A Modal Logic for Reasoning about Possibilistic Belief Fusion
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1 Introduction o if ¢ is a wif, then[Q],¢ and [Q]} ¢ are wffs for any

In this paper, we propose a modal logic for reasoning about Fooq]emptyQ € TOu, and any rational number ¢

possibilistic belief fusion. This is a combination of multi-

agent epistemic logic and possibilistic logic. We use gradedf 2 = {O} is a singleton, we writg0],¢ (resp.[O]7 ),
epistemic operators to represent agents’ uncertain beliefs, afgstead of{O}].¢ (resp.[{O}]7 ¢). Intuitively, O], (resp.

the operators are interpreted in accordance with possibilistitO] ¢) means that an agent merging distributed beliefs in ac-
semantics. We employ ordered fusion based on a level skig-ordance with the ordering 6f will believe  with a strength
ping strategy to resolve the inconsistency caused by diredt least equal to (resp. more than)\Ve can view eacly as a
fusion; that is, the level at which the inconsistency occurs ig/irtual agent, and?] corresponds to a distributed belief oper-

skipped. Here, we present the formal semantics and an a@tor[Faginet al, 1994 of virtual agents in2. Note that our
iomatic system for the logic. purpose is to ensure the consistency of ordered fusion based

on any single orde®. When{2 contains more than one or-
der,[Q2]F L may hold. This does not matter, however, since a

2 Syntax non-singletorf) plays only an auxiliary role in our logic.

To encode the degrees of reliability nfagents, we use or-
dering relations over any subset{f,...,n}. Let70, de- 3 Semantics

gﬁetthseuks)gzﬁf {?" pOSS'}bI?rﬁ;zcwgtgéﬁfggc?;gaaf:z'i' e To present the semantics, we briefly review possibility theory
S nFt)a)(/:tic notatior;'v'vifh eéch str’ict total orderir® Letq [Zadeh, 197B In this ! heory, each_ p035|b|I|t)_/ q!strlbutlon
XY {ir,i i} be a non-empty subset 6l " n) 7w : W — [0, 1] can derive an associated possibility measure
= 1,02y---5tm - R . oW i . oW

and> be a strict total order such thagt> iy iff j < k for all gsﬁ2(x —L[Q, 1] and aE r;e;g(ﬁ{};(l)r(r;ea_s?é. ‘2 - [0(, 1%,
1 <, 7,k < m. Then, the syntactic notation f¢X, >) is the ) = SUDgex ML — 7 SUPggx ML)
Stingiy > o > -+ > im. ﬁ(%ismllltly dEtrlbutlorFr :dW —ib[?'})}]dl's tn_%rr?ahzed if

. : : i = 1. normalized possibility distribution repre-
valr?ag?'esspﬁ;ﬂeghthgvce?ps'tuaclrlle;t(ipa{?oﬁ:ed&b%ephoetesmﬁta sents a consistent belief state. @fis not normalized, i.e.,
PRI mg>gi then the sefis, : i} is calledg sup,cw 7(z) < 1, it represents a partially inconsistent belief
tf11e do?nain o0 dgr;oted by (), Ir117tﬁi’s. .C.ésgzo > i state.dl_— ;uprevgakr)(x) is called thenconsistency degreef
denotesi; > g > s >y > Ay if imi1 & 6(0). As W’:Q S'Epégf_t;mcﬁg is a tuple = (W, (m;)1<i<n, V)
the syntactic notation is unique for each total order, we can .~ oot S S ea@hr’nazslgzlérﬁ’wor,ld
also identify the notation with the total order itself, and write ibili d_p ibuti ) W map W h
O € T0O,,. Furthermore, the upper-case Greek lefbeis éj\i‘;oapos& lity distributionr;.., : W — [0, 1] overW’ suc

; . ate(m; ) < €, andV maps elements if, to subsets ofV’.
used to denote meta-variables ranging over nonempty subs e definero,., for eachO € TO,, andw € W inductively

of 70,,. .

We now present the syntax of our logic for reasoning abou%as follows:
possibilistic belief fusion based on a level skipping strategy. ) TOw if L(mow @ Tiw) > €,
The logic is called SFPE-<, wheree € [0,1] is the incon- O>bw =\ 70w ® M otherwise.

sistency tolerance degree of the logic ahds acontinuous )
T-norml)f Let ®, be a sget of proposit?onal symbols. Then the Furthermore, we also define, ,, for eachQ ¢ 70, and
set of well-formed formulas (wff) of SFPL® is defined as @ € W, 8To.uw = QocqTo.w- Then, the satisfaction
the smallest set containin, U {_L, T}, and is closed under relation= for SFPL?-<-model is defined as

Boolean operators and the following rule: o w = piff we V(p), for eachp € @,

1A T-norm is any binary operation on [0,1] that is commutative, e wp Landw =T,
associative, non-decreasing in each argument, and has 1 as unit. o W ): - iff w bé ©,



o wl=pVyiff wEporw k=,
o w = [Qapiff Now(lel) = a,
o w = [Qpiff Now(lel) > a,

where|yp| is the truth set ofp in the model andvg, ,, is the
necessity measure associated i}, .

A set of wffs X is satisfied in a worldv, written asw =
S, ifw E pforall p € X. We writeX =, o if, for
each possible worldy in M, w | ¥ impliesw = ¢; and
Y Egppre« ¢ if X o for each SFPR-<-structureM.
can be omitted when it is an empty set, so a ik valid in
M, denoted by=1; ¢, if 0 = o, and|:SFPL§,E  denotes

0 Eqpppre.« - The subscript is usually omitted if it is clear

from the context.

e Axioms:

1. P: all tautologies of the propositional calculus
2. Bookkeeping:
@ [Qep D [Q] pifc>d
(b) [Q]F¢ > Qe
(©) [Qop
@) -7y
3. V1
@ ([ A Qa0 D 9)) D [t
() ([QFe A QT (e D)) D [QFY
4. V2:—[i]F L
5. V3:if QN Qs =0, then
@) ([Qi]ap A [Q2]b) O [ U Qsagsp
(0) ([u]de A5 e) D [ U] fg,e

6. O1:
@ ~[{0,i}]FL 5 (U {0 > ity = [QU
{0, i}ayp)
(b) ~[{O,}]7L > ([QU{0 > d}[Tp =[QU
{0,i}]5 )
7. O2:
@ {O,i}]FL 2 ([QU{0 > ill.p = [QU
O}]H,QO)
(b) {O.i}IFL 5 ([QU{0 > i}]Tp = [QU
O}4¢)

e Rules of Inference:
1. R1 (Modus ponens, MP):

Y DY
Y

2. R2 (Generalization, Gen):

v
Qi

Figure 1: The axiomatic system for SFPE

4  Proof Theory

An axiomatic system can be developed for SEPIby gener-
alizing the corresponding axioms of DBFLiau, 2003 and
PL¢ [Boldrin and Saffiotti, 199P The axiomatic system for
SFPL®€ is presented in Figure 1. The symbglin axiom
V3 denotes the T-conorm correspondinggo which is de-
finedasa @b =1—-(1—-a)® (1 —b). The axiom V2 is
the requirement that the inconsistency degree of each agent’s
belief state is not more than which is the inconsistency tol-
erance degree of the logic. The axioms O1 and O2 further
enforce the same property for each virtual agent

A wff ¢ is derivable from the system SFPL, or sim-
ply, ¢ is atheoremof SFPLY-<, if there is a finite sequence
©1,---,pm such thaty = ¢,,, and everyp; is an instance of
an axiom schema; or it is obtained from earligf's by the
application of an inference rule. It is written BSpprec ¢ if

¢ is a theorem of SFPL:<. Let X U {¢} be a subset of wffs,
theny is derivable fromX in the system SFPL< , written

asy Fgppre.c ¢, if there is a finite subset’ of ¥ such that
Feppree AE" D ¢. We drop the subscript when no confu-
sion occurs. We then have the soundness and completeness
theorem for SFPE-<.

Theorem 1 For any wffp of SFPL®¢, = o iff - .

5 Concluding Remarks

In this paper, we present a modal logic for reasoning about
ordered fusion of possibilistic beliefs based on a level skip-
ping strategy. While direct fusion and ordered fusion in epis-
temic logic[Faginet al, 1996; Cholvy, 1994; Liau, 2005as
well as direct fusion in possibilistic logiBoldrin and Saf-
fiotti, 1999 have been proposed previously in the literature,
the results in this paper fill a gap in the previous works. The
modal logic should be applicable to reasoning in multi-agent
systems. In future work, it should be possible to consider op-
erations other than T-norms for the fusion of possibility dis-
tributions.
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