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Abstract
 Algorithms for pruning game trees generally 
rely on a game being zero-sum, in the case of al-
pha-beta pruning, or constant-sum, in the case of 
multi-player pruning algorithms such as specula-
tive pruning. While existing algorithms can prune 
non-zero-sum games, pruning is much less effec-
tive than in constant-sum games. We introduce the 
idea of leaf-value tables, which store an enumer-
ation of the possible leaf values in a game tree. 
Using these tables we are can make perfect deci-
sions about whether or not it is possible to prune a 
given node in a tree. Leaf-value tables also make it 
easier to incorporate monotonic heuristics for in-
creased pruning. In the 3-player perfect-informa-
tion variant of Spades we are able to reduce node 
expansions by two orders of magnitude over the 
previous best zero-sum and non-zero-sum pruning 
techniques.

1  Introduction
In two-player games, a substantial amount of work has gone 
into algorithms and techniques for increasing search depths. 
In fact, all but a small fraction of computer programs written 
to play two-player games at an expert level do so using the 
minimax algorithm and alpha-beta pruning. But, the pruning 
gains provided by alpha-beta rely on the fact that the game is 
zero-sum. Two-player games most commonly become non-
zero-sum when opponent modeling is taken into consider-
ation. Carmel and Markovitch [1996] describe one method 
for pruning a two-player non-constant-sum game.
 A multi-player game is one with three or more players 
or teams of players. Work on effective pruning techniques 
in multi-player games began with shallow pruning [Korf, 
1991], and continued most recently with speculative pruning, 
[Sturtevant, 2003]. While a game does not need to be con-
stant-sum for pruning to be applied, the amount of pruning 
possible is greatly reduced if a game is not constant-sum.
 Both two-player and multi-player pruning algorithms 
consist of at least two stages. They first collect bounds on 

players  ̓ scores, and secondly test to see if, given those 
bounds, it is provably correct to prune some branch of the 
game tree. This work focuses on the second part of this pro-
cess. Alpha-beta and other pruning methods use very simple 
linear tests as a decision rule to determine whether or not they 
can prune. For zero-sum games these decisions are optimal. 
That is, they will make perfect decisions about whether prun-
ing is possible. For non-zero-sum games, however, current 
techniques will not catch every possibility for pruning.
 In order to prune optimally in a non-zero-sum game we 
must have some knowledge about the space of possible val-
ues that can occur within the game tree. Carmel and Markov-
itch assume a bound on the difference of player scores. We 
instead assume that we can enumerate the possible outcomes 
of the game. This is particularly easy in card games, where 
there are relatively few possible outcomes to each hand. 
Given that we can enumerate possible game outcomes, we 
can then make optimal pruning decisions in non-zero-sum 
games. In addition, these techniques can be enhanced by in-
corporating information from monotonic heuristics to further 
increase pruning.
 In section 2 we illustrate the mechanics of a few pruning 
algorithms, before moving to a concrete example from the 
game of Spades in section 3. In section 4 we examine the 
computational complexity and the leaf-value table method 
that is used to implement different decision rules for pruning, 
followed by experimental results and conclusions.

2 Pruning Algorithms
To prune a node in a game tree, it must be proven that no val-
ue at that node can ever become the root value of the tree. We 
demonstrate how this decision is made in a few algorithms.

2.1 Alpha-beta
We assume that readers are familiar with the alpha-beta prun-

 maxValue(state, α, β)
  IF cutoffTest(state) return eval(state)
  FOR EACH s in successor(state)
   α ← max(α, minValue(s, α, β))
   IF (β - α ≤ 0)† RETURN β
  RETURN α

Figure 1: Alpha-beta pseudo-code.



ing algorithm. In Figure 1 we show pseudo-code for the 
maximizing player, modified slightly from [Russell and Nor-
vig, 1995]. The statement marked † is where alpha-beta de-
termines whether a prune is possible. This is illustrated in 
Figure 2. The x-axis is the value β − α, and we plot points 
as they are tested. If a point, such as the solid one, falls to 
the left of 0, we can prune, and if it falls to the right, like the 
hollow point, we canʼt. It is useful to think of this as a linear 
classifier, because it makes a single comparison with a linear 
function to determine if a prune is possible.

2.2 Maxn

The maxn algorithm [Luckhardt and Irani, 1986] is a general-
ization of minimax for any number of players. In a maxn tree 
with n players, the leaves of the tree are n-tuples, where the 
ith element in the tuple is the ith playerʼs score or utility for 
that position. At the interior nodes in the tree, the maxn value 
of a node where player i is to move is the maxn value of the 
child of that node for which the ith component is maximum. 
At the leaves of a game tree an exact or heuristic evalua-
tion function can be applied to calculate the n-tuples that are 
backed up in the game tree.
 We demonstrate this in Figure 3. In this tree there are 
three players. The player to move is labeled inside each node. 
At node (a), Player 2 is to move. Player 2 can get a score of 3 
by moving to the left, and a score of 1 by moving to the right. 
So, Player 2 will choose the left branch, and the maxn value of 
node (a) is (1, 3, 5). Player 2 acts similarly at node (b) select-
ing the right branch, and at node (c) breaks the tie to the left, 
selecting the left branch. At node (d), Player 1 chooses the 
move at node (c), because 6 is greater than the 1 or 3 avail-
able at nodes (a) and (b).

2.3 Maxn Pruning Algorithms
Given no information regarding the bounds on players  ̓
scores, generalized pruning is not possible. But, if we assume 
that each playerʼs score has a lower bound of 0, and that there 
is an upper bound on the sum of all players scores, maxsum, 
we can prune. These bounds do not guarantee that a game 
is constant-sum, and existing pruning algorithms may miss 
pruning opportunities if a game is not constant-sum.

2.3.1 Shallow Pruning
Shallow pruning [Korf, 1991] is one of the simplest pruning 
algorithms for multi-player games. An example of shallow 
pruning is shown in Figure 4. The sum of players  ̓scores in 
each maxn value is always 10, so maxsum is 10. In this tree 
fragment Player 1 is guaranteed at least a score of 5 at node 
(a) by moving towards (b). Similarly, Player 2 is guaranteed 6 
points at (c) by moving towards (d). Regardless what the un-
seen value is at (e), Player 2 will not select that move unless it 
gives him more than 6 points. Thus, before exploring (e), we 
can already guarantee that Player 1 will never get more than 
maxsum - 6 = 4 points at (c). Because Player 1 is guaranteed 
at least 5 points at (a), the value of (e) is irrelevant and can 
be pruned.
 In this example we used consecutive bounds on Player 1 
and Player 2ʼs scores to prune. As stated previously, the gen-
eral idea is to prove that unseen leaf nodes cannot become the 
maxn value of the game tree. In Figure 4, for instance, we can 
consider all possible values which might occur at node (e). If 
any of these can ever become the maxn value at the root of the 
tree, we cannot prune.
 To formalize this pruning process slightly, we construct a 
n-tuple similar to a maxn value called the bound vector. This 
is a vector containing the lower bounds on players  ̓scores in 
a game tree given the current search. While the maxn value is 
constrained to sum to maxsum, the bound vector can sum to 
as much as n·maxsum. In Figure 4, after exploring every node 
except node (e) our bound vector is (5, 6, 0). This is because 
Player 1 is guaranteed 5 points at the root, and Player 2 is 
guaranteed 6 points at node (c). Existing pruning algorithms 
prune whenever the sum of the components in the bound vec-
tor is at least as large as maxsum.

Figure 5: Shallow pruning decision space.
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 We show a visualization of the shallow pruning space 
in Figure 5. The x- and y-coordinates are scores or bounds 
for Player 1 and Player 2 respectively. The shaded area is the 
space where possible maxn values for Player 1 and 2 will fall. 
All maxn values in the game must be in this space, because 
their sum is bounded by maxsum. Because shallow pruning 
ignores Player 3, Player 1 and Player 2ʼs combined scores 
are not constant-sum, so they can fall anywhere to the left of 
the diagonal line. Bound vectors, however, can fall anywhere 
in the larger square. If a bound vector is on or above the di-
agonal line defined by x+y = maxsum, we can prune, because 
there cannot be a maxn value better than those bound vectors. 
Like alpha-beta, shallow pruning is using a linear classifier to 
decide when to prune.
 Ignoring Player 3 s̓ values, we plot the leaf values (5, 4, -) 
and (0, 6, -) from Figure 4 as open points, and the bound vec-
tor (5, 6, -) used to prune in Figure 4 as a solid point. In this 
instance, there is no gap between the gray region and the di-
agonal line, so the line defined by x+y = maxsum is a perfect 
classifier to determine whether we can prune.
2.3.2 Alpha-Beta Branch-and-Bound Pruning
Although shallow pruning was developed for multi-player 
games, the basic technique only compares the scores from 
two players at a time. Alpha-beta branch-and-bound pruning 
[Sturtevant and Korf, 2000] is similar to shallow pruning, ex-
cept that it uses a monotonic heuristic to provide bounds for 
all players in the game. The bound vector in Figure 4 was (5, 
6, 0). Player 3ʼs bound was 0, because we had no information 
about his scores. But, supposing we had a monotonic heuris-
tic that guaranteed Player 3 a score of at least 2 points. Then 
the bound vector would be (5, 6, 2). This additional bound 
makes it easier to prune, since we can still prune as soon as 
the values in the bound vector sum to maxsum.
2.3.3 Speculative Pruning
Speculative pruning [Sturtevant, 2003], like alpha-beta 
branch-and-bound pruning, takes into account all of the play-
ers in the game. It does this by considering multiple levels in 
the game tree at one time. We demonstrate this in Figure 6. 
In this figure, the important bounds are Player 1ʼs bound at 
(a), Player 2ʼs bound at (b) and Player 3ʼs bound at (c). These 
together form the bound vector (5, 3, 3). If these values sum 

to at least maxsum we can guarantee that there will never be 
a value at the right child of (c) which can become the maxn 
value of the tree. When pruning over more than 2-ply in 
multi-player games there is the potential that while a value at 
(c) cannot become the maxn value of the tree, it can affect the 
maxn value of the tree. Other details of the speculative prun-
ing algorithm prevent that from happening, but we are only 
concerned with the initial pruning decision here.
 We illustrate the pruning decision rule for speculative 
pruning in Figure 7. In this case, because we are comparing 
three playerʼs scores, the decision for whether we can prune 
depends on a 2-d plane in 3-d space, where each axis cor-
responds to the score bound for each of the 3 players in the 
game. Thus each maxn value and bound vector can be repre-
sented as a point in 3-d space. For a three-player constant-
sum game, all possible maxn values must fall exactly onto 
the plane defined by x+y+z = maxsum, which is also perfect 
classifier for determining when we can prune. As in shallow 
pruning, bound vectors can fall anywhere in the 3-d cube.

2.4 Generalized Pruning Decisions
In all the pruning algorithms discussed so far, a linear classi-
fier is used to make pruning decisions. This works well when 
a game is zero-sum or constant-sum, but in non-constant-sum 
games a linear classifier is inadequate1.
 When a game is non-constant-sum, the boundary of the 
space of maxn values is not defined by a straight line. We 
demonstrate this in the next section using examples from the 
game of Spades. To be able to prune optimally, we need to 
know the exact boundary of feasible maxn values, so that we 
can always prune when given a bound vector outside this re-
gion. We explain methods to do this in Section 4.

3 Sample Domain: Spades
Spades is a card game for 2 or more players. In the 4-player 
version players play in teams, while in the 3-player version 
each player is on their own, which is what we focus on. There 
are many games similar to Spades which have similar proper-

Figure 6: Speculative Pruning

maxsum = 10

2 2

1

(5, 4, 1)

3 3

(3, 4, 3)
1

(3, 3, 4)

(c)

(b)
(, ≥3, )

(≥5, , )

(, , ≥3)

(a)

(?, ?, ?)

Figure 7: Speculative pruning decision space.

maxsum

maxsum

0

maxn values,
x+y+z = maxsum

bound vector space

x

y

z

1Further details on the relationship between constant-sum and 
non-constant-sum games are found in Appendix A, but they are not 
necessary for understanding the contributions of this paper.



ties. We will only cover a subset of the rules here. A game of 
Spades is split into many hands. Within each hand the basic 
unit of play is a trick. At the beginning of a hand, players 
must bid how many tricks they think they can take. At the end 
of each hand they receive a score based on how many tricks 
they actually took. The goal of the game is to be the first 
player to reach a pre-determined score, usually 300 points.
 If a player makes their bid exactly, they receive a score 
of 10×bid. Any tricks taken over your bid are called over-
tricks. If a player takes any overtricks they count for 1 point 
each, but each time you accumulate 10 overtricks, you lose 
100 points. Finally, if you miss your bid, you lose 10×bid. So, 
if a player bids 3 and takes 3, they get 30 points. If they bid 
3 and take 5, they get 32 points. If they bid 3 and take 2, they 
get -30 points. Thus, the goal of the game is to make your bid 
without taking too many overtricks.
 If all players just try to maximize the number of tricks 
they take, the game is constant-sum, since every trick is taken 
by exactly one player, and the number of tricks available is 
constant. But, maximizing the tricks we take in each hand 
will not necessarily maximize our chances of winning the 
game, which is what we are interested in. Instead, we should 
try to avoid overtricks, or employ other strategies depending 
on the current situation in the game.
 In a game with 3 players and t tricks, there are (t+1)(t+2)/2 
possible ways that the tricks can be taken. We demonstrate 
this in Table 1, for 3 players and 3 tricks.
 Table 1 is an example of a leaf-value table. It contains all 
possible leaf values and their associated utility in the game. 
In Spades, we build such a table after each player had made 
their bid, but before game play begins. The first column enu-
merates all possible ways that the tricks can be taken by each 
player. The second through fourth columns evaluate the score 
for each player, that is their utility for each particular out-
come. In this example, Player 1 and Player 2 have bid 1 trick 
each, and Player 3 bid 2 tricks. If a player does not make 
their bid they have a score of 0, otherwise we use a heuristic 
estimate for their score, 10×bid - overtricks + 3×(how many 
opponents miss their bid). As has been shown for minimax 
[Russell and Norvig, 1995], we only care about the relative 

value of each state, not the absolute value. So, in the last col-
umn we have replaced each playerʼs utility with a rank, and 
combined all playerʼs ranks into the final maxn value.
 As an example, the first possible outcome is that Players 
1 and 2 take no tricks, while Player 3 takes 3 tricks. Since 
Players 1 and 2 both missed their bids, they get 0 points. 
Player 3 made his bid of 2 tricks, and took 1 overtrick. Since 
we want to avoid too many overtricks, we evaluate this as 20-
1 = 19 points. But, since both Player 1 and 2 miss their bids in 
this scenario, Player 3 has a bonus of 6 points. This is the best 
possible outcome for Player 3, so it gets his highest ranking. 
For Player 1 and 2 it is their worst possible outcome, so they 
rank it as 0.
 We graph the shallow pruning decision space for the first 
two players of this game in Figure 8. In this game maxsum is 
4. The 10 possible leaf values for the first two players are all 
plotted as hollow points in the graph. If we use maxsum as a 
discriminator to decide if we can prune, it will indicate that 
we can only prune if a bound vector falls on or above the bold 
diagonal line. But, we can actually prune as long a bound 
vector is on or above the border of the gray region. So, we 
can actually prune given any bound vector for player 1 and 2 
except (0, 0), (0, 1), (1, 0) and (1, 1).
 As a final point, we note that in card games like Spades 
the number of tricks you have taken can only increase mono-
tonically, which can be used as a heuristic to help pruning. 
This observation is the key behind the alpha-beta branch-
and-bound pruning technique. But, if we are using a utility 
function like in Table 1, it is difficult to describe how the 
monotonic heuristic relates to the evaluation function. Leaf-
value tables, however, make the task easy.
 Assume, for instance, that Player 2 has already taken 1 
trick. Then, we can ignore all outcomes in which he does not 
take one trick. This gives us a reduced set of values, which 
are marked with a † in Table 1. Looking at the associated 
maxn values, we then see that Player 1 will get no more than 
2 and Player 3 will get no more than 1. We show how this is 
used in the next section.

4 Leaf-Value Tables
The formal definition of a leaf-value table is a table which 
holds all possible outcomes that could occur at a leaf node in 
a game. Looking back to the pruning algorithms in Section 2, 

Figure 8: Pruning decision space for Table 1.
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(2, 1, 0)† 9+3 10+3 0 (1, 2, 0)
(3, 0, 0) 8+6 0 0 (3, 0, 0)

Table 1: Outcomes for a 3-player, 3-trick game of Spades.



we want to replace the linear classifiers with more accurate 
classifiers, given a leaf-value table. Thus, we need an effi-
cient way to both find and compute regions like in Figure 8 to 
determine when we can prune.
Theorem: The information stored in a leaf-value table is suf-
ficient to make optimal pruning decisions.
Proof: We first assume that we have a bound vector b = (b1, 
b2, …, bn), where each bound in the vector originates on the 
path from the root of the tree to the current node. We are 
guaranteed that a player i with bound bi will not change his 
move unless he can get some value vi where vi > bi. Thus, if 
there exists a value v = (v1, v2, …, vn) where ∀i vi 

 > bi then 
we cannot prune, because v is better than every bound in 
the search so far. Given a leaf-value table, we know every 
possible value in the game, and so we can explicitly check 
whether some v exists that meets the above conditions, and 
thus we can use a leaf-value table to make optimal pruning 
decisions. ☐
 Because a leaf-value table gives us an exact descrip-
tion of the boundary of the spaces where we can and cannot 
prune, the only question is how we can use this information 
efficiently. Given a bound vector, we need to quickly deter-
mine whether or not we can prune, because we expect to ask 
this question once for every node in the game tree.
 For small games, we can build a lookup table enumer-
ating all possible bound vectors and whether or not we can 
prune. This will provide constant time lookup, but for a table 
with t entries and n players, this table will be size O(tn) and 
take time O(tn+1) to compute. Including heuristic information 
makes these tables even larger. But, most of these entries will 
never be accessed in any given game. Instead, we can dy-
namically compute entries as we need them, and store the 

results in a hash table.
 Pseudo-code for using a leaf-value table is in Figure 9. 
This procedure is called by a pruning algorithm to decide 
whether or not to prune given current bounds. A leaf-value 
table is pre-computed with each possible outcome of the 
game and the associated rank of that outcome for each player. 
We pass in the current bound vector, as well as any heuristic 
upper bounds on players  ̓scores. If an entry in the leaf-value 
table is inconsistent with the heuristic (line 6), we can ignore 
that entry, because that outcome cannot occur in the current 
sub-tree. If there is an entry in the table for which every play-
er does better than their value in the bound vector, tested on 
lines 8-9, we reach lines 11-12, indicating we cannot prune.
 Every time we attempt to prune, we will pay at most 
O(table size), but this cost is quickly amortized over the look-
ups, and doesnʼt add significant overhead. In a game with a 
large number of outcomes there are a variety of other methods 
that could be used to reduce the lookup cost. Additionally, we 
can always use the standard linear maxsum check, as it will 
always be correct if it indicates we can prune. The heuristic 
does not speed up the check for whether we can prune, but it 
can reduce the effective size of the leaf-value table, making it 
more likely that we do prune.

5 Experimental Results

5.1 Nodes Expanded in Three-Player Spades
We use the game of Spades as a test-bed for the techniques 
introduced in this paper. Our first experiment will illustrate 
that leaf-value tables are quite effective for pruning, and will 
also help demonstrate when they will be most effective. To 
do this, we compare the number of nodes expanded using 
(1) previous pruning techniques and (2) a variety of evalua-
tion functions in the 3-player version of Spades. One of these 
evaluation functions is actually from a different bidding 
game, called “Oh Hell!”
 For each method, we counted the total number of node 
expansions needed to compute the first move from 100 hands 
of Spades, where each player started with 9 cards and searched 
the entire game tree (27-ply). Our search used a transposition 
table, but no other search enhancements besides the pruning 
methods explicitly discussed. Bids for each player are pre-de-
termined by a simple heuristic. For these trees, the leaf-value 
tables contain 55 entries. We present the results in Table 2.
 The first column in the table is the average size of the 
game trees without pruning, 2.7 million nodes. This is deter-
mined by the cards players hold, not the evaluation function 
used, so we will compare the other tree sizes to this value.
 The next two columns are the results using speculative 
pruning with a linear classifier, the previous best pruning 
technique. If we use a non-constant-sum (NCS) evaluation 

 GLOBAL leaf-value table[] { outcome[], rank[] }

1 canLeafValueTablePrune(bounds[], heuristicUB[])
2  IF (inHashTable(bounds, heuristicUB))
3   return hashLookUp(bounds, heuristicUB)
4  FOR each entry in leaf-value table
5   FOR i in players 1..n
6    if entry.outcome[i] > heuristicUB[i]
7     skip to next entry;
8   FOR i in players 1..n
9    if entry.rank[i] ≤ bounds[i]
10     skip to next entry;
11   addToHashTable(false, bounds, heuristicUB)
12   RETURN false;
13  addToHashTable(true, bounds, heuristicUB)
14  RETURN true;

Figure 9: Leaf-Value Table Pruning pseudo-code.

Full Tree NCS MT MoMB mOT smOT WL OH
nodes expanded 2.7M 1.9M 1.1M 400k 37.2k 8.6k 788 40.7k
reduction factor - 1.36 2.37 6.6 71 308 3362 65

Table 2: Overall reduction and average tree sizes in Spades.



function, speculative pruning is able to reduce the average 
tree size by a factor of 1.36 to 1.9 million nodes. Maximizing 
tricks, MT, is the best-case evaluation function for specula-
tive pruning, because it is constant-sum. In this case the aver-
age tree size is reduced to 1.1 million nodes.
 Now, we replace speculative pruningʼs linear classifier 
with leaf-value tables and use a non-zero-sum evaluation. 
The first function we use is MoMB, maximizing the number 
of opponents that miss their bid. This is quite similar to the 
strategy of maximizing your tricks, but the average tree size 
can be reduced further to 400k nodes, a 6.6 fold reduction.
 The next evaluation function we use tries to minimize 
overtricks, mOT. This produces much smaller trees, 37.2k 
nodes on average, a 71 fold reduction over the full tree. A 
similar evaluation function, smOT, allows a slight margin 
for taking overtricks, because that is how we keep our op-
ponent from making their bid, but tries to avoid too many 
overtricks. This evaluation function reduces the tree further 
to 8.6k nodes, over 300 times smaller than the original tree. 
The smOT evaluation is what was used with speculative maxn 
for the NCS experiment. In the end, both algorithms calculate 
the exact same strategies, but with leaf-value tables we can 
do it hundreds of times faster.
 Finally, we show a very simple evaluation function, WL. 
This function gives a score of 1 (win) if we make our bid and 
0 (loss) if we miss it. In practice we wouldnʼt want to use this 
evaluation function because it is too simple, but it does give 
an estimate of the minimum tree size. With this evaluation 
function the average tree has 788 nodes.
 “Oh Hell!” (OH) is a similar game to Spades, however 
the goal of this game is to get as close to your bid as possible. 
In the context of this paper, we can just view this a different 
evaluation function in the game of Spades. Using this evalua-
tion, the average tree size was 40.7k nodes, 65 times smaller 
than the full tree.
 Besides showing the effectiveness of leaf-value tables, 
these experiments help illustrate two reasons why leaf-tables 
are effective for pruning in a non-constant-sum game. The 
first reason for large reductions is that the non-constant-sum 
evaluation may significantly reduce the number of unique 
outcomes in a game, which will be captured by a leaf-value 
table. The best example of this is the WL evaluation function. 
But, smOT also reduces the possible outcomes over mOT, 
and thus reduces the size of the game trees.
 The other factor that is important for pruning is having a 
monotonic heuristic along with an evaluation function that is 
not monotonic with respect to the heuristic. Evaluation func-
tions like mOT are non-monotonic in the number of tricks 
taken, because we initially want to take more tricks, and then, 
after making our bid, we donʼt want to take any more tricks. 
This allows a monotonic heuristic to more tightly constrain 

the search space, and thus increases pruning.
 The MoMB evaluation function is both monotonic and 
only a slight simplification of the MT evaluation function, so 
we should and do see the least gains when using this evalua-
tion function.

5.2 Nodes Expanded in Two-Player Spades
We conducted similar experiments in the two-player game 
of Spades. [Korf, 1991] described how deep pruning fails in 
multi-player games. It is not difficult to show that the same 
problem exists in two-player non-zero-sum games as we 
have described them here. The bottom line is that we cannot 
prune as efficiently as alpha-beta once we use a non-zero-
sum evaluation function. In these experiments we did not ap-
ply every conceivable game-tree reduction technique, only 
transposition tables and basic alpha-beta pruning, so in prac-
tice we may be able to generate smaller two-player zero-sum 
game trees.
 In the two-player Spades games, we searched 100 hands 
to depth 26 (13 tricks) using a variety of techniques. The re-
sults are in Table 3. The full tree averaged 481k nodes. Us-
ing a non-zero-sum evaluation function and the best previous 
methods produced trees that averaged 225k nodes. Using al-
pha-beta pruning and a zero-sum evaluation function reduced 
the trees further to 14k nodes on average. Using leaf-value 
tables (LVT) for pruning produced trees were slightly larger, 
22k nodes. As referenced above, these trees are larger than 
those generated by alpha-beta because we cannot apply deep 
pruning, but they are still much smaller than previously pos-
sible given a non-zero-sum evaluation function.

5.3 Quality of Play From Extended Search
Finally, to compare the effect of additional search on qual-
ity of play, we then played 100 games of 3-player Spades, 
where multiple hands were played and the scores were ac-
cumulated until one player reached 300 points. Also, each 
complete game was replayed six times, once for each pos-
sible arrangement of player types and orderings, excluding 
games with all of one type of player. Each player was allowed 
to expand 2.5 million nodes per turn. One player used specu-
lative pruning with leaf-value tables to prune, while the other 
used speculative pruning with a linear classifier. Hands were 
played “open” so that players could see each others cards. 
The results are in Table 4. The player using the leaf-value 
tables (LVT) was able to win 62.3% of the games and aver-
aged 263 points per game, while the player using previous 
techniques averaged only 226 points per game.

5.4 Summary
We have presented results showing that leaf-value tables, 
when combined with previous pruning techniques, can ef-
fectively prune non-constant-sum games such as Spades or 

Avg. Points % Wins
LVT 263 62.3%

prev. methods 226 37.7%

Table 4: Average score over 100 games of Spades.

Full Tree Best NZS Zero-Sum LVT
nodes 481k 225k 14k 22k

reduction - 2.14 34.4 21.9

Table 3: Reduction and average tree sizes in 2-player Spades.



Oh Hell!
 Although we do not present experimental results here, 
we can predict the general nature of results in other games 
such as Hearts. In most situations in Hearts, our evaluation 
function will be constant-sum. But, there will be some situa-
tions where a non-constant-sum evaluation function is need-
ed. Thus, if we use leaf-value tables for such a game, we will 
have the same gains as previous techniques in portions of the 
game that are constant-sum. But, when the game is non-con-
stant sum, we will benefit from additional pruning, although 
the exact amount will depend on the particular situation.

6 Conclusions and Future Work
In this paper we have shown how an enumeration of possible 
leaf-values in a game tree, called a leaf-value table, can be 
used to change the linear classifier used in classical pruning 
algorithms to an arbitrary classifier needed for non-zero-sum 
games. This technique works particularly well in card games 
like Spades, where we see up to a 100 fold reduction of nodes 
expanded over the previous best results using a constant-sum 
evaluation function, along with gains in quality of play.
 This work expands the limits of how efficiently we can 
search two-player and multi-player games. To a certain ex-
tent there is still an open question of how to best use limited 
resources for play. Recent results in applying opponent mod-
eling to two-player games have not been wildly successful 
[Donkers, 2003]. In multi-player games, we have shown that 
deep search isnʼt always useful, if there isnʼt a good opponent 
model available [Sturtevant, 2004]. But, given a reasonable 
opponent model, this work allows us to use the best  evalua-
tion function possible and still search to reasonable depths in 
the game tree.
 In the future we will continue address the broader ques-
tion of what sort of opponent models are useful, and what 
assumptions we can make about our opponents without ad-
versely affecting the performance of our play. The ultimate 
goal is to describe in exactly which situations we should use 
maxn, and in which situations we should be using other meth-
ods. These are broad questions which we cannot fully answer 
here, but we these additional techniques will provide the tools 
to better answer these questions.
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A Game Transformations
In this paper we have often made distinctions between games 
or evaluation functions based on whether they are constant-
sum or not. These distinctions can be blurred through minor 
transformations, however such transformations do not change 
the underlying nature of the game. In this appendix we ex-
plain this in more detail, but the details are not necessary for 
understanding the technical contributions of this paper.
 First, we can take a game or evaluation function that is 

naturally constant-sum and make it non-constant-sum by ei-
ther adding a player which doesnʼt actually play in the game, 
but receives a random score, or by applying an affine trans-
form to one or more players  ̓scores. Neither of these trans-
formations, however, will change the strategies calculated by 
maxn, because maxn makes decisions based on the relative 
ordering of outcomes, which an affine transform preserves, 
and because any extra players added will not actually make 
decisions in the game tree.
 If we are unaware of either of these changes, previous 
pruning algorithms may treat the game as non-constant-sum 
and miss pruning opportunities. But, leaf-value tables are not 
affected by either of these changes. Leaf-value tables com-
pute the ranking of all outcomes, so any affine transform ap-
plied to an evaluation function will be removed by this pro-
cess. Because no bounds will ever be collected for any extra 
players in the game, as they are not actually a part of the 
game, pruning decisions are unchanged.
 Secondly, we can take a game that is non-constant-sum 
and make it constant-sum by adding an extra player whose 
score is computed such that it makes the game constant-sum. 
Again, because this extra player never actually plays in the 
game, no pruning algorithm will ever collect bounds for this 
player, and it is equivalent to playing the original game. No 
extra pruning can ever be derived from such a change.
 Adding an additional player may also make a non-linear 
classifier appear to be linear. But, because the extra player 
never plays, we will actually need to use the non-linear clas-
sifier to make pruning decisions.
 Thus, while the difference between constant-sum games 
and non-constant-sum games can be blurred by simple trans-
forms, the underlying game properties remain unchanged.
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