
A Non-monotonic Logic for Specifying and Querying Preferences

Guido Boella
Dipartimento di Informatica

Universit̀a di Torino
Italy

guido@di.unito.it

Leendert van der Torre
CWI Amsterdam

and Delft University of Technology
The Netherlands

torre@cwi.nl

1 Introduction
Preferences are becoming of greater interest in many areas of
artificial intelligence, such as knowledge representation, mul-
tiagent systems, constraint satisfaction, decision making, and
decision-theoretic planning. In the logic of preference there is
a debate when a set of preferences should be consistent. For
example, Bacchus and Grove[1996] criticize ceteris paribus
preferences, because{p > ¬p,¬p ∧ q > p ∧ q} should be
consistent, and they criticize most existing logics of prefer-
ence, because{p > ¬p, q > ¬q,¬(p∧ q) > p∧ q} should be
consistent. In order not to restrict the use of the logic of pref-
erence, we propose a minimal logic of preference in which
anyset of specified preferences is consistent. To make it use-
ful for practical applications, we extend this logic to specify
preferences with a logic to query preferences, and with a non-
monotonic reasoning mechanism.

2 New semantics for the logic of preference
We introduce a logic of preference that distinguishes between
specifying and querying, inspired by preference-based deon-
tic logic [van der Torre and Tan, 2000]. We define two types
of preference statements, wherep>!q can be read as “it is
specified thatp is preferred toq” and p>?q can be read as
“the result of the query states thatp is preferred toq.”

Definition 1 (Language) Given a setA = {a1, . . . , an} of
propositional atoms, we define the setL0 of propositional for-
mulas and the setL of preference formulas as follows.

L0 3 p, q: ai | ¬p | (p ∧ q)

L 3 φ, ψ: (p>!q) | (p>?q) | ¬φ | (φ ∧ ψ)

Moreover, disjunction∨, material implication→ and equiv-
alence↔ are defined as usual. We abbreviate formulas of the
preference logic using the following order on logical connec-
tives: ¬ | ∨,∧ | >!, >? |→,↔. For example,¬p>!q ∧ r is
short for(¬p>!(q ∧ r)).

Typically many conflicts arise during the specification of
preferences. Our logic of preference representsany set of
preferences in a consistent way, which is achieved in two
steps. First, we do not use a total pre-order on worlds in the
semantics, but a partial pre-order on worlds, i.e., a reflexive
and transitive relation. Incomparable worlds indicate some
kind of conflict among these worlds. Secondly, and more

originally, we formalize a preferencep>!q as the absence of
a q world that is preferred over ap world.
Definition 2 (Specifying) Let W be the set of propositional
interpretations ofL0, andº a partial pre-order onW . We
write w Â w′ for w º w′ without w′ º w, and |α| for
{w ∈ W | w |= α}.
• º|= p>!q iff ∀w ∈ |p| and∀w′ ∈ |q| we do not have

w′ Â w.
Semantic entailment for more complex formulas, logical en-
tailment and other logical notions are defined as usual. For
example,φ1, . . . , φn |= φ if and only if for allº such that
º|= φi for i = 1 . . . n, we haveº|= φ.

We define a logic for querying preferences by optimization
in a specified preference relation. We use the same semantic
structures, but to simplify the definitions we assume that there
are no infinitely ascending chains (see, e.g.,[Boutilier, 1994]
for a discussion). Moreover,p is preferred toq if the optimal
p ∨ q worlds arep worlds.
Definition 3 (Querying) We assumeº does not contain
any infinite ascending chains. We writemax(º, p) for
{w ∈ W | w |= p and∀w′ ∈ W : w′ Â w ⇒ w′ 6|= p}.
• º|= p>?q iff max(º, p ∨ q) ⊆ max(º, p).
We distinguish models called most connected models.

Definition 4 (Distinguished models)A modelº1 is at least
as connected as another modelº2, written asº1vº2, if
º2⊆º1, that is, if∀w1, w2 ∈ W : w1 º2 w2 ⇒ w1 º1 w2.
A modelº1 is most connected if there is not another model
º2 such thatº2<º1, that is, such thatº2vº1 without
º1vº2.

Non-monotonic reasoning is based on distinguished mod-
els in the usual way. These distinguished models have some-
times been called preferred models, and non-monotonic en-
tailment has been called preferential entailment. However, to
avoid confusion with the preferences formalized in our logi-
cal language, we do not use this terminology in this paper.
Definition 5 (Non-monotonic entailment) A prefer-
ence specification is a set of specification preferences
PS = {p1>!q1, . . . , pn>!qn}. A distinguished model of a
preference specificationPS is a most connected model of
PS. A preference specification non-monotonically entailsφ,
written asPS |=v φ, if for all distinguished modelsº of
PS we haveº|= φ.



3 Logical properties
Specifying and querying preferences are complementary in
the sense that the logic of the former satisfies left and right
strengthening, and the logic of the latter satisfies transitivity.

3.1 Ordering
We first show that our desideratum holds. A preference spec-
ification which only contains preferences which are individu-
ally consistent, is itself consistent.

Proposition 1 If there is a model for each preference inPS,
then there is a model ofPS.
Proof. The identity relation{w º w | w ∈ W} is such a
model ofPS.

The logical relations among preference specifications are
characterized by left and right additivity.

LA |= (p ∨ q>!r) ↔ (p>!r) ∧ (q>!r)
RA |= (p>!q ∨ r) ↔ (p>!q) ∧ (p>!r)

Consequently, reading the additivity formulas from left to
right, specification preferences are strong preferences, in the
sense that they satisfy the following properties of left and
right strengthening.

LS |= (p>!q) → (p ∧ r>!q)
RS |= (p>!q) → (p>!q ∧ r).

Moreover, reading the additivity formulas from right to
left, specification preferences satisfy left and right disjunc-
tion.

LOR |= (p>!r) ∧ (q>!r) → (p ∨ q>!r)
ROR |= (p>!q) ∧ (p>!r) → (p>!q ∨ r)

In case of a finite set of atoms, the combination of LS,
RS, LOR and ROR give a simple way to derive all implied
preferences from a preference specification. Call a formula
a complete sentence when it impliesp or ¬p for each propo-
sition p ∈ A. Given a preference specificationPS, first use
LS and RS to derive preferences among complete sentences.
Secondly, use LOR and ROR to derive all preferences among
formulas.

Finally we consider some borderline cases. As usual, we
cannot have that a proposition is preferred to itself. This is
due to the fact thatº is reflexive.

Id |= ¬(p>!p)
Moreover, an important distinction among preference log-

ics is whether they satisfy transitivity. Our logic to specify
preferences does not, because we may haver worlds pre-
ferred top worlds, andq worlds incomparable to bothp and
r worlds.

T 6|= (p>!q) ∧ (q>!r) → (p>!r)

3.2 Optimizing
Optimizing preferences have been studied in the context of
total pre-orders. For example, Weydert[1991] defines ele-
mentary qualitative magnitude logic as follows, in a proposi-
tional preference logic extended with actual worlds:

QM1 (p > q) ∧ (q > r) → (p > r) (transitivity)

QM2 (p > q) ∧ (p > r) ↔ (p > q ∨ r) (additivity)

QM3 ¬(q > p) ∧ (q > r) → (p > r) (maximality)

QM4 ⊥ > ⊥ ∧ ((⊥ > p) ↔ (p > p)) (quasi-reflexivity)

QM5 ⊥ > p → ¬p (correctness)

QM6 (p > q) ↔ (r > s) if ` (p ↔ r) ∧ (q ↔ s) (exten-
sionality)

Of these formulas QM5 cannot be expressed in our logic, and
the relevant properties to check are QM1, QM2 and QM3. It
can be verified that QM1 and QM2 also hold for our logic
based on partial pre-orders, but QM3 does not.

In some cases, it may be useful to define a stronger notion
of specification preferences, as a combination of>! and>?.
Definition 6 p>0q = p>!q ∧ p>?q

Consequently, if we haveº|= p>0q then we also have
º|= p>?q, a property that does not hold for>!. That is, if we
haveº|= p>!q, then we do not necessarily haveº|= p>?q.

3.3 Modal characterization
It is well known that the combination of two logics in a single
logical system may be problematic, and that the axiomatiza-
tion of such a combined logic is a non-trivial task. To obtain
an axiomatization of our logic, we follow[Boutilier, 1994]
by providing a modal characterization of the logic. We de-
fine (or simulate) the preference logic in a normal bimodal
system, where2 is a universal modal operator and2′ is a
normal modal operator. See, e.g.,[Boutilier, 1994] for an ax-
iomatization of the bimodal logic.

Definition 7 Let L′ be a modal logic with two modal op-
erators2 and 2′. Moreover, let a model ofL′ be a tuple
M = 〈W,º, V 〉, with W a set of worlds,º a partial pre-
order onW , andV a valuation function of propositions at
the worlds. The satisfiability relation for modal formulas is
defined as follows.

• M, w |= 2p when∀w′ ∈ W we haveM,w′ |= p.

• M, w |= 2′p when∀w′ ∈ W : w′ º w ⇒ M, w′ |= p.

Moreover, we add the following definitions toL′:
• 3p = ¬2¬p, 3′p = ¬2′¬p

• p>!q = 2(p → 2′¬q)
• p>?q = 2(q → 3′(p ∧ ¬q ∧2′(p ∨ q → p ∧ ¬q)))

References
[Bacchus and Grove, 1996] F. Bacchus and A. Grove. Utility

independence in a qualitative decision theory. InProceed-
ings of the KR-96, pages 542–552, 1996.

[Boutilier, 1994] C. Boutilier. Conditional logics of normal-
ity: a modal approach.Artificial Intelligence, 68:87–154,
1994.

[van der Torre and Tan, 2000] L. van der Torre and Y. Tan.
Two-phase deontic logic. Logique et Analyse, 171-
172:411–456, 2000.

[Weydert, 1991] E. Weydert. Qualitative magnitude reason-
ing. In Nonmonotonic and Inductive Logic, volume 543
of Lecture Notes in Computer Science, pages 138–160.
Springer, 1991.


