Minimizing a Makespan Under Uncertainty
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Abstract 2 Preliminaries
This paper reconsiders the most basic scheduling ~ An activity network is classically defined as a set of activities
problem, that of minimizing the makespan of a par- (or tasks) with given duration times, related to each other by
tially ordered set of activities, in the context of means of precedence constraints. When there are no resource
incomplete knowledge. After positioning this pa- constraints, it can be r_epresented by a dlrgc_te(_j, connecte_d and
per in the scope of temporal networks under uncer-  acyclic graph. Of major concern, is to minimize the ending
tainty, we provide a complete solution to the prob- time of the last task, also called the makespan of the network.
lem of finding floats of activities, and of locating For each task, three quantities have practical importance for
surely critical ones, as they are often isolated. The ~ the management of the activity network: Tearliest start-
minimal float problem is NP-hard while the maxi- ing time es§ of an activity(i, j) is the date before which the
mal float problem is polynomial. New complexity activity cannot be started_ Wlthout violation of_ a pr_et;egjence
results and efficient algorithms are provided forthe ~ constraint. Theatest starting time Ist of an activity(i, j) is
interval-valued makespan minimization problem. the date after which the activity cannot be started without de-

laying the end of the project. THmat f; of an activity(i, j)

. N is the difference between the latest starting tistg and the
1 Introduction and Motivation earliest starting timest;. An activity iscritical if and only if
Temporal Constraint Networks (TCN) represent relations beits float is equal to zero.
tween dates of events and also allow to express constraints Now, activity durations (weights of the arc§), j) € A
on the possible durations of activities from intervals of val-are only known to belong to time intervaly; = [di],dﬁ]f],
ues[Dechteret al, 1991. TCN have been extended to take ¢~ > 0. We define a configuration as a precise instantiation
into account uncertainty of durations of some tasks in realyf the duration of each task, j) € A. Q denotes a configu-
istic applications. A distinction is made between so-called.,i4 whiled;; (Q) denotes Jthe duration of activig, j) in
contingent constraints (for example, when the duration o onfig’urationd. G(i, j) is the subgraph o6 compo’sed of
a task cannot be known before its execution) and control: '

o nodes succeediricand preceding.
lable ones (for example a time interval to be chosen between oy ting earliest starting dates is not a difficult issue.

starting times of two tasks). The resulting network (Simpleare we solve four problems, stated @hanast al, 2003

Temporal Network with Uncertainty) becomes a decisiop—l) determining the widest intervalsSTy (bounds) of pos-

making problem under uncertainty, and notions of consisgiyja values of the latest starting timtsty of a given ac-

tency must be refined so as to ensure controllability, that istivity (k1) €A ie. the interval. STy = [Istg,Ist!] defined

ensured consistency despite uncertaliMprris et al., 2001; - + .
Khatibet al, 2001. As far as we know, the TCN community by Isty = minlsti(Q) andlstg = maxistq(Q); the problem

has extensively worked on the controllability of a network, ©f computinglst (resp. Ist]) is denoted GLBLST (resp.
but the question of optimizing the total duration of set of tasks-UBLST); 2) determining the widest intervalig of possible
described by a STPU has not been studied. Nevertheless, ngtlues of floats (total ﬂPat?_)d of a given activity(k,1) € A,
all solutions to an STPU are equally valuable, and solution&®: the intervaFq = [fy, fij] bounded byf,; = min fi(Q)
minimizing the makespan are of obvious practical interest. and fij = maxfy(Q). The problem of computind; (resp.
This paper provides a full picture of the complexity of the kaT) is denoted GLBF (resp. LUBF). In both problems min-
makespan minimization problem under interval-based unceiimization and maximization are taken over all possible con-
tainty. It is shown that the only NP-hard problem is the one offigurations. The solutions to problems GLBLST, LUBLST,
finding the greatest lower bound of the float, which is closelyLUBF and GLBF come down to finding an extreme con-
related to asserting the possible criticality of a task. All otherfiguration [Dubois et al, 2009 where such bounds are at-
problems turn out to be polynomial. The fact that the twotained. As there are"2extreme configurations, it explains
problems of asserting if an arc is hecessary critical or possiblyhe potentially exponential nature of the problem. GLBLST,
critical do not have the same complexity is rather unexpected.UBLST and GLBF have recently been solved[@hanas



and Zielirski, 2002; Zieliski, 2003, and only GLBF is NP- In this table we give the complexity of the theoretically
hard. In this paper, we recall the solutions of these three prolbhest known algorithm which computes the quantity of inter-
lems, and present the solution to the last one LUBF, thus proest. In particular, the path algorithfbubois et al., 2009

viding a full picture of the makespan minimization problem which computes the GLB and LUB of floats and latest start-

under incomplete information. ing dates runs i®((n+ m)|P|) time , whergP| is the number
] o of path of the grapl@. The real complexity thus depends of
3 Evaluating Necessary Criticality the topology of the network.
This section presents a new method which can decide if a .
given task(k, 1) is necessary critical. 5 Conclusion

First, under the assumption that the durations of the prederhis paper proposes a complete solution to the criticality
cessors of taskk, |) are precisely known, we already know an analysis of a network of activities when durations of tasks
algorithm that asserts k1) is necessary critical. It consti- are jll-known. It is shown that moving from precise to impre-
tutes the basis for computing the LUB and GLB of the latesigise durations radically changes the complexity of the prob-
starting dates in polynomial time ifZielinski, 2003. We |em, ruining the traditional critical path method. Part of the
have extended these results and can provide a general alggroblem, pertaining to the GLB of the float, becomes NP-
rithm which asserts ifk, |) is necessary critical in a network hard, the other questions remaining polynomial, although not
G in polynomial time without any consideration of the dura- straightforwardly so. These complexity results shed light on
tions of tasks preceding, ). o reasons why the more familiar stochastic counterparts to this

Suppose thatk,|) is necessary critical in the sub-network pasic scheduling problem are so difficult to handle, part of the
G(i,n), then we proved that we can fix the duration of tasksgifficulty being already present in the interval analysis. The
preceding nodeat their lower bounds, without changing the proposed algorithms can be of obvious relevance to practi-
necessary criticality ofk,!) in G. On the contrary, ifk,1)  cal predictive project scheduling problems where durations
is not necessary critical i5(i,n), then we proved that we of tasks are not known in advance. Clearly, due to the ba-
can fix the duration of tasks preceding nddt their upper  sjc nature of the addressed problem, several lines of research
bounds. Applying this idea on network&(i,n) for i from  can be envisaged for future research. For instance one may
k down to 1, for each network, tasks precediftgl) have  assume that part of the tasks durations are controllable and
always precise duration i@(i,n), and so we can easily assert additional constraints relating durations and starting or end-
the necessary criticality in polynomial time. The resultinging times may be available. Then one obtains a makespan

algpritlhméequireg(mn) steps to assert f, 1) is necessary minimization problem in the more general setting of STPU's.
critical in G.
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