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Abstract

In this paper we present a novel algorithm to learn a
score distribution over the nodes of a labeled graph
(directed or undirected). Markov Chain theory is
used to define the model of a random walker that
converges to a score distribution which depends
both on the graph connectivity and on the node la-
bels. A supervised learning task is defined on the
given graph by assigning a target score for some
nodes and a training algorithm based on error back-
propagation through the graph is devised to learn
the model parameters. The trained model can as-
sign scores to the graph nodes generalizing the cri-
teria provided by the supervisor in the examples.
The proposed algorithm has been applied to learn a
ranking function for Web pages. The experimental
results show the effectiveness of the proposed tech-
nique in reorganizing the rank accordingly to the
examples provided in the training set.

Introduction

random walker minimizing the distance of the scores assigned
by the walker from the target values provided by a supervisor
for some nodes in the graph.

Previous work in the same field achieved very limited re-
sults. For example, ifiKondor and Lafferty, 200Rthe au-
thors present an algorithm that processes only non labeled
graphs, while the technique presentefi@hanget al., 2004
is very application specific and features very limited general-
ization capabilities. InTsoiet al, 2003 a method to modify
PageRank scores computed over a collection of pages on the
basis of a supervisor’s feedback is proposed. This algorithm
has limited approximation capabilities, since it controls only
a term of the PageRank equation and it does not optimize how
the scores flow though the connectivity graph.

The algorithm presented in this paper allows to learn target
scores assigned as real numbers, and this makes it more gen-
eral than the one proposed [iDiligenti et al, 2003 which
allows only to specify a set of nodes whose scores should be
increased or decreased.

The paper is organized as follows. In the next section the
web surfer model is introduced. Then, in section 3 the learn-
ing algorithm based on error back-propagation is described,

In this paper we propose an algorithm able to learn awhile the experimental results are presented in section 4. Fi-

generic distribution of values over the nodes of a graph witmally’ in section 5 the conclusions are drawn.

symbolic labels. In many applications, the input data is nat-,

urally represented by a labeled graph. However, the actuzg Random Walks

lack of adequate algorithms to directly process this structured We consider the model of a graph walker that can perform

data commonly forces to convert the input patterns to vectorsne out of two atomic actions while visiting the Web graph:

of real numbers, loosing significant information. In particu- jumping to a node of the graph (actiof) and following a

lar, “Web like” data structures are common in many patternhyperlink from the current node (actiéh

recognition tasks and possible applications range from object In general, the action taken by the surfer will depend on

recognition in segmented images to molecular analysis in bicthe label and outlinks from the node where it is located. We

informatics, and so on. can model the user’s behavior by a set of probabilities which
Like in the PageRank algorithiiPageet al, 1994, the  depend on the current node(l|q) is the probability of fol-

score of a node is assumed to correspond to the probabilitpwing one hyperlink from node, andz(J|q) = 1 — z(l|q)

that a random walker will visit that node at any given time. is the probability of jumping from node.

The score distribution computed by the random walker de- The two actions need to specify their targets(p|q, J)

pends both on the connectivity graph and the labels assigned the probability of jumping from node to nodep, and

to each node. Markov Chain theory allows to define a set:(p|q, 1) is the probability of selecting a hyperlink from node

of constrains on the parameters of the random walker in org to nodep. x(pl|q, ) is not null only for the nodep linked

der to guarantee some desired features like convergence addectly by nodeq, i.e. p € ch(q), beingch(q) the set

independence of the final distribution on the initial state. Aof the children of node; in the graphG. These sets of

learning algorithm which is based on error back-propagatiorvalues must satisfy the probability normalization constraints

through the graph is used to optimize the parameters of théq € G >_ g x(plg, J) =1and}_ ) (Pl 1) = 1.



The model considers a temporal sequence of actions petendency of the surfer to follow a hyperlink from a node with
formed by the surfer and it can be used to compute the prodabel ¢? to a node with labet?, the parameter.(c?|c?, J) is
ability x,,(¢) that the surfer is located in nogeat timet. The  the probability of the surfer to jump from a node with labél
probability distribution on the nodes of the Web is updated byto a node with labet? andz(i|c;) = 1 — x(J|¢;) represents
taking into account the actions at time- 1 using the follow-  the probability that the surfer decides to follow a link out of

ing equation a node with labet;. In the following, we indicate a® the
set of model parameterd, 7, B indicatetransition, jump
zp(t+1) = Z xz(plg, J) - x(J|q) - z4(t) + (1)  andbehaviorparameters, respectively. In particular, it holds
1€G that: P = {7,7,B8} 7 = {z(cc;,l) i,§ = 1,...,n},
J = A{z(cilej, J) i,5 = 1,...,n}, andB = {z(l|¢;) i =
+ ) @lplg, D) - z(llg) - wg(t) 1,...,n}. Under these assumptions, the random surfer equa-
q€pa(p) tion becomes,
wherepa(p) is the set of the parents of noge The score x(cP|ct, J
z, of a nodep is computed using the stationary distri- zp(t+1) = Z (||Cp|) ca(Jlet) () + (2)
bution of the Markov Chain defined by equation (1) (i.e. cG
xp = limy_o z,(t)). The probability distribution over all z(cP|cd, 1)
the nodes at time is represented by the vectar(t) = + Z 5 (ke 1) ~a(lfe?) x4 (1)
[21(t),...,zn(t)], beingN the total number of nodes. gepa(p) —keh(@) ’

An mterestmg property of this model is that, under the as-
sumption that:(.J|q) # 0 andz(plg, J) # 0, ¥p, q € G, the Typically, the values:(c?|c?,1) are initialized tol, such that

stationary distribution:* does not depend on the initial state 2!l links are equally likely to be followed. Because of the
vectorz(0) (seelDiligenti et al, 2003). For example this is model assumptions, the stronger is the tendency of the surfer

; : 1 to move to a node with a specific label, the higher are the
ggﬁl;%rihs Ee;gzligglgp?qqua)ttlon J or whiehJlg) =1 —d, scores associated to the nodes with that label. These assump-
) N 2_ —
The random walker model of equation (1) is a S|mpI|f|edgOnS reducbe the nl:rznber ofgree ?zrapettelﬁsb([ﬁl n)+n =
version of the model proposed [Diligenti et al, 2004, n” —n, beingn the number of distinct labels.
where two additional actions are considered by aIIowing th
surfer to follow backlinks or to remain in the same node. Th63 1 Learning the parameters

learning algorithm proposed in the next section can be easily We assume that a supervisor provides a set of exandples
extended to this more general model. in the graphGG, where each examplec £ is a node associ-

ated to a target scoref.
3 Learning the score distribution Consider the following cost function for the scores com-
puted by a surfer model using the set of paramekers
The random surfer assigns the scores according to the prob-
abilities z(p|g, J), x(J|q), z(plg, 1), andz(l[g). In most of Z P Z )
the approaches proposed in the literature, these parameters ~ e el
are predefined or computed from some features describing
the nodep and/or the node. For example, setting the param- wheree” is called instant error for the node Such error
eters tOx(l|q) =d, z(J|qg) = 1—d, z(plg,J) = +,and takes into account the distance between the target score and
z(plg, 1) = ch( 7 we obtain the popular PageRank randomthe value returned by the ranking function. .
surfer[Pageet al, 1994. We want to minimize the cost function (3) by gradient de-

In the general case, the model has a number of param&CS€Nt With respect to a generic parametet P, i.e.,

se& seé'

ters quadratic in the number of nodes and it is infeasible to OEP n 9eP

estimate these parameters without any assumption to reduce w=w-— M50 =¥~ 1g 3 = 4
their number. In particular, we assume that the labels of nodes w €] iz ow

can assume distinct values” = {¢y,...,c,} and that the

Using a procedure similar to thmack-propagation through
time algorithm (BPTT)[Haykin, 1994, commonly used in
training recurrent neural networks, for each node the
training set we unfold the graph starting fromat time T’

surfer’s behavior for any nodeis dependent only on its label
cP € C and the labels of the nodes pointedbyTherefore,
the parameters of the model are rewritten as:

x(cP|ed, 1) and moving backward in time through the path followed by

z(pla, ) = S z(ck|ca, 1) the random surfer. The graph unfolding is basically a back-

kech(q) ' ward breadth-first visit of the graph, starting from the target

e(plg, J) = z(c|et, J) node at timel’, where each new unfolded level corresponds

’ |cP| to moving backward of one time step. Each unfolded node is
z(llp) = () 2(Jlp) = z(J|cP) associated to the variabig (7—t) whereg is the correspond-

ing graph nodet is the number of backward steps from the
wherec? € C'is the label of nodeg and|c?| is the number of target node. Similarly, the parameters of the model are split
nodes with labet?. The parameter(cP|c?,1) represents the into an independent set of parameters corresponding to the



x(cZ \cp, l)(t)
U(T)=(b} 2 : S.(t+1)- .

a P(tq)}%;(t—ﬂ - ( ) Zkech(p) :C(Ck‘cp7 l)(t)
c Xa (T-1) O b Xc (T-1) U(T-D={a,c} z€ch(p)

-zl (t) =
P(t-2) XP(szz_)z) U(T-2)={a}
P(t-3) = Z 5Z(t+1).P(p,t—>Z7t+1):
T-3)

U(T-3)={a} z€ch(p)
(@ (o) = (¢l —ad)-Plp,t —5,T),

Figure 1: (a) A graph composed by three nodes. (b) The first fourWhereCh(p) is the set O.f children of nodg!n the unfolding
Ie\gels of th(e )unfgldirrJlg for tﬂe grap%, starting from( n)ddat time andP(p,t; — z,tp) indicates the probability of the surfer to
T. U(t) indicates the set of nodes at the levesf the unfolding  follow a path in the unfolding connecting the noget time
(corresponding to the time stepp In the examplel/(T) = {b},  t1 to the nodez at timet,. Only the influence of transition
U(T —1) = {a,c},U(T —2) = {a} andU(T — 3) = {a}. parameters on the score of noglevas taken into account in
the propagation of the delta values.
Neglecting the influence of the jump parameters (i.e. tak-
] ] o ] ing into account only the influence due to link following) is
different time steps. We indicate wifA(t) the model param-  an accurate approximation when the probability of following
eters at time and withw(t) € P(t) the value of any given 3 jink is much higher than the probability of jumping (like it is
parameter at time. An infinite unfolding is perfectly equiv-  commonly assumed in PageRank). However, the experimen-
alent to the original graph with respect to the computation okg| results show that such an approximation provides good
the scorer” (T') for a target node. However, the unfolding  results in the general case.
takes into account only the score propagation due to the for- A generic node at timet has influence over a supervised
ward Imks_, whereas the contribution of jumps (coming frompode s at time T proportional to the probability?(p,t —
any node in the graph) is neglected. s, T) that the surfer will follow the path from the nogeat
Inthe following, we indicate a;(¢) the set of nodes con-  time ¢ to the central node at time7'. An implication of this
tained in the unfolding centered on nogtor the time ste.  result is that farther nodes will have less influence, given the

See figure 1 for an example of graph unfolding. exponential decrease of the probability of following a path

Thanks to the parameter decoupling in the unfolding, apa- ., . . . 9P
rameterw(t) influences only the scores at the following time with its length. In particular, a no@emfluencesawf(t) only

step. Thus, the derivative of the instant error with respect to i P(p,t — s,T) # 0. Sinceld,(T — t) is the set of nodes

parametetv(t) can be written as, from which it is possible to reach nodeat timeT" starting
» P at timet, only for the nodes in this set it holds th&tp, t —

dey  _ 3 gel Oy (t+1) 5) 5 T)# 0. Thus, in equation (8) not all the score variables at

Ow(t) Ozl (t+1) ow(t) timet + 1 must be considered in the application of the chain

reG rule. Inserting equation (8) into (6), and limiting the chain

Assuming that the parameters of the surferstegionary  rule only to the nodes with a non-zero influence, yields,

(i.e. they do not depend on time:(t) = w Vt), the derivative 9P T—1
with respect to a single parameter can be obtained summing % _ (P — 29) Z Z P(p,t — s,T) -
all the contributions for the single time steps, ow ‘ ) 1= b0 pello (t4+1)
P T-1 P 9rP(t + 1 0zP (t+1
dey _ Z Z Oc, Oy ( ) (6) . M.
Ow ozP (t+1) ow(t) dw(t)

t=—o0 p
reG Since the stable point of the system does not depend on the

oe? . ; ; _ initial state, without loss of generality, the unfolding can be
The termam;,(tﬂ) in equation (6) can not. be directly com interrupted at time (the graph is unfolded times) assuming
puted, unless when= T — 1,5 = p. In this latter case, it hat7 s large enough so that the state before tifeas no
holds that, P effect on the final state (this is also expressed by the fact that
ey — 2P (T) — 22 ) the probability of following a path in the unfolding(p, t —
0xP(T) s s s,T) converges t® when the path lengtf’ — ¢ increases),

P
Let d,(t) indicateag%. If p is not a target node, then 0eP —

(t) s P .d )
e ’ ow (xs xs) § E P(p,t s,T)

7277 can be rewritten as, t=1 pel, (t+1)
o7
P
del del 0xT (t+1) C Omp (4D 9)
T = YO= X e e~ ()
35617)’(25) P 0zP(t+1) 83:17])(25) _ w ) o
=G In the following sections, we compute the derivative
P P z” . . . . .
~ Z deg ) Oz (t+1) _ (8) 0 51152:)1) to be inserted into equation (9) for a transition, jump
2Ech(p) OxP(t+1)  dzf(t) and behavior parameter.



3.2 Learning the transition parameters where the surfer model is assumed to respect the probabilistic
For a transition parameter = z(c;|c;,1), equation (2) ~constrains at every time step, i&(.J|c;)(t) = 1 —z(l|c;)(t).

8zP (t+1) . i Merging equation (9) and (11) under the assumption of
shows thaty; =7 = 01f ¢ # ¢;. Onthe other hand if  gqe| stationarity and convergence at tiie yields the
c? = ¢;, it holds that, derivative of the instant error with respect to a behavior pa-
ax;’(t +1) . » ramet.er. AII pare_lmeters can be simultaneously updated as
e D0 POREIUCHIGEAGE described in section 3.2, 3.3 and 3.4 to train the model. Af-
L q€pa(p) ter the updating, the jump and behavior parameters must be
P 2(cP|e?,0)(1) normalized to respect the probabilistic constrains.
{zkmm z(c* e, 0)(E) Finally, using an EM-style algorithniDempsteret al,
dz(cile;, 1)(t) 1977 the adapted surfer model can re-surf the Web graph

yielding a new estimate of the scores. The procedure can be
repeated till a stop criterion is satisfied. Since the parame-
ters are estimated from a few levels deep unfoldings, only a

The application of the derivative rule for a fraction of func-
tions, yields that when? = ¢;,

ozl (t+1)

T e = 2 acram (I]c?)(?) -aP(t)-  (10)  small set of nodes must be considered at each iteration. The
! wet=e; main overhead of the proposed learning algorithm is the full

Dreen(a) T 1eh D (t)—z(c”|e?,D) (1) |kech(g):c" =ci] PageRank computation that must be completed at each step.
[Sheenca z(cFlet.)(1)]? Our experiments show that usually only very few iterations

where|k € ch(q) : & = ¢;| is the number of children nodes are needed to converge.

of ¢ having labek;. .
Without loss of generality, it can be assumed that the sys4 Experimental results
tem has already converged at tiddi.e. z, = z,(t),t = The experiments were performed on two datasets, which
0,...,T, Yq € G). Inserting equation (10) into (9) and, after were collected by focus crawling the W¢ébiligenti et al,
removing all temporal dependencies from the parameters arP0d, on the topics “wine” and “Playstation”, respectively.
from the node scores under the assumption of model statiorFhe “wine” dataset contains 000.000 documents, while the
arity and convergence at tinfie the derivative of the instant “Playstation” one500.000. The documents were clustered
error for the considered transition parameter is obtained.  using a hierarchical version of the k-means algoriffiimda
Averaging over all the examples, the model parameters caand Hart, 1978 In particular, in two different runs, we clus-
be updated by gradient descent according to equation (4). THered the pages from the dataset on topic “Playstation2hto
new parameters can be used to compute a new score distgets, whereas the dataset on topic “wine” was clustered into
bution over the nodesf. Function optimization and score 25 and100 sets.
estimation can be iterated through multiple epochs, till a ter- Two topic-specific search engines were built containing the

mination criterion is satisfied. downloaded documents. The rank of each page in the dataset
i i was computed using a random walker producing the standard
3.3 Learning the jump parameters PageRank scores. We tested the quality of the ranking func-
For a jump parameter = z(c;|c;, J), equation (2) shows tion by submitting a set of queries to the search engine whose
that it holds that, results were sorted by the scores assigned by the random
8P (t + 1) 0 3if P # ¢ surfer.' By browsing thg 'result.s, we found'pages which were
R ———— . O[O 5 2P (t) if P =c; authorities on the specific topic but were (incorrectly) not in-
dx(cile, J)(t) lei ;ggij a ’ serted in the top positions of the result list. Such pages were

selected as examples of pages which should get a higher rank
d(positive examples). A target score equal to one (the maxi-
iwum reachable score according to the model) was assigned

where|¢;| indicates the number of nodes in the gra@lwith

label¢;. The previous equation can be inserted into (9) an
removing all temporal dependencies under the assumption
model convergence and stationarity, yields the derivative o
the instant error with respect to a jump parameter.

0 the positive examples. On the other hand, we found pages
aving a high rank which were not authorities for the topic.

Such pages were selected as negative examples and a target

3.4 Learning the surfer action bias score equal to zero was assigned to those pages. The learn-

Following a procedure similar to that shown for the transi-ing algorithm, as previously described was applied to these

8xP (t+41) i amples (3-15) was typically labeled as positive or negative in
m for a single parameter. any single experiment.
In particular, equation (2) shows that, . i
P (t + 1) w(ePles (D) . 4.1 _Apaly3|s of the effe_cts of Ie_arnlng .
— = z Ty, — This first group of experiments aims at demonstrating that
Ox(lle:)(t) sty 2utech(q) T(CFlei, 1)(2) the surfer model as learned by the proposed training algo-
= rithm, could not be generated by a non-adaptive schema as
. z(Plei, J)(E)  p ) (11)  the focused versions of PageRank proposed in the literature.
|cp| R In figure 2, we show the values of the transition, jump

G

el —c,
gicd=c;

and behavior parameters for each cluster, resulting from the
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Figure 3: Plots of the normalized probability of the surfer of being
located in a page of a given cluster before and after learning. (a)
results on the crawl for the topic “wine” with00 clusters. (b) results

on a random graph with00.000 nodes an@5 clusters.
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Figure 2: Values of the transition, jump and behavior parameters 7E  — <Transition anc ump
after learning for the “Playstation” dataset. For each cluster (x axis), S o
all then parameters to the other clusters are sequentially plotted.
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training sessions for a surfer on the topic “Playstation”. The 7
learned parameters represent a complex interaction of the ozE -
resulting surfer with the page clusters where a few clus- 01r S P s

ters are strongly boosted and a few other strongly demoted. T T s
This behavior (expecially targeted demotions) can not be ex- Epoch

pressed by the focused versions of PageRRidhardson and

Domingos, 2002; Diligentét al,, 2004, which simply boost  Figure 4: Values of cost function as a function of the iteration
all the parameters leading to the clusters of relevant pagesimber. Each plot reports the cost function when a specific set of
(according to the simplistic assumption that relevant pageparameters is considered during training.

are more likely to point to other relevant pages). This demon-

strates that the trained surfer is able to exploit hierarchies %arning process, the cost function reaches its minimum.
topics to model the complex path leading to good/bad pages. |, figure 5, there are shown the scores of the pages of clus-
In figure 3-(a) and 3-(b), there are plotted the probabilitiester 8 of the dataset “Playstation” before and after learning.
that the surfer is located in a page of a specific cluster. IMhis cluster was manually detected as strongly on the topic
particular we show the results for the dataset on topic “wine™p|aystation” and3 pages belonging this cluster were explic-
clustered intol00 groups and a random graph wh0.000  itly inserted in learning set as pages that should get an higher
nodes clustered int2h groups. The learning algorithmis able score. As expected the rank of the other pages in this cluster
to increase the likelihood of the random surfer to visit pagesyvas boosted up thanks to the capability of the algorithm to
belonging to a set of clusters, while decreasing its probabilityyeneralize from a small number of training examples.
of visiting pages belonging to other clusters. o
Figure 4 shows the value of the cost functiBi at each 4.2 Qualitative results
iteration. Each plot reports the cost function when a specific This experiment compares the quality of the page ranks
set of parameters is optimized during training. The behaviobefore and after training. In particular, some authoritative
parameters are less effective than the jump parameters in opages on the topic “wine” were provided as positive exam-
timizing the surfer model. However, neither the behavior orples, while some authoritative pages on other topics were pro-
the jump parameters are as effective as the transition parameided as negative examples. Figure 6 reports the pages which
ters. As expected, when all parameters considered during thabtained the largest variation in their rank. The pages that ob-
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5 Conclusions

In this paper we introduced a novel algorithm to learn a
score distribution over the nodes of a labeled graph. The
learning algorithm adapts the parameters of a random surfer
in order to match the target scores assigned on a small sub-
set of the nodes. Since the parameters are estimated from the
unfoldings of the graph centered on the example nodes, the
learning algorithm is efficient and can be applied to graphs



