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Abstract

This paper reconsiders the most basic scheduling
problem, that of minimizing the makespan of a par-
tially ordered set of activities, in the context of
incomplete knowledge. After positioning this pa-
per in the scope of temporal networks under uncer-
tainty, we provide a complete solution to the prob-
lem of finding floats of activities, and of locating
surely critical ones, as they are often isolated. The
minimal float problem is NP-hard while the maxi-
mal float problem is polynomial. New complexity
results and efficient algorithms are provided for the
interval-valued makespan minimization problem.

1 Introduction and Motivation
Temporal Constraint Networks (TCN) represent relations be-
tween dates of events and also allow to express constraints
on the possible durations of activities from intervals of val-
ues[Dechteret al., 1991]. TCN have been extended to take
into account uncertainty of durations of some tasks in real-
istic applications. A distinction is made between so-called
contingent constraints (for example, when the duration of
a task cannot be known before its execution) and control-
lable ones (for example a time interval to be chosen between
starting times of two tasks). The resulting network (Simple
Temporal Network with Uncertainty) becomes a decision-
making problem under uncertainty, and notions of consis-
tency must be refined so as to ensure controllability, that is,
ensured consistency despite uncertainty[Morris et al., 2001;
Khatibet al., 2001]. As far as we know, the TCN community
has extensively worked on the controllability of a network,
but the question of optimizing the total duration of set of tasks
described by a STPU has not been studied. Nevertheless, not
all solutions to an STPU are equally valuable, and solutions
minimizing the makespan are of obvious practical interest.

This paper provides a full picture of the complexity of the
makespan minimization problem under interval-based uncer-
tainty. It is shown that the only NP-hard problem is the one of
finding the greatest lower bound of the float, which is closely
related to asserting the possible criticality of a task. All other
problems turn out to be polynomial. The fact that the two
problems of asserting if an arc is necessary critical or possibly
critical do not have the same complexity is rather unexpected.

2 Preliminaries
An activity network is classically defined as a set of activities
(or tasks) with given duration times, related to each other by
means of precedence constraints. When there are no resource
constraints, it can be represented by a directed, connected and
acyclic graph. Of major concern, is to minimize the ending
time of the last task, also called the makespan of the network.
For each task, three quantities have practical importance for
the management of the activity network: Theearliest start-
ing time esti j of an activity(i; j) is the date before which the
activity cannot be started without violation of a precedence
constraint. Thelatest starting time lsti j of an activity(i; j) is
the date after which the activity cannot be started without de-
laying the end of the project. Thefloat fi j of an activity(i; j)
is the difference between the latest starting timelsti j and the
earliest starting timeesti j . An activity iscritical if and only if
its float is equal to zero.

Now, activity durations (weights of the arcs)(i; j) 2 A
are only known to belong to time intervalsDi j = [d�i j ;d+i j ],
d�i j � 0. We define a configuration as a precise instantiation
of the duration of each task(i; j) 2 A. Ω denotes a configu-
ration, whiledi j (Ω) denotes the duration of activity(i; j) in
configurationΩ. G(i; j) is the subgraph ofG composed of
nodes succeedingi and precedingj.

Computing earliest starting dates is not a difficult issue.
Here we solve four problems, stated in[Chanaset al., 2002]:
1) determining the widest intervalsLSTkl (bounds) of pos-
sible values of the latest starting timeslstkl of a given ac-
tivity (k; l) 2 A, i.e. the intervalLSTkl = [lst�kl ; lst+kl ] defined
by lst�kl = minlstkl(Ω) andlst+kl = maxlstkl(Ω); the problem
of computinglst�kl (resp. lst+kl ) is denoted GLBLST (resp.
LUBLST); 2) determining the widest intervalsFkl of possible
values of floats (total floats)fkl of a given activity(k; l) 2 A,
i.e. the intervalFkl = [ f�kl ; f+kl ] bounded byf�kl = min fkl(Ω)

and f+kl = max fkl(Ω). The problem of computingf�kl (resp.
f+kl ) is denoted GLBF (resp. LUBF). In both problems min-
imization and maximization are taken over all possible con-
figurations. The solutions to problems GLBLST, LUBLST,
LUBF and GLBF come down to finding an extreme con-
figuration [Dubois et al., 2005] where such bounds are at-
tained. As there are 2n extreme configurations, it explains
the potentially exponential nature of the problem. GLBLST,
LUBLST and GLBF have recently been solved in[Chanas



and Zielínski, 2002; Zielínski, 2005], and only GLBF is NP-
hard. In this paper, we recall the solutions of these three prob-
lems, and present the solution to the last one LUBF, thus pro-
viding a full picture of the makespan minimization problem
under incomplete information.

3 Evaluating Necessary Criticality
This section presents a new method which can decide if a
given task(k; l) is necessary critical.

First, under the assumption that the durations of the prede-
cessors of task(k; l) are precisely known, we already know an
algorithm that asserts if(k; l) is necessary critical. It consti-
tutes the basis for computing the LUB and GLB of the latest
starting dates in polynomial time in[Zieliński, 2005]. We
have extended these results and can provide a general algo-
rithm which asserts if(k; l) is necessary critical in a network
G in polynomial time without any consideration of the dura-
tions of tasks preceding(k; l).

Suppose that(k; l) is necessary critical in the sub-network
G(i;n), then we proved that we can fix the duration of tasks
preceding nodei at their lower bounds, without changing the
necessary criticality of(k; l) in G. On the contrary, if(k; l)
is not necessary critical inG(i;n), then we proved that we
can fix the duration of tasks preceding nodei at their upper
bounds. Applying this idea on networksG(i;n) for i from
k down to 1, for each network, tasks preceding(k; l) have
always precise duration inG(i;n), and so we can easily assert
the necessary criticality in polynomial time. The resulting
algorithm requiresO(mn) steps to assert if(k; l) is necessary
critical in G.

4 Computing the Least Upper Bound on the
Floats

To compute the LUB of the floats, we are going to increase
step by step the duration of(k; l) from Dkl = d�kl until (k; l) be-
comes necessary critical with a durationd�kl + f �. We proved
that the valuef � is the LUB of the float of(k; l).

If we assume that activities preceding(k; l) have precise
durations, thenf+kl = lst+kl �est+kl . So at each step of the com-
putation, we can easily computef+i representing the float of
(k; l) in networkG(i;n). After initialization of durations in
the network by the algorithm which asserts if(k; l) is nec-
essary critical, if(k; l) is not necessary critical, we have to
increase the duration of(k; l) by the minimal non-nullf+i for
i precedingk, then go back to the test of asserting necessary
criticality. When(k; l) becomes necessary critical, we have
found f+kl . At each iteration,(k; l) becomes necessary criti-
cal in at least one new networkG(i;n), and so the resulting
algorithm is polynomial and takesO(n3m).

The following table summarizes the complexity of the dif-
ferent problems of the PERT/CPM on intervals:

Earliest starting GLB P O(n+m)
date (all tasks) LUB P O(n+m)
Latest starting GLB P O(mn)
date (one task) LUB P O(mn)
Float (all tasks) GLB NP-Hard O((n+m)jPj)
Float (one task) LUB P O(n3m)

In this table we give the complexity of the theoretically
best known algorithm which computes the quantity of inter-
est. In particular, the path algorithm[Dubois et al., 2005]
which computes the GLB and LUB of floats and latest start-
ing dates runs inO((n+m)jPj) time , wherejPj is the number
of path of the graphG. The real complexity thus depends of
the topology of the network.

5 Conclusion
This paper proposes a complete solution to the criticality
analysis of a network of activities when durations of tasks
are ill-known. It is shown that moving from precise to impre-
cise durations radically changes the complexity of the prob-
lem, ruining the traditional critical path method. Part of the
problem, pertaining to the GLB of the float, becomes NP-
hard, the other questions remaining polynomial, although not
straightforwardly so. These complexity results shed light on
reasons why the more familiar stochastic counterparts to this
basic scheduling problem are so difficult to handle, part of the
difficulty being already present in the interval analysis. The
proposed algorithms can be of obvious relevance to practi-
cal predictive project scheduling problems where durations
of tasks are not known in advance. Clearly, due to the ba-
sic nature of the addressed problem, several lines of research
can be envisaged for future research. For instance one may
assume that part of the tasks durations are controllable and
additional constraints relating durations and starting or end-
ing times may be available. Then one obtains a makespan
minimization problem in the more general setting of STPU’s.
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[Zieliński, 2005] P. Zieliński. On computing the latest start-
ing times and floats of activities in a network with impre-
cise durations.Fuzzy Sets and Systems, 150:53–76, 2005.


