
A language for functional interpretation of model based simulation

Jonathan Bell, Neal Snooke and Chris Price
Department of Computer Science, University of Wales Aberystwyth

Penglais, Aberystwyth, Ceredigion, SY23 3DB, U. K.
jpb, nns, cjp@aber.ac.uk

Abstract

Functional modeling is in use for the interpretation
of the results of model based simulation of engi-
neered systems for design analysis, enabling the au-
tomatic generation of a textual design analysis re-
port that expresses the results of the simulation in
terms of the system’s purpose. We present a novel
functional description language that increases the
expressiveness of this approach, allowing a system
function to be decomposed in terms of subsidiary
functions as well as required effects, increasing the
range both of systems and design analysis tasks for
which the approach can be used.

1 Introduction
The automation of the design analysis of engineered systems
requires both simulation of the behavior of the system and in-
terpretation of the results, to enable the automatic generation
of a draft report outlining the results of the design analysis.
This report is cast in terms of the system’s purpose and as
system function can be regarded as relating its behavior to
purpose, this interpretation of simulation for automatic report
generation is a useful rôle of functional description.

Functional modeling has been used for deriving the behav-
ior of a system from knowledge of its structure and compo-
nent functions[Sticklen and Chandrasekaran, 1989], support-
ing design by functional refinement[Iwasaki et al., 1993],
and interpretation of simulation for automatic report genera-
tion [Price, 1998] where system functions are associated with
significant behaviors (outputs or goal states). Here we present
a novel language for the description of system function that
increases the expressive power of that approach by allow-
ing partial fulfilment of a system’s purpose to be described.
Novel features of the language also increase both the range
of systems that can be described and the range of tasks for
which the language is useful.

2 Describing and decomposing function
The definition of function that underlies the language pre-
sented here might be given informally as “how a device
achieves its purpose” or more formally as

Function: An object O has a function F if it
achieves an intended goal by virtue of some exter-
nal trigger T resulting in the achievement of an ex-
ternal effect E.

This is distinct from notions of behavior and purpose, which
is a problem with some definitions of function used in model
based reasoning. It follows that a representation of function
has three elements; a description of purpose and the func-
tion’s trigger and effect. The trigger and effect are Boolean
expressions and act as the recognizer of achievement of the
function. A function can fail in two ways. Either the trigger
can fail to result in the expected effect or the effect can oc-
cur without the trigger, as summarized in Table 1. The four

Trigger Effect Function
false false Inoperative
true false Failed
false true Unexpected
true true Achieved

Table 1: Achievement of function using trigger and effect.

states of a function are defined in terms of the truth of the
trigger and effect, so if a function is triggered but the effect is
not present it is said to be failed, for example. Agreement in
value between the trigger and effect is consistent with correct
behavior of the system. We cannot, however, pair off these
cases as the consequences of the two inconsistent behaviors
will differ and the resulting report must reflect this.

The description of purpose is separate from the functional
description itself. This is consistent with the idea that func-
tion is concerned with how a purpose is fulfilled rather than
the purpose itself and also encourages model reuse as similar
purposes might be fulfilled by systems with different func-
tional requirements, such as cars’ and motorbikes’ lighting
systems.

A function might depend on more than one trigger and ef-
fect so logical operators can be used to describe the required
combinations. Alternatively, a function can be composed of
subfunctions, each with its own trigger, effect and purpose.
This distinction allows cases where the achievement of one
subfunction mitigates failure of the top level function, such as
where a warning system has visual and audible signals and the
presence of either one means at least some warning is given.



Decomposition in terms of functions means that the top level
function’s states must be derived from the four possible states
of each of the subfunctions. This is shown in Table 2. The

Child 1 Child 2 AND OR XOR
I I I I I
I A I A A
I Fa (I) Fa Fa
I U (I) U U
A A A A I
A Fa Fa (A) (U)
A U U (A) Fa
Fa Fa Fa Fa (I)
Fa U (I) (A) (A)
U U U U (I)

Table 2: States of functions and sub-functions.

rule is that triggering of the top level function is derived from
the triggering of the children and achievement of its effect
from those of the children. So, for example, in the sixth line
of the table, where Child 1 is achieved (both trigger and effect
are true) and Child 2 failed (trigger true but effect false) atop
level function that depends on Child 1 AND Child 2 has failed
as it is triggered (Child 1 trigger AND Child 2 trigger is true)
but the effect is not achieved as Child 1 effect AND Child 2
effect resolves to false. Where the state of the function is in
brackets, the report will ignore the top level function and in-
clude the associated failure of the child function. In addition
to the logical operators, a functional description might use
the sequential operators described in[Bell and Snooke, 2004]
to allow systems whose function depends on intermittent or
sequential behaviour to be described.

As there are three elements in a complete functional rep-
resentation, there are three possible pairs that can be usedas
incomplete subfunctions to simplify the functional decompo-
sition. As pairing trigger and purpose (with no effect) is un-
necessary, this leaves two classes of incomplete function that
can usefully be incorporated into the language. These are

Purposive incomplete function (PIF) maps effect to pur-
pose. This can be used when several subfunctions share
a trigger, as in the warning example mentioned above.

Operational incomplete function (OIF) maps trigger to ef-
fect with no distinct purpose. It ensures a trigger is as-
sociated with a specific effect where alternative combi-
nations of trigger and effect can achieve some purpose.

These are only used as subsidiary (child) functions.

3 Example of functional description
The following is (part of) the functional description of a car’s
seat belt reminder system that warns the driver if either front
seat is occupied with its seat belt unbuckled.

FUNCTION belt_warning
ACHIEVES unbuckled_warning
BY
vehicle moving

AND (driver_unbuckled OR
(passenger_present AND
passenger_unbuckled))

TRIGGERS
PIF warning_lamp AND PIF chimer

PURPOSE unbuckled_warning
DESCRIPTION "Warn seat belt is unbuckled"
FAILURE_CONSEQUENCE
"No warning given of dangerous state"

The PIFs and their associated purpose descriptions are, like
the description of purpose shown, separate entities. The de-
composition in this example allows the language to distin-
guish the case where one of the PIFs fails from the more se-
rious case where both fail so no warning is given. In addition
to this increased expressiveness the explicit inclusion ofthe
trigger differs from the language in[Price, 1998] and allows
unambiguous description of functions that are triggered by
the state of some other system function, increasing the range
of systems that can be modeled. The trigger and the use of la-
bels for trigger and effect allow a more precise specification
of required system behavior than the earlier language used
for functional labeling. They also enable the functional de-
scription to be built independently of a target system, so the
language for can be used for functional refinement of design
in addition to interpretation of model based simulation.

4 Conclusion
The functional description language introduced here in-
creases both the expressiveness and range of the language
used for functional labeling in[Price, 1998]. It shares the
advantages of simplicity, reusability and capability claimed
for that language and in addition allows the functional model
to be constructed independently of the system, so supporting
the use of the language in functional refinement of a design
as well as for interpretation of simulation.

References
[Bell and Snooke, 2004] Jonathan Bell and Neal A. Snooke.

Describing system functions that depend on intermittent
and sequential behavior. InProceedings 18th International
Workshop on Qualitative Reasoning, QR2004, 2004.

[Iwasakiet al., 1993] Yumi Iwasaki, R. Fikes, M. Vescovi,
and B. Chandrasekaran. How things are intended to work:
Capturing functional knowledge in device design. InPro-
ceedings of 13th International Joint Conference on Artifi-
cial Intelligence, pages 1516–1522, 1993.

[Price, 1998] Christopher J. Price. Function-directed electri-
cal design analysis.Artificial Intelligence in Engineering,
12(4):445–456, 1998.

[Sticklen and Chandrasekaran, 1989] Jon Sticklen and
B. Chandrasekaran. Integrating classification-based
compiled level reasoning with function-based deep level
reasoning. In Werner Horn, editor,Causal AI Models,
Steps Toward Applications, pages 191–220. Hemisphere
Publishing Corporation, 1989.


