cordier, 1993], and Ac-2001 [Bessiére and
Régin, 2001] that use auxiliary data structures to avoid re-
peating their support checks and have an optimal worst-case
time complexity of O(e d?).

Since the introduction of Ac-4 [Mohr and Henderson,
1986] much work has been done to avoid repeating sup-
port checks by using auxiliary data structures. Depending
upon the algorithm, these auxiliary data structures store one
or more supports for each value involved in each constraint.
The belief is that reducing checks helps in solving problems
more quickly. However, allowing algorithms to repeat (not
too many) checks, relieves them from the burden of a large
additional bookkeeping and this may save time, especially
if checks are cheap. In this paper, we introduce the notion
of a Support Condition (sc) which guarantees that a value
has some support. Scs help avoiding many (but not all) se-
quences of support checks eventually leading to a support
without storing and maintaining support values.

Coarse-grained arc consistency algorithms repeatedly
carry out revisions to remove all unsupported values from the
domain of a variable. Many revisions are ineffective, i.e. they
cannot remove any value. For example, when RLFAP #11 is
solved using MAC-3 or MAC-2001, 83% of the total revisions
are ineffective. We introduce the notion of a Revision Condi-
tion (RC) which guarantees that all values have some support.
Rcs help avoiding many (but not all) ineffective revisions and
much queue maintenance, which is also a great source of time
consumption [van Dongen and Mehta, 2004]. Furthermore,
we show that reverse variable based heuristics [Mehta and
van Dongen, 2004] result in fewer revisions.

The remainder of this paper is as follows. Section 2 is a
brief introduction to constraints. Section 3 discusses revision
ordering heuristics and the coarse-grained algorithm Ac-3.
Sections 4 and 5 introduce the notions of a support condition
and a revision condition. Section 6 presents experimental re-
sults. Conclusions are presented in Section 7.

2 Constraint Satisfaction

A Constraint Satisfaction Problem is defined as a set V of n
variables, a non-empty domain D(x) for each variable x € V
and a set of e constraints among subsets of variables of V. A
binary constraint C,,, between variables = and y is a subset
of the Cartesian product of D(z) and D(y) that specifies the
allowed pairs of values for = and y. We only consider csPs
whose constraints are binary.

A value b € D(y) is called a support for « € D(x) if
(a,b) € Cyy. Similarly a € D(z) is called a support for b €
D(y) if (a,b) € Cyy. A support check (consistency check)
is a test to find if two values support each other. A value
a € D(z) is called viable if for every variable y constraining
2 the value a is supported by some value in D(y). A CSP is
called arc-consistent if for every variable = € V, each value
a € D(z) is viable.

The density p; of a csp is defined as 2¢/(n? — n). The
tightness p, of the constraint C,, between the variables = and
yis definedas 1 — | Cyy |/| D(x) x D(y)|. The degree of a
variable is the number of constraints involving that variable.
Before starting search MAC transforms the input csp to its
arc-consistent equivalent. We call the domain of a variable in
this arc-consistent equivalent as the arc-consistent domain of
that variable. For the remainder of this paper for any variable
x, we use D,.(x) for the arc-consistent domain of z, and
D(z) for the current domain of x. The directed constraint
graph of a given csp is a directed graph having an arc (z, y)
for each combination of two mutually constraining variables
2 and y. We will use G to denote the directed constraint graph
of the input csp.

3 Revision Ordering Heuristics

Coarse-grained arc consistency algorithms use revision or-
dering heuristics to select an arc from a data structure called
a queue (set really). When an arc, (z,y), is selected from
the queue, D(z) is revised against D(y). Here to revise
D(z) against D(y) means removing all values from D(z)
that are not supported by any value of D(y). Revision order-
ing heuristics can influence the efficiency of arc consistency
algorithms [Wallace and Freuder, 1992]. They can be clas-
sified into three categories: arc based, variable based [Mc-
Gregor, 1979], and reverse variable based [Mehta and van
Dongen, 2004] heuristics. The differences between them are
as follows.

Arc based revision ordering heuristics are the most com-
monly presented. Given some criterion they select an arc
(z,y) for the next revision. Selecting the best arc can be
expensive [van Dongen and Mehta, 2004]. Each selected arc
corresponds to exactly one revision. Since there may be many
revisions there may be many selections and this may result in
a significant overhead. When arc based heuristics are used,
the queue needs to be updated after every effective revision
unless the domain of a variable becomes empty. Many up-
dates can be an overhead too.

Variable based heuristics [McGregor, 1979] first select a
variable x and then repeatedly select arcs of the form (y,)
for the next revision until no more such arcs exist or some
D(y) becomes empty. They may be regarded as propaga-

Function AC-3: Boolean;
begin
Q=G
while Q not empty do begin
selectany x from {z : (z,y) € Q}
effective_revisions := 0
for each y suchthat (z,y) € Q do
remove (z, y) from Q
revise(x, y, change,,)
if D(z) = 0 then
return False
elseif change,, then
effective_revisions := effective_revisions + 1

if effective_revisions = 1 then
Q:=QU{(y',x) |y isaneighbour of x A y" # vy}
eseif effective_revisions > 1 then
Q :=QU{ (¥,)|y isaneighbour of z}
return True;
end;

Figure 1: AC-3.

tion based heuristics because the consequences of removing
one or more values from D(x) are propagated in all of its
neighbours. If a variable x is selected then the domain of all
its neighbours in the constraint graph will be revised against
D(z). In this setting there are usually fewer selections from
the queue at the cost of performing more checks. If checks
are cheap then time can be saved because the queue needs
fewer selections. Here too every effective revision results in
updating the queue.

Reverse variable based heuristics [Mehta and van Dongen,
2004] first select a variable = and then repeatedly select arcs
of the form («, y) for the next revision until there are no more
such arcs or D(x) becomes empty. They may be regarded
as support based heuristics because for one variable x at a
time, each value in D(z) seeks support with respect to all
of its neighbours for which it is currently unknown whether
such support exists. When a variable z is selected a number
of revisions is performed which is between 1 and the num-
ber of arcs of the form (z, y) currently present in the queue.
Therefore, the number of selections (of x), and the overhead
of queue management, is usually less.

Selecting a variable x and revising it against all its neigh-
bours y such that (z,y) is currently present in the queue we
call a complete relaxation of 2. Another advantage of using
reverse variable based heuristics is that the queue only needs
to be updated after every effective complete relaxation and
not after every effective revision, which reduces the number
of times the arcs are added to the queue. Overall fewer revi-
sions are performed which results in saving support checks.
Pseudo-code for Ac-3 equipped with reverse variable based
revision ordering heuristic is depicted in Figure 1. The revise
function upon which Ac-3 depends is depicted in Figure 4.

In Figure 1, if D(x) was changed after a complete relax-
ation and if this was the result of only one effective revi-
sion (effective_revisions = 1), which happened to be against
D(y"), then all arcs of the form (y’, z) where 3 is a neigh-
bour of z and vy’ # " are added to the queue. However,
if D(x) was changed as the result of more than one effec-
tive revision (effective_revisions > 1) then all arcs of the
form (v, z) where ¢ is a neighbour of x are added to the
queue. Modulo constraint propagation effects this avoids

queue maintenance overhead.

4 A Support Condition

Arc consistency algorithms are based on the notion of sup-
port. Most arc consistency algorithms proposed so far put a
lot of effort in identifying a support to confirm the existence
of a support. Identifying the support is more than is needed to
guarantee that a value is supportable: knowing that a support
exists is enough. Optimal algorithms like ACc-2001 and AC-6
always keep track of the last known support for each value.
When this support is lost they try to identify the next support.
Ac-4 is the only algorithm that confirms the existence of a
support by not identifying it during the course of search but
its inefficiency lies in its space complexity O(e d?) and the
necessity of maintaining huge data structures during search.
We propose the notion of a support condition (sc), which
guarantees that a value has some support. The key point is
that it guarantees the existence of a support without identi-
fying it and without storing and maintaining support values.
Let C,, be the constraint between = and y, let a € D(z)
(also denoted as (z, a)) and let scount| x,y, a] be the num-
ber of supports of (z,a) in D,.(y). A value a € D(z) is
supported by y if it has at least one support in D(y). Further-
more if R(y) = Dqc(y) \ D(y) are the removed values from
the arc-consistent domain of y then | R(y) | is an upper bound
on the number of lost supports of (z, a) in y. Therefore, if the
following condition is true then (z, a) is supported by y:

scount[z,y,a] > | R(y) | 1)

In order to use the Equation (1) in any coarse-grained MAC
algorithm, for each arc-value pair involving the arc (z, y) and
the value a on z, scount|x,y,a] must be assigned the num-
ber of supports of (z, a) in D,.(y). Once these support coun-
ters are initialised they remain static during search. Hence,
there is no overhead of maintaining them. The pseudo-code
for computing the support count for each arc-value pair is
depicted in Figure 2. In the algorithm, last[z,y,a | stores
AC-2001’s last known support for (z,a) in y. Note that the
algorithm does not repeat checks and uses the bidirectional
property of constraints. For easy problems initialising sup-
port counters can be an overhead in terms of support checks.
However, it can save time and checks for hard problems.
Next we generalise the idea presented in the Equation (1).
Here we associate a weight (non-negative integer) w|x, y, a]
with each arc-value pair. If the following condition is true

Function InitialiseSupportCounters ()
call AC-2001
if the problem is arc-consistent then
for each (z,y) € G do
for each a € Dy () do
scount[z,y,a] =1
for each (x,y) € G suchthat z < y do
for each a € D, (z) do
for each b € D, (y) suchthat b > last[z,y, a] do
if b supports a then begin

scount[z,y,a)] := scount[x,y,a] + 1
scount|y,z,b] := scount[y,z,b] + 1
end

Figure 2: Initialisation of support counters.

wly,x,b]

Case 1

Figure 3: Support inference using different weights

then (x, a) is supported by y:

Z wly,z,b] > Z wly,x,b']. 2

(a,b) € Cuy b’ € R(y)

We call the left hand side of Equation (2) the cumulative
weight of (z, a) with respect to y: it is equal to the sum of the
weights of the supports of (x, a) in D,.(y). We call the right
hand side of Equation (2) the removed weight from D,.(y)
with respect to x: it is equal to the sum of the weights of the
values removed from D, (y) with respect to 2. Note that if
the weight associated with each arc-value pair is 1 then Equa-
tion (1) is a special case of the condition in Equation (2). In
that case the cumulative weight of (x, a) with respect to y is
equal to the number of supports of (z,a) in D,.(y) and the
removed weight from D,.(y) is equal to the number of val-
ues removed from D,.(y). We call the condition in Equation
(2) a Support Condition (Sc). A sc guarantees the existence
of a support and may allow to save many checks.

We illustrate the use of sc to infer the existence of a sup-
port by using the example as shown in Figure 3. In Figure 3
(Case 1), the weight associated with each value is 1. The cu-
mulative weight of a; with respect to y is 2: it is equal to the
number of the supports of a; in D,.(y). Now assume that b,
is deleted from D,.(y) then the removed weight from D, (y)
with respect to z is 1: itequals | R(y) |. It can be inferred that
ay still has a support in D(y) since the cumulative weight of
ay is greater than the removed weight from D,.(y). Simi-
larly, a support for any value in D(z) can be inferred if any
single value is removed from D,.(y). If any two values are
removed from D,.(y) then the removed weight from D,.(y)
is 2. Here a support cannot be inferred for any value of D(z)
because the cumulative weight of each value in D(z) is 2,
which is not greater than the removed weight.

If other weights are used and if sc holds for any value a €
D(x) then a support is still guaranteed to exist in D(y). Let
us examine Case 2 of Figure 3 where the weight assigned to
each value in D,.(y) is its own support count with respect to
x. Now the cumulative weight of a; is 4 since the weights
of the supports of b; and b, are 1 and 3 respectively. Like
Case 1, if any single value is removed from D,.(y), a support
can be inferred for all values in D(z). If the two values b,
and b4 are removed then the removed weight from D,.(y) is
2. Unlike Case 1 a support can be inferred for all the values
of z. In another situation if b; and b, are removed then also
the existence of support can be inferred for at least a5 and a3
since their cumulative weights are 6 and the removed weight
from D,.(y) is 4. We will see further on that using support

Function revise(x, y, var change,,)
begin
change,, = Fase
for each a € D(x) do
32 (ab) € Cay WU T 0] > 300 ¢ rey
skip /* a is supported */
elseif #b € D(y) such that b supports a then begin
D(z) = D(x) \ {a}
change,, = True
end
end;

w(y,z,b | then

Figure 4: Algorithm revise of AC-3.

counts as weights lets scs save more checks.

The revise function for Ac-3 is depicted in Figure 4. This
function is slightly different from its original version because
it uses sc to avoid a series of checks for which it can be
known in advance that it will eventually lead to a support.
The use of sc is not restricted to Ac-3. It can be integrated in
any coarse-grained algorithm.

5 A Revision Condition

The support check is the core operation carried out by arc
consistency algorithms. To reduce the number of checks, al-
gorithms proposed so far (1) perform viability checks like in
AC-2001, (2) check the status of counters like in AC-4, (3)
make some inference based on the supports stored in auxil-
iary data structures like in AC-7, or (4) carry out SCs as men-
tioned in Section 4. We call all these tests auxiliary support
checks (Ascs). When support checks are not too expensive
then Ascs can be an overhead and reducing the checks alone
does not always help in reducing the solution time.

All the improvements proposed so far to reduce support
checks are done at fine level of granularity. We propose a
coarser check at arc level. The idea is that we will use this
coarser check to avoid a complete revision. This will not
only save support checks but will also avoid auxiliary support
checks. For a given arc (x, y), if the least cumulative weight
(Lcw) of the values of D(z) with respect to y is greater than
the removed weight from D,.(y) then all the values of D(z)
are supported by y. This can be expressed as follows:

min Z wly,z,b]:a € D(z) p > Z

(a,b)€Czy b € R(y)

wly,z,b'].

@)
We call this condition a Revision Condition (RC). The RC can
be used by all coarse-grained arc consistency algorithms to
reduce unnecessary revisions while maintaining full arc con-
sistency during search.

If a RC holds then it can be exploited after selecting the arc
(z,y) or when arcs are added to the queue. In the former case
the corresponding revision is not carried out and in the latter
case the arc (x, y) is not added to the queue. We will use the
revision condition by tightening the condition for adding the
arcs to the queue: arcs should only be added if RC does not
hold. This is depicted in Figure 5. With this implementation
the advantages of using the Rc are threefold: (a) it will reduce
the number of arcs that have to be added to the queue, (b) it
will reduce the number of arcs that have to be selected from
the queue, and (c) it will reduce the total number of revisions.

ifeffective_revisions = 1 then

Q:=Q U{ (v¥,z)|y isaneghbour of A y" # y''A

min{ Z(a,b) € Cy,m w[way/vb] ra € D(y/)} < Zb/ € R(y") w[mvy/vb/]}
elseif effective_revisions > 1 then

Q:=Q u{ (y',z) |y isaneighbour of = A

min{ Z(a,b) € Cy,m w[way/vb] ra € D(y/)} < Zb/ € R(y") w[mvy/vb/]}

Figure 5: Enforcing RC while adding the arcs to the queue.

Note that both sc and Rc are presented in such a way that
the idea is made as clear as possible. This should not be
taken as the real implementation. We compute the cumula-
tive weight for each arc-value pair before the search starts.
Whenever a value is deleted from the domain of a variable
x, we update the removed weight for all the arcs of the form
(-,). If there is a change in the domain size of a variable
x after a complete relaxation, we update the Lcw for all the
arcs of the form (z,-). The space complexity of storing the
cumulative weights is O(e d). The space complexity of stor-
ing the removed weights and the Lcws for all the arcs is
O(e) but it may increases to O(e n) during search. The over-
all space complexity of using sc in conjunction with RC is
O(ed+en) = O(e maz(d,n)).

Updating the least cumulative weight for all the arcs of the
form (z, -), if there is a change in the domain of z after every
complete relaxation can be an overhead. The other option is
to update the Lcw of only one arc (z, y) while revising D(z)
against D(y) instead of all the arcs of the form (z,-) after
a complete relaxation. This can be done cheaply and may
avoid the addition of the arc (z, y) to the queue in future. This
can be considered as a weak version of a revision condition
(WRC) because the Lcw is not maintained for all the arcs. The
disadvantage here is that not all possible ineffective revisions
will be saved then can be saved by RC.

Independent work by [Boussemart et al., 2004] uses
min{ >>, y1ec,, 1+ @ € Dac(®)} > 324 ¢ gy 1, Which
is a special case of Equation (3). Note that in their setting
w(x,y, a] is 1 for each arc-value pair and the above condition
is exploited after determining the arc for the revision. For a
given arc (z, y), this condition examines the least cumulative
weight (the least support count) of the values of D,.(z) and
not of D(x) with respect to y as is done in Equation (3). We
call this condition a static version of a revision condition be-
cause the least cumulative weight is not updated for any arc
during the course of search. It remains static for all the arcs.
This may not allow to avoid as many ineffective revisions as
can be avoided by RC.

6 Experimental Results
6.1 Introduction

In this section, we shall present some results to prove the
practical efficiency of sc, RC and wRc. We implemented
them in MAC-3 and MAC-2001 equipped with comp [van
Dongen, 2004] as a revision ordering heuristic. We denote
the arc based, reverse variable based, and the variable based
heuristic comp as arc:comp, rev:comp, and var:comp respec-
tively. The details about these heuristics can be found in

MAC-3 MAC-2001
Heuristic Condition Weight Checks Time Revisions Checks Time
- - 79,644,545 25.39 16,627,343 20,876,139 27.20
arc:comp sc 1 10,226,932 2322 16,627,343 7,122,238 25.52
WRC 1 28,632,454 15.51 6,944,423 17,188,921 18.56
SC + WRC 1 10,226,932 14.49 6,944,423 7,122,238 16.46
- - 74,985,422 2176 15,297,543 20,587,469 22.88
sC 1 10,056,858 19.34 15,297,543 7,064,437 21.23
sc scount 7,149,704 26.59 15,297,543 5,569,970 29.14
WRC 1 28,136,221 13.44 6,708,679 17,063,043 15.80
WRC scount 18,548,689 16.21 4,641,513 12,614,384 19.04
rev:comp SC + WRC 1 10,056,858 1221 6,708,679 7,064,437 13.80
SC + WRC scount 7,149,704 15.48 4,641,513 5,569,970 17.44
RC 1 22,256,549 12.74 5,153,349 13,971,627 21.73
RC scount 13,902,999 18.03 3,276,247 9,724,569 20.20
SC + RC 1 10,056,858 12.82 5,153,349 7,064,437 21.45
SC + RC scount 7,149,704 18.22 3,276,247 5,569,970 20.27

Table 1: Results for the

random problems.

MAC-3

MAC-2001

Heuristic Conditions Checks Time Revisions Checks Time
- 56,431,728 2.656 2,154,081 10,412,277 2.661
arc:comp sC 36,832,553 2.370 2,154,081 15,217,649 2.626
WRC 37,250,230 1771 809,623 14,886,826 1.763

SC + WRC 36,832,553 1755 809,623 15,217,649 1.824

- 42,519,506 1.931 1,602,603 10,332,998 2.082
sC 28,429,473 1.750 1,602,603 15,147,054 2114

rev.comp WRC 28,829,358 1.380 752,277 14,835,844 1.243
SC + WRC 28,429,473 1.382 752,277 15,147,054 1.270
RC 28,818,246 1.448 750,789 14,825,485 1.450
SC + RC 28,429,473 1.467 750,789 15,147,054 1.475

Table 2: Results for RLFAP#11.

[Mehta and van Dongen, 2004]. During search all MACs vis-
ited the same nodes in the search tree. They were equipped
with a dom/deg variable ordering heuristic with a lexico-
graphical tie breaker, where dom is the domain size and deg is
the original degree of a variable. All algorithms were written
in C. The experiments were carried out on linux on a PC Pen-
tium 111 (2.266 GHz processor and 256 MB RAM). Perfor-
mance is measured in terms of the number of support checks,
the cpu time in seconds, and the number of revisions.

We experimented with random problems which were
generated by Frost et al.’s model B generator [Gent
et al., 2001] (http://www.lirmm.fr/ bessiere/
generator _html). In this model a random csP instance
is characterised by (n,d, p1,p2) where n is the number of
variables, d the uniform domain size, p; the average den-
sity, and po the uniform tightness. For each combination of
(n,d, p1,p2), 50 random problems were generated. Table 1
shows the mean results for (50, 10, 1.0, 0.13) which is located
at the phase transition. In Table 1, under the column labelled
as Weight, 1 denotes that the weight associated with each arc-
value pair is 1 (also the default value) while scount denotes
that the weight associated with each arc-value pair is its own
support count. Table 2 corresponds to the real world instance
RLFAP #11 which came from the CELAR suite. Table 3 cor-
responds to a quasigroup with holes problem [Achlioptas et
al., 2000] of order 10 and 74 holes.

6.2 Discussion

One can immediately notice that sc reduces the number of
checks required by MAC-3 and MAC-2001. For instance
for the random problem, checks required by MAc-3 and
MAC-2001 are reduced by 90% and 72% respectively, when
the weight associated with each arc-value pair is its own sup-
port count. We observed that for the random problems sc

and Rc are especially effective for difficult problems that take
a lot of time. The original version of MAC-3 requires 3.81
times more checks than the original version of MAC-2001
but it reduces to 1.28 after using sc. It is interesting to
note that for the random problem and the quasigroup prob-
lem MAC-3 with sc requires fewer checks than the original
version of MAC-2001. Remember that MAC-3 uses a non-
optimal algorithm Ac-3 while MAC-2001 uses an optimal al-
gorithm Ac-2001 but that they usually repeat checks in differ-
ent branches of the search. In case of RLFAP #11 when sc
is used in MAC-2001 there is an improvement in the number
of checks required during the course of search but not in the
total number of checks. This is caused by the initialisation of
the cummulative weights.

MAC-2001 always spends fewer checks than MAC-3 but
requires more time. This corresponds to the results presented
in [van Dongen, 2004]. Using sc in MAC-3 and MAC-2001
reduces the number of checks but this is not reflected in the
solution time. In fact there is only a marginal saving and in
some cases it may consume more time. This shows that when
checks are cheap carrying out Ascs to reduce the checks is
not really a great help in reducing the overall solution time.

Both RC and wWRc avoid at least 50% of the total revisions.
Rcs are able to save more ineffective revisions than wRrcs.
Satisfying a RC or a WRC avoids a complete revision that not
only reduces checks but also Acss and the overhead of queue
management. When rev:comp and WRC are used together
in MAC-3 or in MAC-2001 there is on average 50% reduc-
tion in the solution time compared to the original algorithms
equipped with arc:comp, which is significant. Results for
arc:comp with RC are not presented due to the space restric-
tion. The overhead to maintain Lcws is less with rev:comp
because they need to be updated after every effective com-
plete relaxation but in case of arc:comp and var:comp after

MAC-3 MAC-2001
Heuristic Conditions Checks Time Revisions Checks Time
- 1,760,191,958 202.28 600,538,223 585,239,320 220.88
arc:comp sc 444,247,815 204.23 600,538,223 355,925,876 213.84
WRC 564,731,731 117.20 237,506,329 453,353,800 129.54
SC + WRC 444,247,815 120.37 237,506,329 355,925,876 129.70
- 1,705,703,347 184.61 573,319,558 571,663,383 203.77
sC 445,253,641 185.66 573,319,558 356,614,116 198.47
rev:comp WRC 565,520,375 110.65 238,239,232 453,868,110 124.16
SC + WRC 445,253,641 111.33 238,239,232 356,614,116 126.05
RC 552,491,872 120.65 229,190,153 443,596,880 193.45
SC +RC 445,253,641 12597 229,190,153 356,613,391 193.90

Table 3: Results for Quasigroup problems of order 10 with 74 holes.

every effective revision. Results shown in all the tables con-
firm that rev:comp is good in saving revisions, support checks
and the cpu time for both MAC-3 and MAC-2001 when com-
pared to arc:comp.

Finally, we compared RC with the static version of RC. For
the random problems when solved with MAC-3, the static
version of Rc with var:comp as implemented in [Bousse-
mart et al., 2004] spends on average 10,147,799 revi-
sions, 25,328,772 checks and 10.86 seconds while RC
with rev:comp spends on average spends 515, 349 revisions,
10, 056, 858 checks and 12.74 seconds. The static version of
RC spends about twice as many revisions and checks as RC
but saves time. The reason for this is that checks are very
cheap for random problems and that the static version uses a
variable based queue, which has low maintenance overhead.

7 Conclusions

In this paper first we present a support condition. Satisfying
Sc guarantees the existence of a support for a value. Scs
avoid many positive and negative support checks during the
course of the search. We showed that when checks are cheap
reducing them by using Ascs do not payoff a lot in terms of
the cpu time. Instead of carrying out Ascs for each value we
tried to reduce the number of ineffective revisions through
revision condition and a weak version of revision condition.
Both of them reduce the number of arcs that have to be added
to the queue. Having fewer arcs in the queue improves the
selection of the best arc from the queue. Furthermore fewer
revisions are performed. Overall, scs reduce the positive and
negative support checks required by MAC-3 and MAC-2001.
Rcs avoid at least 50% of the total revisions. Combining the
two results in reducing the solution time by 50%.

Acknowledgements

Thanks to Barbara Smith, Mark Hennessy, Richard Wallace
and the other members of the Cork Constraint Computation
Centre for helpful comments.

References

[Achlioptas et al., 2000] Dimitri Achlioptas, Carla Gomes,
Henry Kautz, and Bart Selman. Generating satisfiable
problem instances. In AAAI/IAAL, pages 256261, 2000.

[Bessiére and Cordier, 1993] C. Bessiére and M. Cordier.
Arc-consistency and arc-consistency again. In Proceed-
ings of the 111 National Conference on Artificial Intelli-
gence (AAAI’93), Washington, DC, 1993.

[Bessiére and Régin, 2001] C. Bessiére and J.-C. Régin. Re-
fining the basic constraint propagation algorithm. In Pro-
ceedings of the Seventeenth International Joint Confer-
ence on Artificial Intelligence (IJCAI’2001), pages 309—
315, 2001.

[Boussemart et al., 2004] F. Boussemart, F. Hemery,
C. Lecoutre, and L. Sais. Support inference for generic
filtering. In Proceedings of the Tenth International
Conference on Principles and Practice of Constraint
Programming, 2004.

[Gentetal., 2001] I.P. Gent, E. Maclntyre, P. Prosser,
B. Smith, and T. Walsh. Random constraint satisfaction:
Flaws and structure. Journal of Constraints, 6(4):345-372,
2001.

[Mackworth, 1977] A.K. Mackworth. Consistency in net-
works of relations. Artificial Intelligence, 8:99-118, 1977.

[McGregor, 1979] J.J. McGregor. Relational consistency al-
gorithms and their application in finding subgraph and
graph isomorphisms. Information Sciences, 19:229-250,
1979.

[Mehta and van Dongen, 2004] D. Mehta and M.R.C. van
Dongen. Two new lightweight arc consistency algorithms.
In M.R.C. van Dongen, editor, Proceedings of the First In-
ternational Workshop on Constraint Propagation and Im-
plementation (CPAI’2004), pages 109-123, 2004.

[Mohr and Henderson, 1986] R. Mohr and T. Henderson.
Arc and path consistency revisited. Artificial Intelligence,
28:225-233, 1986.

[Sabin and Freuder, 1994] D. Sabin and E.C. Freuder. Con-
tradicting conventional wisdom in constraint satisfaction.
In A.G. Cohn, editor, Proceedings of the Eleventh Eu-
ropean Conference on Atrtificial Intelligence (ECAI’94),
pages 125-129. John Wiley and Sons, 1994.

[van Dongen and Mehta, 2004] M.R.C. van Dongen and
D. Mehta. Queue representation for arc consistency algo-
rithms. In L. McGinty and B. B.Crean, editors, Proceed-
ings of the Fifteenth Irish Conference on Artificial Intelli-
gence and Cognitive Science, pages 334-343, 2004.

[van Dongen, 2004] M.R.C. van Dongen. Saving support-
checks does not always save time. Artificial Intelligence
Review, 21(3-4):317-334, 2004.

[Wallace and Freuder, 1992] R.J. Wallace and E.C. Freuder.
Ordering heuristics for arc consistency algorithms. In Pro-
ceedings of the Ninth Canadian Conference on Artificial
Intelligence, pages 163-169, Vancouver, B.C., 1992.

